Blow-up for solution of a system of quasilinear
hyperbolic equations involving the p—laplacian
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Abstract

We study the blow-up for the solution of a system of quasilinear hyperbolic
equations involving the p-laplacian. We derive a differential inequality for a
function involving some norms of the solution which yields the finite time
blow-up.

1 Introduction

We are concerned with the blow-up of solutions of the initial boundary value problem
for a class of quasilinear system of hyperbolic equations in a bounded domain 2 C R"
(n > 1) with a sufficiently smooth boundary 02 :

"9 ([oul" ou

) — Auy + |v ™ \ut|51 sign (uy) = |u|m1_1 win Q x (0,7),

(1)
"9 [low]"? o . .
vtt—z 4 ( Y U) — Avy + |vy 2|ut|ﬁ2sign(vt):|v| 271y in Q x (0,7,

u(z,t) =0, v(zx,t) =0 on 9Q x (0,7T), (3)
u(x,0) = ug (), u (x,0) = uy (z) in Q, (4)
v (z,0) = v (x), vy (2,0) = vy (z) in Q, (5)
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where 0 < T < o0, p, m;, oy, ; (i = 1,2) are positive numbers subjected to some
appropriate restrictions.

The problem is related to a class of nonlinear evolutions equations of the type

o+ At)o—B{t) o +D () =F(t) ¢
¢ (0) = ¢o (6)
SOt(O):%

where A, B, D and F are some nonlinear operators. Issues of global existence under
various conditions were considered in [1], [14]; see the references in these papers.
Equations of this type arise in several areas of physics. The most common of them
being the case when

Ap =— ; aixiﬁi <g—i> and By, = Ay,
which describes the longitudinal motion of a viscoelastic bar obeying the nonlinear
Voight model. Physically the strong damping term —Ay; and the nonlinear dissi-
pative damping term D (t) p; play a dissipative role in the energy accumulation in
the configurations of viscoelastic materials, while the nonlinear source term F () ¢
leads to the gathering of energy in the configurations. The interaction between these
terms may lead to a lack of synchronization in the energy accumulation and as a
result the configuration may break or burn out in finite time, this mathematically
is expressed through the finite time blow-up of the solution.

Here we consider an initial boundary value problem involving a system of non-
linear hyperbolic equations with slightly more general nonlinear damping terms.

The case without sources terms which lead to global existence was considered
in [1]. The study of finite time blow-up involving one equation (thus one of the
parameters o; = 0 and m; = my) was considered in [14], [15].

The approach in the present paper follows closely that of [2], [7], [9]. We refer also
to the important papers devoted to related questions such as [4], [3], [5], [6], [8], [10],
[11], [12](this paper treats hyperbolic systems with source terms without damping)
and in the several references therein; the approach in some of these papers is mainly
based on the potential well method which originated in the work of Sattinger [13].
We note that semilinear equations and systems (when p = 2) are the ones that have
been widely studied. Nonlinear hyperbolic problems involving the p-Laplacian are
becoming the object of increasing interest only in recent years.

The paper is organized as follows. In section 2, we state our main result. Section
3 is devoted to the proof of the main result through the derivation of a suitable
differential inequality satisfied by a function involving some norms of the solution.

2 Preliminaries

We introduce some notations. By L, (22) (p > 1) we denote the set of integrable
functions u on €2, such that the norm

1/p
lull, @ = ([ Jal dz) < oo.
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Let X be a Banach space. By the symbol L, (0,7,Y") we mean the functions u (z,t)
that are L,-integrable from [0, 7] into X and with the norm

/p

||“HL,,(0TX </ lu ()% dt) ,1<p<oo

and

||U||Loo (0,1,x) — €58 Sup [u @)l -
t€(0,T]

For p > 1, we consider the function space

o

wh(Q) = {u € L, (Q) : ulpq =0,

p

ou

a—:(,’i GLP(Q),’éZI,...,n},

n P 1/p
el g, ) = (g;@ x)

when p = 2, we denote W, (Q) by Hj (Q2). We denote by X? the Cartesian product
of a set X with itself. The letter C' will stand for all constants depending only on
the data.

We introduce the functions

with the norm

ou
0:)3,~

. 1 2 1 8u mi+1
H, (1) = =5 [ wida p/ﬂ =l o+ — /| ™ g, (7)
1 9 1y |owl g+l
Hy () = = Qvtda:—p/g - d:)s+m2+1/|v| dz, (8)
H(t) = H, (t) + H, (t) (9)
t ou () |ov(r)]?
F@zwwm&@+wwm;m+414 2l £>]mm; (10)

for sake of simplicity we denote from now on the norm [[-[|, ) by [[|[,-
Our main result is

Theorem 1. Let U = (u,v) be a local weak solution of problem (1)-(5), in the sense
that there exists a number 0 <T' < oo such that

U e [C <0,T,VIZ} (Q))THC’(O,T,LWH(Q))xC(O,T,Lm2+1(Q)), (11)
U = (o) € [C0,T, Ly () N [Lo (0,7, H ()] (12)

T
/ / [lon]® Jue 4 |2 )] dxdt s finite (13)
0 Q

U() = (U(],Uo) - W(}pl (Q)‘| y U1 = (Ul,Ul) € [Lg (Q)]2 (14)
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and u satisfies (1)-(5) in the weak sense. Furthermore we assume that

Ho (0)>C1 >0, Hy(0)>Cy >0 F (0) = /Q o + voo] dz >0 (15)

a; >0, 3;>0,m;>1(0=1,2),0<a1—as<1,0<fB—F <1 (16)

Oé2—|—1 ﬁg m1+1 ﬂ_ﬁl—l—1>m2—|—1

, , 17

ay ﬁl my Q2 P2 ma 17)
i+ 1 :

max {2, TTLL—(i-mTj_—l—)l} <p <min {m; +1,n}. (18)

Then u blows up in finite time, i.e., there exists a Ty > 0 such that

. mi1+1 mao+1 2
Tim [l (B + o @)l + 10 @1l] =

—4o

Remark 2. The constants Cy and Cy will be chosen later. Some few words about
questions related to the problem (1)-(5) are in order. The global ezistence without
the source terms was considered in [1]. In particular it was shown that if p > 2,
0<fi<l—a,0<a<1—0, 0<a;<1,0<(y <1 and the above conditions
(14) are imposed on the initial data, then a global weak solution exists and decay
estimates under further conditions were derived.

3 Proof of the theorem
The blow-up result will follow from a differential inequality satisfied by the function
W (t)=H" (@) +cF (1),

where o and ¢ are small parameters that will be chosen in the sequel. This idea
goes back to Ball [2].

We start with the derivation of some useful informations on the function H which
follow from a suitable identity.

Multiplying the equations (1) and (2) by u; and v, respectively and integrating
over {2, we get

d |1 2 1 ||0u P mi+1 0ut a 1

G e+ 2 | 5| = g Nl = - = o
p J

d |1 2 1||0v P 2+1_ (9vt 2 9+1 B2

s - - e m — -t _ o d

7t [2 ||Ut||2+p o |, T +1 V][ 9z ||, /Q|Ut| |ug|* dr

This implies that
(9ut

u

o

ol da, (19)
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and

Oy [ fo (20)

(2

o

that is H, and H, are non decreasing. Thus from the assumption on H, (0) and
H, (0), it follows that for all t > 0,

my ou|[™
0< H(0) < () < it < o] 2 @1
P
m vt
0<H(O) < H ()< <o) 2 (22)
P

where we have used the fact that W, (Q) is embedded into Ly, 41 (€2) since by the
conditions (18) on p, pn/ (n — p) > max; {m; + 1}.

By approximating u with sufficiently smooth functions with respect to ¢, we can
see that F"” satisfies

F"(t) = 2/ uf + vf) dx + 2/Q (uuy + voy) dz (23)

ou 8ut ov Oy
+2 [ Z [8@ or, o, 83:@-] e

oul[” m
- QOmmi— x /thmwﬁmgmmm+umm:Q
ovll’ m
+2me§—‘a /Wv\ﬂmﬁﬁmgwa+wwmﬁg-

Thus substituting F” as expressed in (23) into the relation

d
dt

and using the definition of H, we get

(H'™(t) +eF' (1)) = (1—a) H“H +F" (1),

CZ (2 () + F (1)) (24)

- (1—a)H‘O‘H'+5(2+p)||Ut||§+2p5H
mi1+1 p mo+1
ve (2= =g ) il + e (2- =2 ) Imlleh

—25/ \Ut| ! |ut\61 usignude — 25/ 0] °? |ug)® vsignosda.
Q Q

Let us denote the two last integrals by I; and I, respectively and estimate them.
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By Holder’s inequality, we have

Lo [l ful® julds
Q
mi+1)/m mi/(mi+1) 1/(m1+1)
(f G ) (]t
Q Q

B1/B2 1/(m1+1)
([ ot el )™ ([ g o)
Q Q

where in the last inequality we used the restrictions (16) and (17).
Next writing

IA

IA

L BB, L B8
m1+1 /62 b o1 m1+1 62’

we have 07 < 0, and using Young’s inequality we get

B1/B2 o1 (B2—P1)/B2
L < (/ 021 gy |2 d:):> (/ |u|m1+1da:) (/ |u|m1+1d:)3>
Q Q Q

o1
< C [/ |Ut|a2+1 ‘ut|ﬁ2 d(lf—i—/ |u|m1+1 dm} (/ ‘u|m1+1 dm) .
Q Q Q
By (21) and (20), we get,

2el, < Ce (H, (1)) [H;, )+ [ Ju™ " da) (25)
Analogously we obtain
1 a1 — (g
%], < Hvt”[H't Lo+ de) s o = _ 2
el, < Ce (H, (1)) | H,, (t) + Q|U\ S I R o (26)

Combining these two last inequalities with (21)-(22), it follows that

2¢ (I + L) < 2e [H (0) + HP? (0)] [H () + [[ull 4y + [Jol[mzti]

mi+1 ma+1

Taking account of (24), the following relation holds:

% (H'™(t) +eF' (1))

> {(1—a) H™(0) — 2C[H (0) + H ()]} H' (t) + = 2+ p) {U[2 + 2pe

+e (2= - oz (0)+ B 00l o7
be (2= 2 OH 0+ B 0)) 0I5
We take S S Ly
“ < (O’mm{w;+1>’2<ni2+1>’pp }> | .

and choose € > 0 such that

(1—a) H™(0) — 2:C [H" (0) + H (0)] > 0.
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Also we choose the constants C; and C5 in (15) in such a way that

(1 2p
Co 4 O < {-(2— )}
v S T

Then the inequalities hold:

2p
- —CH® (0 H?2 (0 0
=7~ CLHD )+ H (0)] >
2p
- —CIH® (0 H? (0 0.
o1~ CLHD )+ H (0)] >
Thus from (19), (20) it follows that
d(Hl-a<t>+ F' (1)) = C ([0l + H (&) + [l dy + [ul[2251) ; 29
7 £ > tll5 ulf oy el ) s (29)

as a consequence we have that W (t) is increasing since H (t) > 0 by (21)-(22).
Therefore using the assumption that F’ (0) > 0, we get

W (t) > 0, Vt > 0.

We make a further restriction on a by requiring that 0 < o < 1/2. Then setting
g=1/(1—a) (ie., 2> [ >1) we claim the inequality

W' (t) > CWP(t). (30)
For the proof of (30), we consider two alternatives:
o If there exists a t > 0 such that F’ () < 0, then
(5= (1) +eF (1) < H (1). (31)
Thus (30) follows from (29).

e If there exists a t > 0 such that F'(¢) > 0, then using Holder’s and Young’s
inequalities we get
2\ B
(32)
2

ou|[* ‘01} 25]
2

o o
where A\, ' + ;' = 1. We take ;8 =2, i = 1,2. Thus pu; = pp = 2/3 and

2

ou

ox

ov

P = (2/9 [wiu + v do + ‘ o

2 ‘

ox

A A B
< C [I|U\|215+Hml\é“ﬁﬂ\vlbz“r||vt||’52 +‘
2

2(1—a)

)\1:)\2:>\: 1_2a

By the restrictions on «, we have

2 2
AG = <min{m; +1}, 28=—"— <p.
f=1—5o Smin{m+1}, 2= ——<p
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Thus from (32), using Holder’s inequality we have

oul|*” ovl||*
B A3 2 A3 2
F0)F < C[Hu\|ml+1+uut||2+\|vum2+1+HwHﬁH% |2 ]
AB—(m m AB—(m m
= C{llull S Ml + O + ol 5= ol 2ty
ou|l** 77 || ou| P o |?°7?||ov]| P
= — — =1 ¢
’ ozr Ox ozr ozr
p p p p
JFrom the estimates (21) and (22) we deduce that
(F' 07 < C{[H, (0)A et Dlimest] gy
+|UH5 + [H, (0)) A7 (metDlimerttd gy et
oull? ov |l
H, (0 (28-p)/(m1+1) || YT H, (0 (28-p)/(m2+1) || YY .
+{H, (0) Soll o+t o -
p p
Thus
p p
B8 mi1+1 mo+1 2 ou ov
PO <€ izt + o+ ot + | 3]+ |52 ]
p p
From the definition of H we have
1 {[|ou|l” |lov]|] 1 1
H(t)+-|||=— — < mi+1 matl
o+ |5+ |5 ] < e el
Thus
m m ou | ov |
PP < i+ i+ g 5+ o +H<t>}
p p
mi1+1 mo—+1 2
< C[fullpity + lollmzts + 1U1)
and hence
—a B mi+1 mat1 2
(= ) +<F' (1) < O [llullmtd +[ollzzit + 1043 (39)

This inequality together with (29) imply (30).

Now integrating both sides of (30) over the interval [0,¢], it follows that there
exists a Ty > 0 such that

lim (H'""(t) +eF (1)) = .

=T,
This limit combined with (33), (31), (21) and (22) give

. mi+1 ma—+1 2
lim [[ju (8)][5) + [0 @25 + 10 (@)]]3] = oo
0

—

The theorem is proved.
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