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Abstract

In this note we study the geometry of drops in Banach spaces, and we

use it to characterize two well known geometrical properties: rotundity and

smoothness.

1 Introduction

Given a normed space X, a drop is a set of the form co ({e} ∪ B) where B is a
closed ball in X and e ∈ X\B. Clearly, every drop is a bounded closed convex
set with non-empty interior. In [2] it is proved that, in any Banach space X, for
every closed subset S not containing 0 there exists x ∈ S so that co ({x} ∪ BX)
intersects S at only x. This theorem motivated the following definition: a normed
space X is said to have the drop property if, for every closed set S disjoint from BX ,
there exists x ∈ S such that the drop co ({x} ∪ BX) intersects S at only x. In [4]
it is proved that every uniformly rotund Banach space has the drop property, and
every Banach space having the drop property is reflexive; Rolewicz then posed the
question whether all reflexive Banach spaces can be renormed to have this property.
In [3] Montesinos answered Rolewicz’s question in the positive, moreover, he proved
that a Banach space has the drop property if and only if the space is reflexive and
has the Radon-Riesz property. In this note we study the geometry of drops, and we
use it to characterize rotundity and smoothness of normed spaces.
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2 Drops and rotundity

In this section, we characterize the geometrical property known as rotundity by
means of drops. Let us recall that, in a normed space, a bounded closed convex
subset with non-empty interior is said to be rotund if its boundary does not contain
segments. Equivalently, every point in its boundary is an extreme point. A normed
space is said to be rotund if so is its unit ball. As expected, we show in Proposition
2.2 that no drop can be rotund, therefore it is necessary to “modify” the definition
of rotundity for drops. Nevertheless, we begin by introducing the following lemma
upon which we will base all the results related to rotundity.

Lemma 2.1. Let X be a normed space. Let D = co ({e} ∪ B) be a drop in X an

consider x ∈ D. Then, x ∈ int (D) if and only if x can be written in the form

x = λe + (1 − λ) b with b ∈ int (B) and λ ∈ [0, 1).

Proof. First, assume that x can be written in the form x = λe + (1 − λ) b with
b ∈ int (B) and λ ∈ [0, 1). Then, there exists ε > 0 such that BX (b, ε) ⊆ B. We
will show that, in this situation, BX (x, ε (1 − λ)) ⊆ D. Let y ∈ BX (x, ε (1 − λ))
and consider b′ = (y − x) / (1 − λ) + b. Then, b′ ∈ BX (b, ε) ⊆ B and hence y =
λe + (1 − λ) b′ ∈ D.

Conversely, assume that x ∈ int (D). First, we will show that x 6= e. In order to
see this, we will prove that e ∈ bd (D). Assume, on the contrary, that there exists
a ball centered at e and contained in D, call it B′. Then, we can find two different
points u, v such that e = (u + v) /2 and the segment [u, v] is contained in B′. Thus,
u, v ∈ D so we can find bu, bv ∈ B such that u ∈ [bu, e) and v ∈ (e, bv]. It follows
that e ∈ (bu, bv) ⊆ B, which is impossible. Now, we can write x = δe + (1 − δ) b′

with b′ ∈ B and δ ∈ [0, 1). Keeping in mind that x ∈ int (D), we can suppose
that x 6= b′ and so δ > 0. Next, we will reach a contradiction by assuming that
γe + (1 − γ) b′ /∈ int (B) for every γ ∈ R. Indeed, in that situation the straight line
determined by e and b′ does not intersect int (B). This means that, according to the
Hahn-Banach separation theorem, we can find f ∈ X∗, a non-zero functional which
is constant on this straight line, such that f (u) > f (v) for every u in the straight line
and every v ∈ int (B). Now, there is ε > 0 such that BX (x, ε) ⊆ D, and we can also
find z ∈ BX (x, ε) with f (z) > f (x) = f (e). By hypothesis, z = αe + (1 − α) b′′ for
some α ∈ [0, 1] and b′′ ∈ B. Thus, f (z) = αf (e) + (1 − α) f (b′′) ≤ f (e), which is a
contradiction. Consequently, there must exist γ ∈ R so that γe+(1 − γ) b′ ∈ int (B).
Next, we have three possibilities:

a. γ ≥ 1. In this case, we have that e ∈ B, which is impossible.

b. δ < γ < 1. In this case, we deduce that x ∈ int (B) ⊂ int (D), so we take
λ = 0.

c. γ ≤ δ. In this case, it suffices to take λ = δ(1−γ)−γ(1−δ)
1−γ

and b = γe+(1 − γ) b′,

since with these choices of λ and b we have x = λe + (1 − λ) b.

A consequence of this lemma is the proposition we referred to at the beginning
of this section, which is related to the non-rotundity of drops.
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Proposition 2.2. Let X be a normed space. Let D = co ({e} ∪ B) be a drop in X.

Then, D is not rotund.

Proof. Take any x ∈ bd (D) ∩ BX

(

e, dist(e,B)
2

)

different from e. We will show that

the segment [e, x] is entirely contained in the boundary of D. If not, then we can
find α ∈ (0, 1) with αe+(1 − α)x ∈ int (D). By Lemma 2.1, there are λ ∈ [0, 1) and
b ∈ int (B) such that αe + (1 − α)x = λe + (1 − λ) b. Now, observe that b /∈ [e, x]

since [e, x] ∈ BX

(

e, dist(e,B)
2

)

and BX

(

e, dist(e,B)
2

)

∩ B = ∅. Therefore, it necessarily

happens to be that λ > α and x = λ−α
1−α

e + 1−λ
1−α

b. Finally, by applying again Lemma
2.1, we deduce that x ∈ int (D), which is a contradiction.

Proposition 2.2 suggests a change in the definition of rotundity for drops.

Definition 2.3. Let X be a normed space. Let D = co ({e} ∪ B) be a drop in X.

We will say that the drop D is rotund if, for every x, y ∈ bd (D) \ {e} such that

x, y, e are not colinear, we have that [x, y] ∩ bd (D) = {x, y}.

With this definition, we are ready to state the characterization of rotundity in
terms of drops. However, we will need one more lemma.

Lemma 2.4. Let X be a normed space. Let D = co ({e} ∪ BX (b, r)) be a drop in

X. Then:

1. If x ∈ SX (b, r) ∩ int (D) then 2b − x ∈ bd (D).

2. If x ∈ SX (b, r)∩bd (D) and [x, e] ⊆ bd (D), then there exists f ∈ X∗ such that

f (x) = f (e) = sup f (BX (b, r)); as a consequence, 2b − x ∈ bd (D).

Proof. To simplify the proof we will assume, without loss of generality, that BX (b, r) =
BX , i.e. b = 0 and r = 1.

1. By applying Lemma 2.1, there exist λ ∈ (0, 1) and u ∈ UX such that x =
λe+(1 − λ) u. If −x ∈ int (D), then by applying again Lemma 2.1, we can write
−x = γe + (1 − γ) v with γ ∈ (0, 1) and v ∈ UX . Now, consider a functional
f ∈ SX∗ such that f (x) = 1. Then, we have that 1 = λf (e) + (1 − λ) f (u),
and since f (u) < 1, it necessarily happens to be that f (e) > 1. Then,
−1 = γf (e) + (1 − γ) f (v), and since f (e) > 1 > −1, it necessarily happens
to be that f (v) < −1. This contradicts the fact that v ∈ UX .

2. Observe that, since the non-trivial segment [e, x] ⊆ bd (D), the straight line
determined by e and x does not intersect the interior of D and, therefore, does
not intersect the interior of BX (b, r) either. Thus, according to the Hahn-
Banach separation theorem, there exists f ∈ X∗, a non-zero functional which
is constant on this straight line, such that f (u) > f (v) for every u in the
straight line and every v ∈ int (BX (b, r)). Now, if −x ∈ int (D) then by
applying again Lemma 2.1, we can write −x = γe + (1 − γ) v with γ ∈ (0, 1)
and v ∈ UX . Now, consider a functional f ∈ SX∗ such that f (x) = f (e) = 1.
Then, we have that −1 = λ + (1 − λ) f (v), and hence

f (v) = −
1 + λ

1 − λ
< −1.

This contradicts the fact that v ∈ UX .
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Theorem 2.5. Let X be a normed space. Let D = co ({e} ∪ B) be a drop in X.

Then, B is rotund if and only if D is rotund.

Proof. Assume that B is rotund. Let us take two elements u and v in bd (D) \ {e}
such that u, v, e are not colinear and write u = λue + (1 − λu) bu and v = λve +
(1 − λv) bv where λu, λv ∈ [0, 1) and bu, bv ∈ B. Note that, by Lemma 2.1, we have
bu, bv ∈ bd (B). Now

u + v

2
=

λu + λv

2
e +

(

1 −
λu + λv

2

)(

1 − λu

2 − λu − λv

bu +
1 − λv

2 − λu − λv

bv

)

.

Since u, v, e are not colinear we obtain that bu 6= bv. Now, from of the rotundity of
B,

1 − λu

2 − λu − λv

bu +
1 − λv

2 − λu − λv

bv ∈ int (B) .

As a consequence of this, together with Proposition 2.1, we have

u + v

2
∈ int (D) .

Conversely, assume that D is rotund and suppose, on the contrary, that B =
BX (b, r) is not rotund. Consider any non-trivial segment [u, v] ⊂ bd (B). We have
two possibilities:

a. [u, v] ⊂ bd (D). In this case, by hypothesis, we obtain that the segment
[u, v] and the point e are aligned. Therefore, by Lemma 2.4, paragraph 2,
the segment [2b − u, 2b − v] is contained in bd (D). Again, by hypothesis,
[2b − u, 2b − v] and e are colinear, which is impossible.

b. [u, v] ∩ int (D) 6= ∅. In this case, there is an “smaller” non-trivial segment
[u′, v′] ⊂ [u, v] ∩ int (D). According to Lemma 2.4, paragraph 1, the segment
[2b − u′, 2b − v′] is contained in bd (D). Now, we can proceed as in paragraph
a in order to reach a contradiction.

3 Drops and smoothness

In this section we study smoothness and its relation with drops. Let us recall that,
in a normed space, a point in its unit sphere is said to be a smooth point of its unit
ball if there is only one functional attaining its norm at the point. A normed space
is said to be smooth if all the points in its unit sphere are smooth points. Here we
will provide a characterization of smoothness in terms of the geometry of the drops.
However, as in the previous section, we will begin by stating (without proof) the
following necessary lemma, which already appears in [1].

Lemma 3.1. Let X be a 2-dimensional Banach space. If x ∈ SX is not a smooth

point of BX, then there are infinitely many functionals f ∈ SX∗ verifying that

f−1 (1) ∩ BX = {x}.

Now we are ready to state and proof the main theorem in this section.
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Theorem 3.2. Let X be a normed space. The following conditions are equivalent:

1. X is smooth.

2. For every drop D = co ({e} ∪ BX (b, r)) in X and every x ∈ SX (b, r) such that

[e, x] ⊆ bd (D), the segment [e, 2b − x] is not contained in bd (D).

Proof. Let us begin by assuming that X is smooth and, on the contrary, suppose
that there exists a drop D = co ({e} ∪ BX (b, r)) in X having an element x ∈ SX (b, r)
such that [e, x] , [e, 2b − x] ⊆ bd (D). Observe that, without loss of generality, we
can suppose that b = 0 and r = 1. By applying twice Lemma 2.4, paragraph 2,
there are two functionals f, g ∈ SX∗ such that f (e) = f (−x) = g (e) = g (x) = 1.
Now, g and −f are two different functionals of norm 1 attaining their norm at x.
This contradicts the fact that x is a smooth point of BX .

Conversely, assume that X is not smooth. Then, we can suppose, without loss,
that there exists a 2-dimensional subspace Y of X which is not smooth. Let y ∈ SY

be a non-smooth point of BY and consider, by Lemma 3.1, f 6= g ∈ SY ∗ such that
f−1 (1) ∩ BY = g−1 (1) ∩ BY = {y}. Since the lines f−1 (1) and (−g)−1 (1) are not
parallel, we can find a point e ∈ f−1 (1)∩(−g)−1 (1). Finally, if we consider the drop
in X given by D = co ({e} ∪ BX), we obtain that the segments [e, y] and [e,−y] are
both contained in bd (D).

Remark 3.3. Observe that there is a slight difference between Theorem 2.5 and

Theorem 3.2, which consists of the following: In Theorem 2.5, in order to obtain the

rotundity of the space, it suffices to find one rotund drop; however, in Theorem 3.2 it

is needed that all drops verify the condition in paragraph 2 to obtain the smoothness

of the space. Note that ℓ2
∞

is not smooth but the drop given by the convex hull of the

unit square and the point (0, 2) does verify the condition in paragraph 2 of Theorem

3.2.

To finish this section, we will see that Theorem 3.2 yields to a characterization
of smoothness in 2-dimensional spaces.

Lemma 3.4. Let X be a 2-dimensional Banach space. Let D = co ({e} ∪ BX (b, r))
be a drop in X. Then, there are two different and unique elements x, y ∈ SX (b, r)
such that [e, x] , [e, y] ⊆ bd (D) and [e, x) , [e, y) ∩ BX (b, r) = ∅. In particular,

co (D \ BX (b, r)) = co {e, x, y}.

Proof. It is not difficult to see the existence and uniqueness of both x and y. By hy-
pothesis, D\BX (b, r) ⊇ [e, x)∪ [e, y), therefore co (D \ BX (b, r)) ⊇ co ([e, x) ∪ [e, y))
= co {e, x, y}. Finally, in virtue of Lemma 2.4, paragraph 2, it can be seen that
D \ BX (b, r) ⊆ co {e, x, y}, which finishes the proof.

Corollary 3.5. Let X be a 2-dimensional normed space. The following conditions

are equivalent:

1. X is smooth.

2. For every drop D = co ({e} ∪ BX (b, r)) in X and every x ∈ SX (b, r) such that

[e, x] ⊆ bd (D), the segment [e, 2b − x] is not contained in bd (D).
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3. For every drop D = co ({e} ∪ BX (b, r)) in X, b /∈ co (D \ BX (b, r)).

Proof. Let us begin by showing that 3 implies 1. Suppose that X is not smooth.
Let x ∈ SX be a non-smooth point of BX and consider, by Lemma 3.1, f 6= g ∈ SX∗

such that f−1 (1)∩BX = g−1 (1)∩BX = {x}. Since the lines f−1 (1) and (−g)−1 (1)
are not parallel, we can find a point e ∈ f−1 (1)∩ (−g)−1 (1). Finally, if we consider
the drop in X given by D = co ({e} ∪ BX), we obtain, by Lemma 3.4, that 0 ∈
co {e, x,−x} = co (D \ BX).

Theorem 3.2 shows that 1 implies 2, therefore it remains to show that 2 implies
3. Suppose that there exists a drop D = co ({e} ∪ BX (b, r)) in X verifying that
b ∈ co (D \ BX (b, r)). Here we will assume that BX (b, r) = BX . According to
lemma 3.4, there are two different elements x, y ∈ SX such that [e, x] , [e, y] ⊆ bd (D)
and [e, x) , [e, y) ∩ BX = ∅. Therefore, 0 ∈ co (D \ BX) = co {e, x, y}, which means
that we can find α, β, γ ∈ [0, 1] with 1 = α + β + γ and 0 = αx + βy + γe. Now,
according to Lemma 2.4, paragraph 2, there are f, g ∈ SX∗ such that f (e) = f (x) =
g (e) = g (y) = 1. Then, 1 ≥ |f (y)| = α+γ

β
, that is, β ≥ α + γ = 1 − β so β ≥ 1/2.

By applying the same argument to |g (x)|, we deduce that α ≥ 1/2 too, therefore
γ = 0 and α = β = 1/2, which means that x = −y.

Remark 3.6. Observe that, in the previous theorem, the proof of the fact that 3

implies 1 can be adapted to fit for any normed space. Therefore, the 2-dimensional

hypothesis is only needed to prove that 2 implies 3. Also, notice that every drop

satisfying 2 also verifies 3. However, in ℓ2
∞

, the drop given by the convex hull of the

unit square and the point (−1, 2) does verify 3 but not 2.
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