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Abstract

In this paper, we prove L∞-regularity for solutions of some nonlinear el-
liptic equations with degenerate coercivity whose prototype is











−div( 1
(1+|u|)θ(p−1) |∇u|p−2∇u) = f in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open set in R
N, N ≥ 2, 1 < p < N , θ is a real such that

0 ≤ θ ≤ 1 and f ∈ L
N
p logαL with some α > 0.

1 Introduction

Let Ω be a bounded open subset of R
N, with N ≥ 2, and p a real such that

1 < p < N . We consider the following problem










A(u) := −div a(x, u,∇u) = f in Ω,

u = 0 on ∂Ω,
(1.1)

where a : Ω × R × R
N → R

N is a Carathéodory function (that is, a(., s, ξ) is
measurable on Ω for every (s, ξ) in R × R

N , and a(x, ., .) is continuous on R × R
N
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for almost every x in Ω), which we assume to satisfy the following assumptions

a(x, s, ξ).ξ ≥ hp−1(|s|)|ξ|p (1.2)

for almost every x in Ω, for every (s, ξ) in R × R
N , where h : R

+ → ]0,∞[ is a
decreasing continuous function such that its primitive

H(s) =
∫ s

0
h(t)dt

is unbounded;
|a(x, s, ξ)| ≤ a0(x) + |s|p−1 + |ξ|p−1 (1.3)

for almost x in Ω, for every (s, ξ) ∈ R × R
N , where a0 is a non negative function in

Lp′(Ω) with p′ = p

p−1
, and

(a(x, s, ξ) − a(x, s, ξ′)).(ξ − ξ′) > 0 (1.4)

for almost x ∈ Ω, for every s ∈ R and for every ξ, ξ′ in R
N with ξ 6= ξ′.

It is our purpose in this paper, to prove the existence of a weak solution for (1.1)
in W

1,p
0 (Ω) ∩ L∞(Ω) when the data satisfies the assumption

f ∈ L
N
p logαL (1.5)

with α > N(p−1)
p

.

In the literature, many results concerning L∞ estimate for weak solutions of
(1.1) had been obtained. It was shown earlier in the setting of Orlicz spaces (see [7])
that when h in (1.2) is a constant function, every weak solution of (1.1) is bounded
provided that f belongs to the Lorentz space L(m,∞) with m > N

p
.

Under the assumption (1.2), existence of bounded solutions for (1.1) has been
proved first in [1] and [3] when p = 2 and f belongs to Lm(Ω) with m > N

2
, and for

more general p, in [2] when the datum f belongs to Lm(Ω) with m > N
p
.

Let us recall, as mentioned in [2] and [3], that if the data f belongs to L
N
p (Ω),

the problem (1.1) has no bounded solution.
We note that there is a difficulty in dealing with (1.1) under the assumption

(1.2), since the operator A is not coercive on W
1,p
0 (Ω) and so the classical Leray-

Lions surjectivity theorem do not apply even in the case in which the datum f

belongs to W−1,p′(Ω) where p′ = p

p−1
(see [6]). To overcome this situation, we will

proceed by approximation by means of truncatures in a(x, s, ξ) to get a coercive
differential operator on W

1,p
0 (Ω).
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2 Background

It’s worth recalling here some definitions and notations that we will use later. Let
p ≥ 1 and α ∈ R, the Zygmund space LplogαL, consists of all measurable functions
g on Ω for which

∫

Ω
|g|plogα(e + |g|)dx < ∞.

It is an Orlicz space generated by the N-function Θ(t) = tplogα(e + t), t ≥ 0,
equipped with the so called Luxemburg norm

‖g‖Θ = inf{λ > 0 :
∫

Ω
Θ(

|g|

λ
)dx ≤ 1}.

For p > 1, the conjugate N-function of Θ is equivalent (see [5]) to tp
′
log−α

p′

p (e + t)

where p′ = p

p−1
. Thus, it follows that the dual of LplogαL coincides with Lp′ log

−α
p′

p L.

The inverse function Θ−1 of Θ is equivalent to t
1
p log

−α
p (e + t).

We recall that for a subset E of Ω, the Luxemburg norm, associated to an N-
function M , of the characteristic function χE of E is (see [5])

‖χE‖M =
1

M−1( 1
|E|

)
(2.1)

where |E| denotes the Lebesgue measure of E.
The decreasing rearrangement of a measurable function w : Ω → R is defined as

w∗(s) = inf{t ∈ R : µw(t) ≤ s} for s ∈ (0, |Ω|),

where
µw(t) = |{x ∈ Ω : |w(x)| > t}|

is the distribution function of w. Hence, w∗ is the generalized inverse function of µw

and
w∗(0) = ‖w‖∞.

For more details, one can see [7, 8].
Throughout the paper, Tk, the truncation at level k > 0, and Gk are functions

defined by Tk(s) = max(−k, min(s, k)) and Gk(s) = s − Tk(s).

3 Main result

Our main result is the following,

Theorem 3.1. Under the assumptions (1.2), (1.3), (1.4) and (1.5), the problem

(1.1) has at least a weak solution u in W
1,p
0 (Ω) ∩ L∞(Ω) in the sense that

∫

Ω
a(x, u,∇u) · ∇vdx =

∫

Ω
fvdx (3.1)

for all v in D(Ω).

Remark 3.1. The space L
N
p logαL is contained in L

N
p (Ω) and contains the spaces

Lm(Ω) with m > N
p
, in this sense our result is a refinement of the one given in [2].
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4 Proof of theorem 3.1

Step1: L∞-bound

Remark that the operator A in (1.1) is not coercive, this is due to the assumption
(1.2). To get rid of this situation, we consider the differential operator

An(u) = −div a(x, Tn(u),∇u), n ∈ N

which turns out to be pseudo-monotone from W
1,p
0 (Ω) to its dual W−1,p′(Ω). More-

over, by (1.2), we have

< An(u), u > =
∫

Ω
a(x, Tn(u),∇u)∇udx

≥
∫

Ω
hp−1(|Tn(u)|)|∇u|pdx

≥ hp−1(n)
∫

Ω
|∇u|pdx.

Hence, An is coercive on W
1,p
0 (Ω).

Let (fn)n be a sequence of L∞-functions such that

fn → f in L1(Ω) and |fn| ≤ |f |.

It is known, thanks to the Leray-Lions existence theorem (see [6]), that there exists
a function un in W

1,p
0 (Ω) such that

∫

Ω
a(x, Tn(un),∇un) · ∇φ dx =

∫

Ω
fnφ dx (4.1)

holds for every φ in W
1,p
0 (Ω).

For t > 0 and ǫ > 0, we use Tǫ(Gt(un)) as test function in (4.1), obtaining

∫

{t<|un|≤t+ǫ}
a(x, Tn(un),∇un)∇un dx ≤ ǫ

∫

{|un|>t}
|f |dx.

Dividing both sides by ǫ and using (1.2), we get

1

ǫ

∫

{t<|un|≤t+ǫ}
hp−1(|un|)|∇un|

pdx ≤
∫

{|un|>t}
|f |dx.

Since h is a nonnegative and decreasing function, one has

1

ǫ
hp−1(t + ǫ)

∫

{t<|un|≤t+ǫ}
|∇un|

pdx ≤
∫

{|un|>t}
|f |dx.

Then, letting ǫ tends to 0+ we have

hp−1(t)

(

−
d

dt

∫

{|un|>t}
|∇un|

pdx

)

≤
∫

{|un|>t}
|f |dx. (4.2)
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On the other hand, Hölder’s inequality implies that

∫

{t<|un|≤t+ǫ}
|∇un|dx ≤ |{t < |un| ≤ t + ǫ}|

1
p′

(

∫

{t<|un|≤t+ǫ}
|∇un|

pdx

) 1
p

≤ (µn(t) − µn(t + ǫ))
1
p′

(

∫

{t<|un|≤t+ǫ}
|∇un|

pdx

) 1
p

,

where µn denotes the distribution function of un, that is

µn(t) = |{x ∈ Ω : |un(x)| > t}|.

Then, dividing both sides of the last inequality by ǫ we obtain

1

ǫ

∫

{t<|un|≤t+ǫ}
|∇un|dx ≤

(

−
1

ǫ
(µn(t + ǫ) − µn(t))

)

1
p′
(

1

ǫ

∫

{t<|un|≤t+ǫ}
|∇un|

pdx

) 1
p

.

Letting ǫ → 0+, we get

−
d

dt

∫

{|un|>t}
|∇un|dx ≤ (−µ′(t))

1
p′

(

−
d

dt

∫

{|un|>t}
|∇un|

pdx

) 1
p

. (4.3)

Now, let us recall the wellknown inequality (see [7])

NC
1
N

N (µn(t))1− 1
N ≤ −

d

dt

∫

{|un|>t}
|∇un|dx (4.4)

where CN denotes the measure of the unit ball in R
N . Combining (4.2), (4.3) and

(4.4), we obtain

h(t) ≤
−µ′

n(t)

Np′C
p′

N

N (µn(t))p′(1− 1
N

)

(

∫

{|un|>t}
|f |dx

)
p′

p

.

Using Hölder’s inequality in Orlicz spaces, the above inequality becomes

h(t) ≤
−µ′

n(t)

Np′C
p′

N

N (µn(t))p′(1− 1
N

)

2
p′

p ‖f‖
p′

p

L
N
p logαL

‖χ|un|>t‖
p′

p

L
N

N−p log
−α

p
N−p L

.

Thanks to (2.1), we get

h(t) ≤
2

p′

p ‖f‖
p′

p

L
N
p logαL

Np′C
p′

N

N

−µ′
n(t)

µn(t)log
α

p′

N (e + 1
µn(t)

)
.

Thus, integrating both sides of the above inequality between 0 and τ gives

H(τ) ≤
2

p′

p ‖f‖
p′

p

L
N
p logαL

Np′C
p′

N

N

∫ τ

0

−µ′
n(t)

µn(t)logα
p′

N (e + 1
µn(t)

)
dt,
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and a change of variables yields

H(τ) ≤
2

p′

p ‖f‖
p′

p

L
N
p logαL

Np′C
p′

N

N

∫ 1
µn(τ)

1
|Ω|

ds

s logα
p′

N (e + s)
.

The definition of the rearrangement allows us to have

H(u∗
n(σ)) ≤

2
p′

p ‖f‖
p′

p

L
N
p logαL

Np′C
p′

N

N

∫ 1
σ

1
|Ω|

ds

s logα
p′

N (e + s)
,

hence follows the inequality

H(‖un‖∞) ≤
2

p′

p ‖f‖
p′

p

L
N
p logαL

Np′C
p′

N

N

∫ ∞

1
|Ω|

ds

s logα
p′

N (e + s)
. (4.5)

Since α p′

N
> 1, the integral in (4.5) converges, and the assumptions made on the

function H ensures that ‖un‖∞ is uniformly bounded, indeed one has

‖un‖∞ ≤ H−1













2
p′

p ‖f‖
p′

p

L
N
p logαL

Np′C
p′

N

N

∫ ∞

1
|Ω|

ds

s logα
p′

N (e + s)













, (4.6)

where H−1 denotes the inverse function of H .
In what follows, let us denote by λ the constant on the right of (4.6), that is

‖un‖∞ ≤ λ. (4.7)

Step2: W
1,p
0 -estimate

Thanks to (1.2) and (4.7), it is easy to get an estimation in W
1,p
0 (Ω). Taking un as

test function in (4.1), we get

hp−1(λ)
∫

Ω
|∇un|

pdx ≤ c‖f‖
L

N
p logαL

,

where c is a constant not depending on n.
Therefore, we can deduce that there exist a subsequence of {un}, still denoted by
{un}, and a function u in W

1,p
0 (Ω) such that

un → u weakly in W
1,p
0 (Ω) and a.e in Ω. (4.8)

Step3: Passage to the limit

In order to pass to the limit in the equation (4.1), we need to prove the almost
everywhere convergence of the gradients of solutions, that is

∇un → ∇u a.e in Ω. (4.9)

This can be proved as previously done in [4], indeed this is easy since un is a bounded
function. For n ≥ λ, thanks to (4.7), (4.8) and (4.9) one can pass to the limit in
(4.1), for all φ in D(Ω), and conclude, since f belongs at least to L1(Ω), that u is a
bounded solution to problem (1.1) in the sense of (3.1).
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