On some quasilinear elliptic equations with critical Sobolev exponents and non-standard growth conditions

Lucia Calotă

Abstract

In this paper we study a class of quasilinear elliptic problems involving critical exponents and non-standard growth condition. We establish the existence of at least one nontrivial solution using as main tool Ekeland's variational principle.

1 Introduction and preliminary results

In this paper we study the following p-Laplacian elliptic equation

$$
\left\{\begin{array}{lll}
-\Delta_{p} u=\lambda|u|^{q(x)-2} u+|u|^{p^{\star}-2} u, & \text { for } & x \in \Omega \tag{1}\\
u=0, & \text { for } & x \in \partial \Omega
\end{array}\right.
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), \Omega \subset \mathbb{R}^{N}(N \geq 3)$ is an bounded, open domain with smooth boundary $\partial \Omega, p^{\star}=N p /(N-p)$ is the critical Sobolev exponent, $q(x) \in C(\bar{\Omega})$ with $q(x)>1$ in $\bar{\Omega}$ and $\lambda>0$ is a constant. In this paper we consider the case $1<p<N$.

Problems of type (1) were intensively studied since 1980's. In the particular case when $p=2$ and $q(x) \equiv 2$ in $\bar{\Omega}$ such equations were studied in the celebrated paper by Brézis and Nirenberg [3]. In [3] is also pointed out the fact that such equations with critical Sobolev exponent appear naturally in some problems in geometry and

[^0]physics. For further results on problem (1) in the case $p=2$ we refer to [2] and [11]. In the case when a Hardy potential is also involved we refer to [12] and [13].

In the case when $1<p<N$ and $q(x) \equiv q$ in $\bar{\Omega}$ with q a constant such that $1<q<p$ Garcia Azorero and Peral Alonso proved in [6] that problem (1) has infinitely many solutions for $\lambda>0$ small enough. They also established the existence of a nontrivial solution when $p<q<p^{\star}$ and $\lambda>0$ is sufficiently large.

In the case when $1<p^{2} \leq N$ and $q(x) \equiv p$ in $\bar{\Omega}$ Arioli and Gazzola proved in [1] that equation (1) has a positive nontrivial solution for all $\lambda \in\left(0, \lambda_{1}\right)$, where λ_{1} is the principal eigenvalue of the p-Laplacian, i.e.

$$
\lambda_{1}=\inf _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p} d x}{\int_{\Omega}|u|^{p} d x} .
$$

Moreover, denoting by \mathcal{S} the best constant of the Sobolev embedding $W_{0}^{1, p}(\Omega) \subset$ $L^{p^{\star}}(\Omega)$, i.e.

$$
\mathcal{S}=\inf _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p} d x}{\left(\int_{\Omega}|u|^{p^{\star}} d x\right)^{p / p^{\star}}},
$$

Arioli and Gazzola proved that if $q(x) \equiv p$ in $\bar{\Omega}, 1<p<N<p^{2}$ and $\lambda \in\left(\lambda_{1}-\Lambda, \lambda_{1}\right)$, where $\Lambda=\mathcal{S} \cdot|\Omega|^{-p / N}$ then equation (1) admits a positive nontrivial solution.

This time, in order to study problem (1), we will appeal to the variable exponent Lebesgue spaces $L^{q(x)}(\Omega)$. We point out certain properties of that spaces according to the papers of Kováčik and Rákosník [8] and Mihăilescu and Rădulescu [9, 10].

Set

$$
C_{+}(\bar{\Omega})=\{h ; h \in C(\bar{\Omega}), h(x)>1 \text { for all } x \in \bar{\Omega}\} .
$$

For any $h \in C_{+}(\bar{\Omega})$ we define

$$
h^{+}=\sup _{x \in \Omega} h(x) \quad \text { and } \quad h^{-}=\inf _{x \in \Omega} h(x) .
$$

For any $q(x) \in C_{+}(\bar{\Omega})$, we define the variable exponent Lebesgue space $L^{q(x)}(\Omega)=\left\{u ; u\right.$ is a measurable real-valued function such that $\left.\int_{\Omega}|u(x)|^{q(x)} d x<\infty\right\}$.

We define a norm, the so-called Luxemburg norm, on this space by the formula

$$
|u|_{q(x)}=\inf \left\{\mu>0 ; \int_{\Omega}\left|\frac{u(x)}{\mu}\right|^{q(x)} d x \leq 1\right\}
$$

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many respects: they are Banach spaces [8, Theorem 2.5], the Hölder inequality holds [8, Theorem 2.1], they are reflexive if and only if $1<q^{-} \leq q^{+}<\infty$ [8, Corollary 2.7] and continuous functions are dense if $q^{+}<\infty$ [8, Theorem 2.11]. The inclusion between Lebesgue spaces also generalizes naturally [8, Theorem 2.8]: if $0<|\Omega|<\infty$ and q_{1}, q_{2} are variable exponent so that $q_{1}(x) \leq q_{2}(x)$ almost everywhere in Ω then
there exists the continuous embedding $L^{q_{2}(x)}(\Omega) \hookrightarrow L^{q_{1}(x)}(\Omega)$, whose norm does not exceed $|\Omega|+1$.

We denote by $L^{q^{\prime}(x)}(\Omega)$ the conjugate space of $L^{q(x)}(\Omega)$, where $1 / q(x)+1 / q^{\prime}(x)=$ 1. For any $u \in L^{q(x)}(\Omega)$ and $v \in L^{q^{\prime}(x)}(\Omega)$ the Hölder type inequality

$$
\begin{equation*}
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{q^{-}}+\frac{1}{q^{\prime-}}\right)|u|_{q(x)}|v|_{q^{\prime}(x)} \tag{2}
\end{equation*}
$$

holds true.
If $\left(u_{n}\right), u \in L^{q(x)}(\Omega)$ and $q^{+}<\infty$ then the following relations holds true

$$
\begin{align*}
|u|_{q(x)}<1 & \Rightarrow|u|_{q(x)}^{q^{+}} \leq \int_{\Omega}|u|^{q(x)} d x \leq|u|_{q(x)}^{q^{-}} \tag{3}\\
\left|u_{n}-u\right|_{q(x)} & \rightarrow 0 \quad \Leftrightarrow \quad \int_{\Omega}\left|u_{n}-u\right|^{q(x)} d x \rightarrow 0 \tag{4}
\end{align*}
$$

Finally, we remember that considering the Sobolev space $W_{0}^{1, p}(\Omega)$, defined as the closure of $C_{0}^{\infty}(\Omega)$ under the norm

$$
\|u\|=|\nabla u|_{p},
$$

we can state that if $q(x) \in C_{+}(\bar{\Omega})$ and $q(x)<p^{\star}$ for all $x \in \bar{\Omega}$ then the embedding $W_{0}^{1, p}(\Omega) \hookrightarrow L^{q(x)}(\Omega)$ is compact and continuous. We refer to [8] for further properties of variable exponent Lebesgue-Sobolev spaces.

2 The main result

In this paper we study the existence of nontrivial weak solutions for problem (1) in the case when $q(x) \in C_{+}(\bar{\Omega})$ and assuming that there exists $x_{0} \in \bar{\Omega}$ such that

$$
\begin{equation*}
1<q\left(x_{0}\right)<p-1 . \tag{5}
\end{equation*}
$$

We say that $u \in W_{0}^{1, p}(\Omega)$ is a weak solution of problem (1) if

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x-\lambda \int_{\Omega}|u|^{q(x)-2} u v d x-\int_{\Omega}|u|^{p^{\star}-2} u v d x=0
$$

for all $v \in W_{0}^{1, p}(\Omega)$.
Our main result is given by the following theorem.
Theorem 1. Assume $1<p<N, q(x) \in C_{+}(\bar{\Omega})$ satisfies (5) and $q(x)<p^{\star}$ in $\bar{\Omega}$. Then, there exists $\lambda^{\star}>0$ such that problem (1) has a nontrivial weak solution for any $\lambda \in\left(0, \lambda^{\star}\right)$.

3 Proof of the main result

In order to prove Theorem 1 we define the functional $J: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ by

$$
J(u)=\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x-\lambda \int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x-\frac{1}{p^{\star}} \int_{\Omega}|u|^{p^{\star}} d x .
$$

Standard arguments show that $J \in C^{1}\left(W_{0}^{1, p}(\Omega), \mathbb{R}\right)$ and

$$
\left\langle J^{\prime}(u), v\right\rangle=\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x-\lambda \int_{\Omega}|u|^{q(x)-2} u v d x-\int_{\Omega}|u|^{p^{\star}-2} u v d x
$$

for all $u, v \in W_{0}^{1, p}(\Omega)$. Thus, we remark that in order to find weak solutions of equation (1) it is enough to find critical points for the functional J.

Lemma 1. There exists $\lambda^{\star}>0$ such that for any $\lambda \in\left(0, \lambda^{\star}\right)$ there exist $\xi>0$ and $r>0$ such that

$$
J(u) \geq r, \quad \forall u \in W_{0}^{1, p}(\Omega) \text { with }\|u\|=\xi
$$

Proof. Since $q(x)<p^{\star}$ for all $x \in \bar{\Omega}$ it follows that $W_{0}^{1, p}(\Omega)$ is continuously embedded in $L^{q(x)}(\Omega)$. Thus, there exists a positive constant c_{1} such that

$$
\begin{equation*}
|u|_{q(x)} \leq c_{1}\|u\|, \quad \forall u \in W_{0}^{1, p}(\Omega) . \tag{6}
\end{equation*}
$$

Consider $\xi \in(0,1)$ with $\xi<1 / c_{1}$. Then the above relation implies

$$
\begin{equation*}
|u|_{q(x)}<1, \quad \forall u \in W_{0}^{1, p}(\Omega), \text { with }\|u\|=\xi . \tag{7}
\end{equation*}
$$

By relations (3) and (7) we deduce that

$$
\begin{equation*}
\int_{\Omega}|u|^{q(x)} d x \leq|u|_{q(x)}^{q^{-}}, \quad \forall u \in W_{0}^{1, p}(\Omega), \text { with }\|u\|=\xi . \tag{8}
\end{equation*}
$$

Relations (8) and (6) imply

$$
\begin{equation*}
\int_{\Omega}|u|^{q(x)} d x \leq c_{1}^{q^{-}}\|u\|^{q^{-}}, \quad \forall u \in W_{0}^{1, p}(\Omega), \text { with }\|u\|=\xi . \tag{9}
\end{equation*}
$$

On the other hand, since $W_{0}^{1, p}(\Omega)$ is continuously embedded in $L^{p^{*}}(\Omega)$ we obtain that there exists $c_{2}>0$ such that

$$
\begin{equation*}
|u|_{p^{\star}} \leq c_{2}\|u\|, \quad \forall u \in W_{0}^{1, p}(\Omega) . \tag{10}
\end{equation*}
$$

Relations (9) and (10) yield that for any $u \in W_{0}^{1, p}(\Omega)$ with $\|u\|=\xi$ the following inequalities hold true

$$
\begin{align*}
J(u) & =\frac{1}{p}\|u\|^{p}-\lambda \int_{\Omega} \frac{1}{q(x)}|u|^{q(x)} d x-\frac{1}{p^{\star}}|u|_{p^{\star}}^{p^{\star}} \\
& \geq \frac{1}{p}\|u\|^{p}-\frac{\lambda}{q^{-}} c_{1}^{q^{-}}\|u\|^{q^{-}}-\frac{c_{2}^{p^{\star}}}{p^{\star}}\|u\|^{p^{\star}} . \tag{11}
\end{align*}
$$

Thus, there exists two positive constants $a_{1}, a_{2}>0$ such that

$$
J(u) \geq\|u\|^{q^{-}}\left[\frac{1}{p}\|u\|^{p-q^{-}}-\frac{\lambda \cdot a_{1}}{q^{-}}-\frac{a_{2}}{p^{\star}}\|u\|^{p^{\star}-q^{-}}\right] .
$$

Define $Q:[0, \infty) \rightarrow \mathbb{R}$ by

$$
Q(t)=\frac{1}{p} t^{p-q^{-}}-\frac{a_{2}}{p^{\star}} t^{p^{\star}-q^{-}} .
$$

Since relation (5) holds true we deduce that $q^{-}<p<p^{\star}$ and thus, it is clear that there exists $\xi>0$ such that $\max _{t \geq 0} Q(t)=Q(\xi)>0$. We take $\lambda^{\star}=\frac{q^{-}}{a_{1}} Q(\xi)$ and we remark that there exists $r>0$ such that for any $\lambda \in\left(0, \lambda^{\star}\right)$ we have

$$
J(u) \geq r, \quad \forall u \in W_{0}^{1, p}(\Omega) \text { with }\|u\|=\xi
$$

Lemma 1 is verified.
Lemma 2. There exists $\varphi \in W_{0}^{1, p}(\Omega)$ such that $\varphi \geq 0, \varphi \neq 0$ and $J(t \varphi)<0$, for $t>0$ small enough.

Proof. Let $\Omega_{0}=\{x \in \Omega ; q(x)<p-1\}$. Since relation (5) holds true it follows that $\Omega_{0} \neq \emptyset$ and $\left|\Omega_{0}\right|>0$.

Let $\varphi \in C_{0}^{\infty}(\Omega)$ be such that $\operatorname{supp}(\varphi) \supset \bar{\Omega}_{0}, \varphi(x)=1$ for all $x \in \bar{\Omega}_{0}$ and $0 \leq \varphi \leq 1$ in Ω. For any $t \in(0,1)$ we have

$$
\begin{aligned}
J(t \varphi) & =\frac{t^{p}}{p} \int_{\Omega}|\nabla \varphi|^{p} d x-\lambda \int_{\Omega} \frac{t^{q(x)}}{q(x)}|\varphi|^{q(x)} d x-\frac{t^{p^{\star}}}{p^{\star}} \int_{\Omega}|\varphi|^{p^{\star}} d x \\
& \leq \frac{t^{p}}{p} \int_{\Omega}|\nabla \varphi|^{p} d x-\frac{\lambda}{q^{+}} \int_{\Omega_{0}} t^{q(x)}|\varphi|^{q(x)} d x \\
& \leq \frac{t^{p}}{p} \int_{\Omega}|\nabla \varphi|^{p} d x-\frac{\lambda \cdot t^{p-1}}{q^{+}} \int_{\Omega_{0}}|\varphi|^{q(x)} d x .
\end{aligned}
$$

It is clear that

$$
J(t \varphi)<0
$$

providing that

$$
0<t<\min \left\{1, \frac{\lambda \cdot p}{q^{+}} \cdot \frac{\int_{\Omega_{0}}|\varphi|^{q(x)} d x}{\int_{\Omega}|\nabla \varphi|^{p} d x}\right\}
$$

Lemma 2 is verified.
Proof of Theorem 1. By inequality (11) we obtain that J is bounded from below on $\overline{B_{\xi}(0)}$. Thus, using Ekeland's variational principle (see [5] or [14]) to the functional $J: \overline{B_{\xi}(0)} \rightarrow \mathbb{R}$, it follows that there exists $u_{\epsilon} \in \overline{B_{\xi}(0)}$ such that

$$
\begin{aligned}
& J\left(u_{\epsilon}\right)<\frac{\inf }{B_{\xi}(0)} J+\epsilon \\
& J\left(u_{\epsilon}\right)<J(u)+\epsilon \cdot\left\|u-u_{\epsilon}\right\|, \quad u \neq u_{\epsilon} .
\end{aligned}
$$

Using Lemmas 1 and 2 we find

$$
\inf _{\partial B_{\xi}(0)} J \geq r>0 \quad \text { and } \quad \frac{\inf }{B_{\xi}(0)} J<0
$$

We choose $\epsilon>0$ such that

$$
0<\epsilon \leq \inf _{\partial B_{\xi}(0)} J-\frac{\inf _{B_{\xi}(0)}}{} J
$$

Therefore, $J\left(u_{\epsilon}\right)<\inf _{\partial B_{\xi}(0)} J$ and thus, $u_{\epsilon} \in B_{\xi}(0)$.
We define $I: \overline{B_{\xi}(0)} \rightarrow \mathbb{R}$ by $I(u)=J(u)+\epsilon \cdot\left\|u-u_{\epsilon}\right\|$. It is clear that u_{ϵ} is a minimum point of I and thus

$$
\frac{I\left(u_{\epsilon}+\delta \cdot v\right)-I\left(u_{\epsilon}\right)}{\delta} \geq 0
$$

for small $\delta>0$ and any $v \in B_{1}(0)$. The above relation yields

$$
\frac{J\left(u_{\epsilon}+\delta \cdot v\right)-J\left(u_{\epsilon}\right)}{\delta}+\epsilon \cdot\|v\| \geq 0
$$

Letting $\delta \rightarrow 0$ it follows that $\left\langle J^{\prime}\left(u_{\epsilon}\right), v\right\rangle+\epsilon \cdot\|v\|>0$ and we infer that $\left\|J^{\prime}\left(u_{\epsilon}\right)\right\| \leq \epsilon$.
We deduce that there exists a sequence $\left\{u_{n}\right\} \subset B_{\xi}(0)$ such that

$$
\begin{equation*}
J\left(u_{n}\right) \rightarrow c=\frac{\inf }{B_{\xi}(0)} J<0 \quad \text { and } \quad J^{\prime}\left(u_{n}\right) \rightarrow 0 \tag{12}
\end{equation*}
$$

It is clear that $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1, p}(\Omega)$. Thus, there exists $w \in W_{0}^{1, p}(\Omega$ such that, up to a subsequence, $\left\{u_{n}\right\}$ converges weakly to u in $W_{0}^{1, p}(\Omega$. Then Sobolev embeddings implies that $\left\{u_{n}\right\}$ converges strongly to u in $L^{q(x)}(\Omega)$ and weakly to u in $L^{p^{\star}}(\Omega)$. Thus, we get that

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|u_{n}\right|^{q(x)-2} u_{n} v d x=\int_{\Omega}|u|^{q(x)-2} u v d x
$$

and

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|u_{n}\right|^{p^{\star}-2} u_{n} v d x=\int_{\Omega}|u|^{p^{\star}-2} u v d x
$$

for any $v \in W_{0}^{1, p}(\Omega)$.
On the other hand, relation (12) implies

$$
\lim _{n \rightarrow \infty}\left\langle J^{\prime}\left(u_{n}\right), v\right\rangle=0
$$

for all $v \in W_{0}^{1, p}(\Omega)$.
The above information implies

$$
J^{\prime}(u)=0
$$

and thus, u is a weak solution of equation (1).
We prove now that $u \neq 0$. Assume by contradiction that $u \equiv 0$ and

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x=l \geq 0
$$

Since by relation (12) we have $\lim _{n \rightarrow \infty}\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle=0$ and $\left\{u_{n}\right\}$ converges strongly to 0 in $L^{q(x)}(\Omega)$ we obtain

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x-\int_{\Omega}\left|u_{n}\right|^{p^{\star}} d x=o(1)
$$

or

$$
\left.\lim _{n \rightarrow \infty} \int_{\Omega}\left|u_{n}\right|\right|^{p^{\star}} d x=l
$$

Using again (12) we deduce
$0>c+o(1)=\frac{1}{p} \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x-\lambda \int_{\Omega} \frac{1}{q(x)}\left|u_{n}\right|^{q(x)} d x-\frac{1}{p^{\star}} \int_{\Omega}\left|u_{n}\right|^{p^{\star}} d x \rightarrow\left(\frac{1}{p}-\frac{1}{p^{\star}}\right) l \geq 0$
and that is a contradiction. We conclude that $u \neq 0$.
Thus, Theorem 1 is proved.
Acknowledgments. The author would like to thank Professor V. Rădulescu for his help in writing this paper.

References

[1] G. Arioli and F. Gazzola, Some results on p-Laplace equations with a critical growth, Differ. Integral. Equ. 11(2) (1998), 311-326.
[2] G. Bianchi, J. Chabrowski and A. Szulkin, On symmetric solutions of an elliptic equation with an nonlinearity involving critical Sobolev exponent, Nonlinear Anal. TMA 25 (1995), 41-59.
[3] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437477.
[4] H. Egnell, Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rat. Mech. Anal. 104 (1988), 57-77.
[5] I. Ekeland, On the variational principle, J. Math. Anal. App. 47 (1974), 324353.
[6] J. Garcia Azorero and I. Peral Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc. 323(2) (1991), 877-895.
[7] M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. TMA 13(8) (1989), 879-902.
[8] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1, p(x)}$, Czechoslovak Math. J. 41 (1991), 592-618.
[9] M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Roy. Soc. London Ser. A, 462 (2006), 2625-2641.
[10] M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proceedings of the American Mathematical Society, 135 (2007), No. 9, 2929-2937.
[11] M. Ramos, Z.-Q. Wang and M. Willem, Positive solutions for elliptic equations with critical growth in unbounded domains, Calculus of Variations and Differential Equations, Chapman \& Hall/CRC Press, Boca Raton, 2000, pp. 192-199.
[12] D. Ruiz and M. Willem, Elliptic problems with critical exponents and Hardy potential, J. Differential Equations 190 (2003), 524-538.
[13] P. Han and Z. Liu, Positive solutions for elliptic equations involving critical Sobolev exponent and Hardy terms with Neumann boundary conditions, Nonlinear Anal. TMA 55 (2003), 167-186.
[14] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.

Department of Mathematics,
University of Craiova,
200585 Craiova, Romania
E-mail address: luciacalota@yahoo.com

[^0]: Received by the editors August 2006.
 Communicated by P. Godin.
 2000 Mathematics Subject Classification : 35J60, 35J70, 58E05, 35J65.
 Key words and phrases : quasilinear elliptic equation, weak solution, critical Sobolev exponent, variable exponent Lebesgue space.

