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Introductory Exposition

Carlos S. Kubrusly

Abstract

This is a brief introduction to Fredholm theory for Hilbert space operators

organized into ten sections. The classical partition of the spectrum into point,

residual, and continuous spectra is reviewed in Section 1. Fredholm operators

are introduced in Section 2, and Fredholm index in Section 3. The essential

spectrum is considered in Section 4, the spectral picture is presented in Section

5, and Riesz points are discussed in Section 6. Weyl spectrum is the subject

of Section 7 and, after bringing some basic results on ascent and descent in

Section 8, Browder spectrum is investigated in Section 9. Finally, Weyl and

Browder theorems close this expository paper in Section 10.

1 The Spectrum

Throughout this paper H stands for a nonzero complex Hilbert space. A subspace
of H is a closed linear manifold of H. The closure of a linear manifold M is denoted
by M− and the orthogonal complement of M is denoted by M⊥, both are subspaces
of H. By an operator on H we mean a bounded linear (equivalently, a continuous
linear) transformation of H into itself. Let B[H] be the unital Banach algebra of all
operators on H, and let T ∗∈ B[H] stand for the adjoint of T ∈ B[H]. The kernel or
null space (which is a subspace of H) and the range (which is a linear manifold of
H) of T ∈ B[H] are denoted by N (T ) and R(T ), respectively:

N (T ) = T−1{0} =
{

x ∈ H : Tx = 0
}

,
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R(T ) = T (H) =
{

y ∈ H : y = Tx for some x ∈ H
}

.

To begin with we consider a classical partition of the spectrum of a Hilbert space
operator. Take an arbitrary operator T in the unital Banach algebra B[H]. Let

ρ(T ) =
{

λ ∈ C : N (λI − T ) = {0} and R(λI − T ) = H
}

be the resolvent set of T , which according to the Open Mapping Theorem is precisely
the set of all λ ∈ C such that λI − T is invertible (i.e., such that λI − T has an
inverse in the algebra B[H]). Its complement,

σ(T ) = C\ρ(T ) =
{

λ ∈ C : λI − T is not invertible
}

,

is the spectrum of T . Recall that the spectrum of T ∈ B[H] is a nonempty and

compact subset of the complex plane C. Let
{

σP (T ), σR(T ), σC(T )
}

be the classical

partition of σ(T ) consisting of the point spectrum, residual spectrum and continuous
spectrum, which are defined as follows.

σP (T ) =
{

λ ∈ C : N (λI − T ) 6= {0}
}

is the point spectrum of T (i.e., the set of all eigenvalues of T ). If λ is an eigenvalue
of T (i.e., if λ ∈ σP (T )), then N (λI − T ) is an eigenspace of T . The set

σR(T ) =
{

λ ∈ C : N (λI − T ) = {0} and R(λI − T )− 6= H
}

is the residual spectrum of T , and the continuous spectrum of T is given by

σC(T ) =
{

λ ∈ C : N (λI − T ) = {0}, R(λI − T )−= H and R(λI − T ) 6= H
}

.

The diagram below summarizes such a partition of the spectrum [17, p.5]. Here
the residual spectrum is split into two disjoint parts, σR(T ) = σR1

(T ) ∪ σR2
(T ), the

point spectrum is split into four disjoint parts, σP (T ) =
⋃4

i=1 σPi
(T ), and we adopt

the following abbreviated notation: Tλ = (λI −T ), Nλ = N (Tλ), and Rλ = R(Tλ).
Also B[Rλ,H] denotes the Banach space of all continuous (i.e., bounded) linear
transformation of Rλ into H — so that if Tλ is injective (i.e., if N (Tλ) = {0}), then
its linear inverse T−1

λ on Rλ is continuous if and only if Rλ is closed (by the Banach
Continuous Inverse Theorem, see e.g., [18, p.228] ).

R−

λ
= H R−

λ
6= H

R−

λ
= R

λ
R−

λ
6= R

λ
R−

λ
6= R

λ
R−

λ
= R

λ

Nλ ={0}
T−1

λ
∈B[Rλ,H] ρ(T ) ∅ ∅ σR1

(T )

T−1

λ
/∈B[Rλ,H] ∅ σC(T ) σR2

(T ) ∅

Nλ 6={0} σP1
(T ) σP2

(T ) σP3
(T ) σP4

(T )

︸ ︷︷ ︸

σCP(T )







σAP(T )

There are however overlapping parts of the spectrum that are commonly used
too (see e.g., [14, Chapter 9]). For instance, the compression spectrum σCP (T ) and
the approximate point spectrum (or approximation spectrum) σAP (T ), defined by

σCP (T ) =
{

λ ∈ C : R(λI − T ) is not dense in H
}

= σP3
(T ) ∪ σP4

(T ) ∪ σR(T ),
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σAP (T ) =
{

λ ∈ C : (λI − T ) is not bounded below
}

= σP (T ) ∪ σC(T ) ∪ σR2
(T ) = σ(T )\σR1

(T ).

Recall that the approximate point spectrum is nonempty, closed in C, and includes
the boundary ∂σ(T ) of the spectrum σ(T ). Moreover, σR1

(T ) is open in C, and so
is σP1

(T ). Furthermore, the residual spectrum is given by the formula

σR(T ) = σP (T ∗)∗\σP (T ),

and so
σC(T ) = σ(T )

∖(

σP (T ) ∪ σP (T ∗)∗
)

,

where we are using the standard notation Λ∗ for the set of all complex conjugates
of a given subset Λ of C (i.e., Λ∗ = {λ ∈ C : λ ∈ Λ}) — see e.g., [18, Propositions
6.16 and 6.17]. Indeed,

ρ(T ) = ρ(T ∗)∗, σ(T ) = σ(T ∗)∗, σC(T ) = σC(T ∗)∗,

the subparts of the point and residual spectrum are related by the expressions

σP1
(T ) = σR1

(T ∗)∗, σP2
(T ) = σR2

(T ∗)∗,

σP3
(T ) = σP3

(T ∗)∗, σP4
(T ) = σP4

(T ∗)∗,

and the compression and approximate point spectrum are such that

σCP (T ) = σP (T ∗)∗,

∂σ(T ) ⊆ σAP (T ) ∩ σAP (T ∗)∗ = σ(T )
∖(

σP1
(T ) ∪ σR1

(T )
)

.

Remark 1.1. Take an arbitrary T ∈ B[H]. Since in a finite-dimensional space every
linear manifold is closed and every injective operator is invertible, it follows by the
preceding diagram that

dimH < ∞ =⇒ σ(T ) = σP (T ) = σP4
(T ),

which is a finite set — this extends to finite-rank operators but not to compact
operators on a infinite-dimensional space. However,

T is compact =⇒ σ(T )\{0} = σP (T )\{0} ⊆ σP4
(T ),

and, in this case, σ(T ) is a countable set for which 0 is the only possible accumulation
point (see e.g., [7, Section VII.7] or [18, Section 6.6] — this in fact is a consequence
of the Fredholm Alternative as stated in the forthcoming Remark 3.2).

2 Fredholm Operators

Let B∞[H] be the (two-sided) ideal of all compact operators from B[H]. An operator
T in B[H] is left semi-Fredholm if there exists S ∈ B[H] and K ∈ B∞[H] such that
ST = I + K, and right semi-Fredholm if there exists S ∈ B[H] and K ∈ B∞[H] such
that TS = I + K. We say that T in B[H] is semi-Fredholm if it is either left or right
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semi-Fredholm, and Fredholm if it is both left and right semi-Fredholm. Let Fℓ

be the class of all left semi-Fredholm operators and let Fr be the class of all right
semi-Fredholm operators:

Fℓ =
{

T ∈ B[H] : ST = I + K for some S ∈ B[H] and some K ∈ B∞[H]
}

,

Fr =
{

T ∈ B[H] : TS = I + K for some S ∈ B[H] and some K ∈ B∞[H]
}

.

The classes of all semi-Fredholm and Fredholm operators from B[H] will be denoted
by SF and F , respectively;

SF = Fℓ ∪ Fr and F = Fℓ ∩ Fr.

It is clear that
T ∈ Fℓ if and only if T ∗ ∈ Fr.

Thus T ∈ SF if and only if T ∗ ∈ SF , and T ∈ F if and only if T ∗ ∈ F . Recall
the following elementary properties involving kernel and range of a Hilbert space
operator and its adjoint (see e.g., [18, pp.393,394]):

N (T ∗) = H⊖R(T )− = R(T )⊥,

R(T ∗) is closed if and only if R(T ) is closed.

Proposition 2.1. [7, p.351]. An operator T ∈ B[H] is left semi-Fredholm if and

only if R(T ) is closed and N (T ) is finite-dimensional.

Therefore, since that T ∈ Fℓ if and only if T ∗ ∈ Fr,

Fℓ =
{

T ∈ B[H] : R(T ) is closed and dimN (T ) < ∞
}

,

Fr =
{

T ∈ B[H] : R(T ) is closed and dimN (T ∗) < ∞
}

.

Corollary 2.2. Take any operator T in B[H]. It is semi-Fredholm if and only if

R(T ) is closed and N (T ) or N (T ∗) is finite-dimensional. It is Fredholm if and only

if R(T ) is closed and both N (T ) and N (T ∗) are finite-dimensional.

Thus, according to Corollary 2.2, the class of all Fredholm operators is given by

F =
{

T ∈ B[H] : R(T ) is closed, dimN (T ) < ∞ and dimN (T ∗) < ∞
}

and its complement,

B[H]\F = B[H]\(Fℓ ∩ Fr) = (B[H]\Fℓ) ∪ (B[H]\Fr),

is the union of

B[H]\Fℓ =
{

T ∈ B[H] : R(T ) is not closed or dimN (T ) = ∞
}

,

B[H]\Fr =
{

T ∈ B[H] : R(T ) is not closed or dimN (T ∗) = ∞
}

.
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3 Fredholm Index

Let Z be the set of all integers and put Z = Z ∪ {−∞} ∪ {+∞}, the set of all
extended integers. Take any operator T in SF so that N (T ) or N (T ∗) is finite-
dimensional. The Fredholm index ind (T ) of any T in SF is defined in Z by

ind (T ) = dimN (T ) − dimN (T ∗).

It is usual to write

α(T ) = dimN (T ) and β(T ) = dimN (T ∗)

so that
ind (T ) = α(T ) − β(T ).

Since T ∗ and T lie in SF together, we get ind (T ∗) = −ind (T ). Note that

β(T ) = α(T ∗) = dimR(T )⊥ = dim(H⊖R(T )−).

Remark 3.1. (Finite-dimensional). Take an arbitrary T ∈ B[H] and recall that

dimH = dimN (T ) + dimR(T ) and dimH = dimR(T ) + dimR(T )⊥.

Hence, if H is finite-dimensional, then ind (T ) = 0. Indeed,

dimN (T ) − dimR(T )⊥ = dimN (T ) + dimR(T ) − dimH = dimH− dimH = 0.

But linear manifolds of finite-dimensional spaces are closed, and therefore on a
finite-dimensional space every operator is Fredholm with a null index:

dimH < ∞ =⇒
{

T ∈ F : ind (T ) = 0
}

= B[H].

Remark 3.2. (Fredholm Alternative). If K ∈ B∞[H] and λ 6= 0, then

R(λI − K) is closed and dimN (λI − K) = dimN (λI − K∗) < ∞.

This is the so-called Fredholm Alternative for compact operators (see e.g., [1, p.87],
[7, p.217] or [18, p.480]), which can be restated in terms of Fredholm indices:

If K ∈ B∞[H] and λ 6= 0, then λI − K is Fredholm with ind (λI − K) = 0.

Remark 3.3. Observe that Corollary 2.2 and some of its straightforward conse-
quences can also be naturally rephrased in terms of Fredholm indices.

(a) An operator T ∈ B[H] is semi-Fredholm if and only if R(T ) is closed and α(T )
or β(T ) is finite; an operator T ∈ B[H] is Fredholm if and only if R(T ) is

closed and both α(T ) and β(T ) are finite.

Note that α(T ) and β(T ) are both finite if and only if ind (T ) is finite (reason: α
and β were defined for semi-Fredholm operators so that if one is ±∞, then the other
must be finite). Therefore,

(b) T is Fredholm if and only if it is semi-Fredholm with finite Fredholm index.
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A nonzero scalar operator (i.e., a nonzero multiple of the identity) is Fredholm with
a null Fredholm index (by Corollary 2.2). This is readily generalized as follows.

(c) If T ∈ F , then γ T ∈ F and ind (γ T ) = ind (T ) for every γ ∈ C\{0}.

Proposition 3.4. [7, p.354].

S, T ∈ Fℓ =⇒ ST ∈ Fℓ and ind (ST ) = ind (S) + ind (T ).

Corollary 3.5. Take an arbitrary nonnegative integer n.

T ∈ F =⇒ T n ∈ F and ind (T n) = n ind (T ).

Proof. The result holds trivially for n = 0 (cf. Corollary 2.2) and tautologically for
n = 1. Thus suppose n ≥ 2. Proposition 3.4 says that the claimed result holds for
n = 2 if F is replaced with Fℓ. Then a trivial induction ensures that it holds for
each n ≥ 2, if F is still replaced with Fℓ. That is, for every integer n ≥ 2,

T ∈ Fℓ =⇒ T n ∈ Fℓ and ind (T n) = n ind (T ).

Suppose T ∈ F = Fℓ ∩ Fr. The above implication holds and, since T ∗ ∈ Fℓ, it also
holds for T ∗ so that T ∗n ∈ Fℓ. Thus T n ∈ Fr, and hence T n ∈ F = Fℓ ∩ Fr. �

The null operator on an infinite-dimensional space is not Fredholm, and so a
compact operator may not be Fredholm. However, the sum of a Fredholm and a
compact is a Fredholm operator with the same index.

Proposition 3.6. [1, p.98]

T ∈ F and K ∈ B∞[H] =⇒ T + K ∈ F and ind (T + K) = ind (T ).

A Weyl operator is a semi-Fredholm operator with null Fredholm index. Equiva-
lently, a Weyl operator is a Fredholm operator with null Fredholm index (cf. Remark
3.3(b)). Let W denote the class of all Weyl operators from B[H]:

W =
{

T ∈ F : ind (T ) = 0
}

.

Since T ∈ F if and only if T ∗ ∈ F and ind (T ∗) = −ind (T ), it follows that T ∈ W
if and only if T ∗ ∈ W. Observe from Remark 3.1 that every operator on a finite-
dimensional space is a Weyl operator;

dimH < ∞ =⇒ W = B[H].

Moreover, the Fredholm Alternative in Remark 3.2 can be rephrased as follows. If
K is a compact operator, then λI − K is a Weyl operator for every nonzero λ:

K ∈ B∞[H] and λ 6= 0 =⇒ (λI − K) ∈ W.

Also, by Remark 3.3(c), every nonzero multiple of a Weyl operator is again a Weyl
operator; in particular, every nonzero scalar operator is a Weyl operator. In fact,
the product of a couple of Weyl operators is again a Weyl operator (by Proposition
3.4). Note that every compact Fredholm operator is a Weyl operator by Proposition
4.4 and 3.6. Also note that every self-adjoint operator with a closed range and a
finite-dimensional kernel is a Weyl operator. Actually, every normal operator with
a closed range and a finite-dimensional kernel is a Weyl operator (reason: since
N (T ) = N (T ∗T ), so that N (T ∗) = N (T T ∗), for every T ∈ B[H] — see e.g., [18,
p.393] — it follows that N (T ∗) = N (T ) whenever T is normal.)



Fredholm Theory in Hilbert Space 159

4 Essential Spectrum

The left spectrum σℓ(T ) and right spectrum σr(T ) of T ∈ B[H] are defined by

σℓ(T ) =
{

λ ∈ C : λI − T is not left invertible
}

=
{

λ ∈ C : N (λI − T ) 6= {0}
}

,

σr(T ) =
{

λ ∈ C : λI − T is not right invertible
}

=
{

λ ∈ C : R(λI − T ) 6= H
}

,

so that

σ(T ) =
{

λ ∈ C : λI − T is not invertible
}

= σℓ(T ) ∪ σr(T ).

Note that the left spectrum coincides with the point spectrum σP (T ) (i.e., with the
set of all eigenvalues of T ). In fact,

σℓ(T ) = σP (T ) and σr(T ) = σ(T )\σP1
(T ),

where σP1
(T ) =

{

λ ∈ σP (T ) : R(λI − T )− = R(λI − T ) = H
}

or, equivalently,

σP1
(T ) =

{

λ ∈ σP (T ) : R(λI − T ) = H
}

— see diagram of Section 1 — and hence

σℓ(T ) ∩ σr(T ) = σP (T )\σP1
(T ).

Consider the Calkin algebra B[H]/B∞[H] (i.e., the quotient algebra of B[H]
modulo the ideal B∞[H] of all compact operators), which is a unital Banach algebra
whenever H is infinite-dimensional. In this case, let π : B[H] → B[H]/B∞[H] be the
natural map from B[H] to B[H]/B∞[H] (i.e., π(T ) = [T ] = T + B∞[H] for every T
in B[H]). The essential spectrum (or the Calkin spectrum) σe(T ) of T ∈ B[H] is the
spectrum of π(T ) in the Calkin algebra B[H]/B∞[H]; that is,

σe(T ) = σ(π(T )).

Similarly, the left essential spectrum σℓe(T ) and right essential spectrum σre(T ) of
T ∈ B[H] are defined as the left and right spectrum of π(T ) in the Calkin algebra
B[H]/B∞[H], respectively; that is,

σℓe(T ) = σℓ(π(T )) and σre(T ) = σr(π(T )),

and so
σe(T ) = σℓe(T ) ∪ σre(T ).

Proposition 4.1. [7, p.359]. If T ∈ B[H], then

σℓe(T ) =
{

λ ∈ C : R(λI − T ) is not closed or dimN (λI − T ) = ∞
}

,

σre(T ) =
{

λ ∈ C : R(λI − T ) is not closed or dimN (λI − T ∗) = ∞
}

.

Let the essential point spectrum σPe(T ) of T ∈ B[H] be the point spectrum of
π(T ) in the Calkin algebra B[H]/B∞[H],

σPe(T ) = σP (π(T )),
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and put σP1e(T ) = σP1
(π(T )) so that, by Proposition 4.1,

σC(T ) ⊆ σℓe(T ) = σPe(T ) ⊆ σ(T )\σR1
(T ) = σAP (T ),

σC(T ) ⊆ σre(T ) = σe(T )\σP1e(T ) ⊆ σ(T )\σP1
(T ) = σAP (T ∗)∗,

with σR1
(T ) =

{

λ ∈ σ(T ) : R(λI − T )−= R(λI − T ) 6= H and N (λI − T ) = {0}
}

and σP1
(T ) =

{

λ ∈ σ(T ) : R(λI − T ) = H and N (λI − T ) 6= {0}
}

— see diagram
of Section 1 — so that

σC(T ) ⊆ σℓe(T ) ∩ σre(T ) = σPe(T )\σP1e(T ) ⊆ σ(T )
∖(

σP1
(T ) ∪ σR1

(T )
)

.

Corollary 4.2. (Atkinson Theorem).

σe(T ) =
{

λ ∈ C : (λI − T ) /∈ F
}

.

Proof. According to Proposition 4.1,

σℓe(T ) =
{

λ ∈ C : (λI − T ) ∈ B[H]\Fℓ

}

=
{

λ ∈ C : (λI − T ) /∈ Fℓ

}

,

σre(T ) =
{

λ ∈ C : (λI − T ) ∈ B[H]\Fr

}

=
{

λ ∈ C : (λI − T ) /∈ Fr

}

.

Since σe(T ) = σℓe(T ) ∪ σre(T ) and F = Fℓ ∩ Fr, we get the desired identity. �

Observe that what the Atkinson Theorem says is that an operator T is Fredholm

if and only if its image π(T ) in the Calkin algebra B[H]/B∞[H] is invertible (see
e.g., [14, Problem 181]). This is usually referred to by saying that T is essentially

invertible. Thus the essential spectrum is the set of all scalars λ for which (λI − T )
is not a Fredholm operator (i.e., not essentially invertible), and so the essential
spectrum is also called Fredholm spectrum. Since an operator lies in F together
with its adjoint, it follows by Corollary 4.2 that λ ∈ σe(T ) if and only if λ ∈ σe(T

∗):

σe(T ) = σe(T
∗)∗.

It is clear from Proposition 4.1 that

σe(T ) ⊆ σ(T ).

Remark 4.3. Take an arbitrary T ∈ B[H]. Since σe(T ) = σ(π(T )) if H is infinite-
dimensional, it follows that

dimH = ∞ =⇒ σe(T ) 6= ∅,

and the converse holds by Remark 3.1 and Corollary 4.2,

dimH < ∞ =⇒ σe(T ) = ∅.

In both cases σe(T ) is a compact set and, by Proposition 3.6 and Corollary 4.2,
σe(T +K) = σe(T ) — indeed, π(T + K) = π(T ) — for all K ∈ B∞[H].



Fredholm Theory in Hilbert Space 161

5 Spectral Picture

Take any operator T in B[H]. For each k ∈ Z\{0} put

σk(T ) =
{

λ ∈ C : (λI − T ) ∈ SF and ind (λI − T ) = k
}

.

Recall that (λI − T ) ∈ SF if and only if (λI − T ∗) ∈ SF with ind (λI − T ) =
−ind (λI − T ∗), and so λ ∈ σk(T ) if and only if λ ∈ σ−k(T

∗). Thus, for k ∈ Z\{0},

σk(T ) = σ−k(T
∗)∗.

These σk(T ) are open subsets of C for each nonzero k in Z [7, p.366]. If λ ∈ σ+∞(T ),
then 0 ≤ dimN (λI − T ∗) < dimN (λI − T ) = ∞, which implies that λ is an eigen-
value of T of infinite multiplicity. Dually, If λ ∈ σ−∞(T ) = σ+∞(T ∗)∗, then λ is an
eigenvalue of T ∗ of infinite multiplicity. Hence,

σ+∞(T ) ⊆ σP (T ) and σ−∞(T ) ⊆ σP (T ∗)∗.

Now take an arbitrary nonzero integer k ∈ Z\{0}. If k > 0 and λ ∈ σk(T ), then
0 < ind (λI − T ) < ∞, and so 0 ≤ dimN (λI − T ∗) < dimN (λI − T ) < ∞, which
implies 0 < dimN (λI − T ) < ∞ so that λ is an eigenvalue of T of finite multiplicity.
Dually, if k < 0 (i.e., −k > 0) and λ ∈ σk(T ) = σ−k(T

∗)∗, then λ is an eigenvalue of
T ∗ of finite multiplicity. Outcome: If k ∈ Z\{0}, then

σk(T ) ⊆







σPF (T ), k > 0,

σPF (T ∗)∗, k < 0,

where σPF (T ) denotes the set of all eigenvalues of finite multiplicity,

σPF (T ) =
{

λ ∈ σP (T ) : dimN (λI − T ) < ∞
}

,

that is, σPF (T ) = {λ ∈ C : 0 < dimN (λI − T ) < ∞}, and so

σk(T ) ⊆ σPF (T ) ∪ σPF (T ∗)∗

for all k ∈ Z\{0}. Therefore, since σR(T ) = σP (T ∗)∗\σP (T ), we get

⋃

k∈Z\{0}

σk(T ) ⊆ σP (T ) ∪ σP (T ∗)∗ = σP (T ) ∪ σR(T ) ⊆ σ(T ).

Observe that, if k ∈ Z\{0} (i.e., if k is a nonzero integer), then (cf. Remark 3.3(b))

σk(T ) =
{

λ ∈ C : (λI − T ) ∈ F and ind (λI − T ) = k
}

.

Now, for k = 0, we define σ0(T ) as the following subset of σ(T ):

σ0(T ) =
{

λ ∈ σ(T ) : (λI − T ) ∈ SF and ind (λI − T ) = 0
}

=
{

λ ∈ σ(T ) : (λI − T ) ∈ F and ind (λI − T ) = 0
}

=
{

λ ∈ σ(T ) : (λI − T ) ∈ W
}

,
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which can be rewritten as

σ0(T ) =
{

λ ∈ σ(T ) : R(λI − T ) is closed and

dimN (λI − T ) = dimN (λI − T ∗) < ∞
}

=
{

λ ∈ σP (T ) : R(λI − T )−= R(λI − T ) 6= H and

dimN (λI − T ) = dimN (λI − T ∗) < ∞
}

=
{

λ ∈ σP4
(T ) : dimN (λI − T ) = dimN (λI − T ∗) < ∞

}

,

with σP4
(T ) =

{

λ ∈ σP (T ) : R(λI − T )− = R(λI − T ) 6= H
}

— see diagram of
Section 1. Therefore,

σ0(T ) ⊆ σP4
(T ) ∩ σPF (T ) ∩ σPF (T ∗)∗,

and so
σ0(T ) = σ0(T

∗)∗.

The partition of the spectrum σ(T ) obtained in the next proposition is called
the spectral picture of T [23].

Proposition 5.1. If T ∈ B[H], then

σ(T ) = σe(T ) ∪
⋃

k∈Z

σk(T )

and

σe(T ) =
(

σℓe(T ) ∩ σre(T )
)

∪ σ+∞(T ) ∪ σ−∞(T ),

where

σe(T ) ∩
⋃

k∈Z

σk(T ) = ∅, σk(T ) ∩ σj(T ) = ∅, (σℓe(T ) ∩ σre(T )
)

∩ σ±∞(T ) = ∅.

Proof. The collection {σk(T )}k∈Z of subsets of σ(T ) is pairwise disjoint and

⋃

k∈Z

σk(T ) =
{

λ ∈ σ(T ) : (λI − T ) ∈ F
}

.

Since
σe(T ) =

{

λ ∈ σ(T ) : (λI − T ) /∈ F
}

,

we get the claimed partition of the spectrum σ(T ). The partition of the essential

spectrum σe(T ) into
(

σℓe(T )∩σre(T )
)

∪ σ+∞(T )∪ σ−∞(T ) is readily verified by the
proof of Corollary 4.2. �

Recall that σk(T ) is an open subset of C for each k ∈ Z\{0}. The pairwise
disjoint sets {σk(T )}k∈Z\{0}, which are subsets of σ(T )\σe(T ), are called the holes in
the essential spectrum σe(T ), while σ±∞(T ), which are subsets of σe(T ), are called
the pseudoholes in σe(T ). Thus the spectral picture of T consists of the essential
spectrum σe(T ), the holes σk(T ) and pseudoholes σ±∞(T ) (to each is associated a
nonzero index k in Z\{0}), and the set σ0(T ) = {λ ∈ σ(T ) : (λI − T ) ∈ W}. It is
worth noticing that any spectral picture can be attained [6] by an operator in B[H].



Fredholm Theory in Hilbert Space 163

6 Riesz Points

The set σ0(T ) will play a rather important role in the sequel. It consists of an open
set τ0(T ) and the set π0(T ) of isolated points of σ(T ) for which the Riesz idempotents
have finite rank [7, p.366]. The next proposition says that π0(T ) is precisely the set
of all isolated points of σ(T ) that lie in σ0(T ).

Proposition 6.1. [7, p.366]. If λ is an isolated point of σ(T ), then the following

assertions are pairwise equivalent.

(a) λ ∈ σ0(T ).

(b) λ /∈ σℓe(T ) ∩ σre(T ).

(c) The Riesz idempotent Eλ has finite rank.

Recall the definition of Riesz idempotents associated with isolated points of the
spectrum: Let λ be an isolated point of σ(T ) and consider the spectral projection

Eλ = 1

2πi

∫

Γλ

(γI − T )−1dγ,

where Γλ is a positively (i.e., counterclockwise) oriented circle enclosing λ but no
other point of σ(T ). (This is a straightforward generalization of the Riemann integral
of a scalar-valued function on Γλ, which extends naturally for any vector-valued
function and, in particular, for any function from Γλ to the Banach space B[H].)
The operator Eλ : H → H is indeed a projection (i.e., a linear idempotent, bounded
but not necessarily orthogonal) that commutes with every operator that commutes
with T , so that the R(Eλ) is T -invariant. Moreover, σ(T |R(Eλ)) = {λ}. The spectral
projection Eλ is the Riesz idempotent corresponding to λ [7, p.210].

Thus π0(T ) is a subset of σP4
(T ) consisting of those isolated points λ of the

spectrum for which R(Eλ) is finite-dimensional or, equivalently, consisting of those
isolated points of the spectrum that lie in σ0(T ). Summing up:

σ0(T ) = τ0(T ) ∪ π0(T ),

where τ0(T ) is an open subset of the complex plane included in σP4
(T ) and

π0(T ) =
{

λ ∈ σP (T ) : λ is an isolated point of σ(T ) and dimR(Eλ) < ∞
}

=
{

λ ∈ σP (T ) : λ is an isolated point of σ(T ) and λ /∈
(

σℓe(T ) ∩ σre(T )
)}

=
{

λ ∈ σP (T ) : λ is an isolated point of σ(T ) and λ ∈ σ0(T )
}

=
{

λ ∈ σP4
(T ) : λ is an isolated point of σ(T ) and

dimN (λI − T ) = dimN (λI − T ∗) < ∞
}

.

The set π0(T ) is called the set of Riesz points of T , which is sometimes also referred
to as the set of isolated eigenvalues of T of finite algebraic multiplicity.

For any operator T let σiso(T ) denote the set of all isolated points of σ(T ),
and so σacc(T ) = σ(T )\σiso(T ), its complement in σ(T ), is precisely the set of all
accumulation points of σ(T ). Thus the Riesz points of T can be simply written as

π0(T ) = σiso(T ) ∩ σ0(T ).
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Now let π00(T ) denote the set of all isolated eigenvalues of T of finite multiplicity,

π00(T ) = σiso(T ) ∩ σPF (T ),

which is sometimes also referred to as the set of isolated eigenvalues of T of finite

geometric multiplicity. Since σ0(T ) ⊆ σPF (T ), it is clear that

π0(T ) ⊆ π00(T ).

Proposition 6.2. π0(T ) =
{

λ ∈ π00(T ) : R(λI − T ) is closed
}

.

Proof. If λ ∈ π0(T ), then λ ∈ π00(T ) and R(λI − T ) is closed (because λ ∈ σ0(T )).
Conversely, suppose R(λI − T ) is closed and λ ∈ π00(T ). Thus (λI − T ) ∈ Fℓ

(since R(λI − T ) is closed and dimN (λI − T ) < ∞) so that λ /∈ σℓe(T ), and hence
λ /∈ σℓe(T ) ∩ σre(T ), which means that λ ∈ π0(T ) by Proposition 6.1. (Recall that
λ is an isolated point of σ(T ) since it lies in π00(T ).) �

7 Weyl Spectrum

The Weyl spectrum of an operator T ∈ B[H] is the set

σw(T ) =
⋂

K∈B
∞

[H]

σ(T + K),

which is the largest part of σ(T ) that remains unchanged under compact perturba-
tions. Clearly, σw(T ) = σw(T +K) for all K ∈ B∞[H]. Another characterization of
it is given by the Schechter Theorem (cf. [24], [25]) as in Proposition 7.1 below.

Proposition 7.1. [7, p.367]. If T ∈ B[H], then

σw(T ) = σe(T ) ∪
⋃

k∈Z\{0}

σk(T ).

Since σk(T ) ⊆ σ(T )\σe(T ) for all k ∈ Z, it follows by Proposition 7.1 that,

σw(T )\σe(T ) =
⋃

k∈Z\{0}

σk(T ) and σe(T ) = σw(T ) ⇐⇒
⋃

k∈Z\{0}

σk(T ) = ∅.

Corollary 7.2. σw(T ) =
{

λ ∈ C : (λI − T ) /∈ W
}

.

Proof. λ ∈ σw(T ) if and only if either λ ∈ σe(T ) or λ ∈ σk(T ) for some k 6= 0 in Z

by Proposition 7.1. Thus λ ∈ σw(T ) if and only if either (λI − T ) /∈ F (Corollary
4.2) or (λI − T ) ∈ F with ind (λI − T ) 6= 0, which means that (λI − T ) /∈ W. �

Then the Weyl spectrum σw(T ) is the set of all scalars λ for which (λI − T ) is
not a Weyl operator (i.e., for which (λI − T ) is not a Fredholm operator of index
zero). Since an operator lies in W together with its adjoint, it follows by Corollary
7.2 that λ ∈ σw(T ) if and only if λ ∈ σw(T ∗):

σw(T ) = σw(T ∗)∗.
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Recall that the essential (or Calkin, or Fredholm) spectrum σe(T ) is the set of all
scalars λ for which (λI − T ) is not a Fredholm operator. Therefore,

σe(T ) ⊆ σw(T ) ⊆ σ(T )

since it is clear that σw(T ) ⊆ σ(T ) by the very definition of σw(T ), which can also
be verified by Corollaries 4.2 and 7.2: if (λI − T ) /∈ W , then either (λI − T ) /∈ F ,
and hence λ ∈ σe(T ) ⊆ σ(T ), or (λI − T ) ∈ F and ind (λI − T ) 6= 0, which implies
that λ ∈ σk(T ) ⊆ σ(T ) for some k ∈ Z\{0} — cf. Proposition 7.1.

Remark 7.3. Take an arbitrary T ∈ B[H]. By Remark 3.1 and Corollary 7.2,

dimH < ∞ =⇒ σw(T ) = ∅.

The converse holds by Remark 4.3 since σe(T ) ⊆ σw(T ):

dimH = ∞ =⇒ σw(T ) 6= ∅,

and σw(T ) is compact because it is the intersection
⋂

K∈B
∞

[H] σ(T +K) of compact
sets. The preceding implication, Remark 3.2 (Fredholm Alternative), Remark 4.3,
and Corollary 7.2 ensure that, if dimH = ∞, then

T is compact =⇒ σe(T ) = σw(T ) = {0}.

Moreover, if H is separable and infinite-dimensional, then [3]

0 ∈ σw(T ) =⇒ T is a commutator

(i.e., the exist operators A and B such that T = AB − BA).

Another characterization of the Weyl spectrum says that σw(T ) is precisely the
complement of σ0(T ) in σ(T ).

Corollary 7.4. σw(T ) = σ(T )\σ0(T ).

Proof. Immediate from Corollary 7.2 and the very definition of σ0(T ). That is,

σw(T ) =
{

λ ∈ σ(T ) : (λI − T ) /∈ W
}

and σ0(T ) =
{

λ ∈ σ(T ) : (λI − T ) ∈ W
}

.
�

Since σw(T ) and σ0(T ) are both subsets of σ(T ), it then follows that σ0(T ) is
the complement of σw(T ) in σ(T ),

σ0(T ) = σ(T )\σw(T ),

and therefore {σw(T ), σ0(T )} forms a partition of the spectrum σ(T ):

σ(T ) = σw(T ) ∪ σ0(T ) and σw(T ) ∩ σ0(T ) = ∅.

Thus σw(T ) = σ(T ) if and only if σ0(T ) = ∅ and so, by Proposition 5.1,

σe(T ) = σw(T ) = σ(T ) ⇐⇒
⋃

k∈Z

σk(T ) = ∅.
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Corollary 7.5.

π0(T ) = σiso(T )\σw(T ) = σiso(T )\σe(T )

= π00(T )\σw(T ) = π00(T )\σe(T ).

Proof. Since σ0(T ) = σ(T )\σw(T ) by Corollary 7.4, we get the first identity:

σiso(T )\σw(T ) = σiso(T ) ∩
(

σ(T )\σw(T )
)

= σiso(T ) ∩ σ0(T ) = π0(T ).

Proposition 7.1 says that σw(T ) = σe(T ) ∪ G(T ), where G(T ) is a subset of σ(T )
that is open in C (union of open sets). Thus

σiso(T )\σw(T ) = σiso(T )
∖(

σe(T ) ∪ G(T )
)

=
(

σiso(T )\σe(T )
)

∩
(

σiso(T )\G(T )
)

.

Since G(T ) is a subset of σ(T ) that is open in C, it follows that σiso(T ) ∩ G(T ) = ∅.
Hence σiso(T )\G(T ) = σiso(T ), and so

σiso(T )\σw(T ) = σiso(T )\σe(T ),

which proves the second identify. Finally, to verify the remaining identities recall
that π0(T ) ⊆ π00(T ) ⊆ σiso(T ), π0(T ) ⊆ σ0(T ) = σ(T )\σw(T ) and σe(T ) ⊆ σw(T ).
Thus the above identities ensure that

π00(T )\σw(T ) ⊆ π00(T )\σe(T ) ⊆ σiso(T )\σe(T )

= σiso(T )\σw(T ) = π0(T ) = π0(T )\σw(T ) ⊆ π00(T )\σw(T ),

and hence
π0(T ) = π00(T )\σw(T ) = π00(T )\σe(T ). �

The equivalent assertions in the next proposition define an important class of
operators. An operator for which any of those equivalent assertions holds is said to
satisfy Weyl’s theorem. This will be discussed later in Section 10.

Proposition 7.6. For any T ∈ B[H] the assertions below are pairwise equivalent.

(a) σ(T )\σw(T ) = π00(T ).

(b) σ0(T ) = π00(T ).

(c) σ(T )\π00(T ) = σw(T ).

Proof. According to Corollary 7.4 we have σ(T )\σw(T ) = σ0(T ). Thus (a) and
(b) are equivalent. Corollary 7.4 says that σ(T )\σ0(T ) = σw(T ), and so (b) implies
(c) and, since π00(T ) ⊆ σ(T ), it follows that (c) implies (b) as well. Indeed,

σ0(T ) = σ(T )\σw(T ) = σ(T )
∖(

σ(T )\π00(T )
)

= π00(T ). �

Remark 7.7. If any of the equivalent assertions in Proposition 7.6 holds, then

π0(T ) = π00(T ).

Indeed, since π0(T ) = σiso(T ) ∩ σ0(T ) and π00(T ) = σiso(T ) ∩ σPF (T ), it follows
that, if σ0(T ) = π00(T ), then π0(T ) = σiso(T ) ∩ π00(T ) = π00(T ).
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8 Ascent and Descent

Take an arbitrary operator T in B[H], and let N0 be the set of all nonnegative
integers. For every n ∈ N0,

N (T n) ⊆ N (T n+1) and R(T n+1) ⊆ R(T n)

trivially. Moreover, it is readily verified by induction (see e.g., [28, p.271]) that

(a) if N (T n0+1) = N (T n0) for some n0, then N (T n) = N (T n0) for all n ≥ n0;

(b) if R(T n0+1) = R(T n0) for some n0, then R(T n) = R(T n0) for all n ≥ n0.

Now put N0 = N0 ∪∞, the set of all extended nonnegative integers with its natural
(extended) ordering. The ascent of T is the least nonnegative integer such that
N (T n+1) = N (T n),

asc (T ) = min
{

n ∈ N0 : N (T n+1) = N (T n)
}

.

The descent of T is the least nonnegative integer such that R(T n+1) = R(T n),

dsc (T ) = min
{

n ∈ N0 : R(T n+1) = R(T n)
}

.

Note that asc (T ) = 0 if and only if T is injective (i.e., N (T ) = {0}) and dsc (T ) = 0
if and only if T is surjective (i.e., R(T ) = H). The next proposition exhibits a
duality between ascent and descent for Fredholm operators [13].

Proposition 8.1. Take any operator T in B[H].

(a) asc (T ) < ∞ ⇐⇒ dsc (T ∗) < ∞, and dsc (T ) < ∞ ⇐⇒ asc (T ∗) < ∞.

(b) dsc (T ) < ∞ =⇒ asc (T ∗) ≤ dsc (T ), and dsc (T ∗) < ∞ =⇒ asc (T ) ≤ dsc (T ∗).

(c) If T ∈ F , then asc (T ) = dsc (T ∗) and dsc (T ) = asc (T ∗).

Proof. We shall use freely the relations between range and kernel, involving ad-
joints and orthogonal projections (see e.g., [18, p.393]). Take any operator T in
B[H] and an arbitrary integer n in N0. If asc (T ) = ∞, then N (T n) ⊂ N (T n+1) so
that N (T n+1)⊥ ⊂ N (T n)⊥ or, equivalently, R(T ∗(n+1))− ⊂ R(T ∗n)−, which implies
that R(T ∗(n+1)) ⊂ R(T ∗n), and hence dsc (T ∗) = ∞. Dually, if asc (T ∗) = ∞, then
dsc (T ) = ∞. That is,

asc (T ) = ∞ =⇒ dsc (T ∗) = ∞, and asc (T ∗) = ∞ =⇒ dsc (T ) = ∞.

If dsc (T ) = ∞, then R(T n+1) ⊂ R(T n) so that R(T n)⊥ ⊂ R(T n+1)⊥ or, equiva-
lently, N (T ∗n) ⊂ N (T ∗(n+1)), and hence asc (T ∗) = ∞. Dually, if dsc (T ∗) = ∞,
then asc (T ) = ∞. That is,

dsc (T ) = ∞ =⇒ asc (T ∗) = ∞, and dsc (T ∗) = ∞ =⇒ asc (T ) = ∞.

Summing up:

(a) asc (T ) = ∞ ⇐⇒ dsc (T ∗) = ∞, and dsc (T ) = ∞ ⇐⇒ asc (T ∗) = ∞.
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If dsc (T ) < ∞, then put n0 = dsc (T ) in N0, and take an arbitrary integer n ≥ n0.
Thus R(T n) = R(T n0), and hence R(T n)− = R(T n0)− so that N (T ∗n)⊥ =
N (T ∗n0)⊥, which implies N (T ∗n) = N (T ∗n0). Therefore, asc (T ∗) ≤ n0, and so
asc (T ∗) ≤ dsc (T ). Dually, if dsc (T ∗) < ∞, then asc (T ) ≤ dsc (T ∗). That is,

(b) dsc (T ) < ∞ ⇒ asc (T ∗) ≤ dsc (T ), and dsc (T ∗) < ∞ ⇒ asc (T ) ≤ dsc (T ∗).

On the other hand, if asc (T ) < ∞, then put n0 = asc (T ) in N0 and take any inte-
ger n ≥ n0. Thus N (T n) = N (T n0) or, equivalently, R(T ∗n)⊥ = R(T ∗n0)⊥ so that
R(T ∗n)− = R(T ∗n0)−. Now we use the assumption that T is Fredholm. Indeed,
if T ∈ F , then T n ∈ F by Corollary 3.5, which implies that R(T n) is closed, for
every nonnegative integer n (by the way, this is what is actually necessary) and so
is R(T ∗n) (see e.g., [18, p.394]). Thus R(T ∗n) = R(T ∗n0). Hence dsc (T ∗) ≤ n0 so
that dsc (T ∗) ≤ asc (T ). Dually, if asc (T ∗) < ∞, then dsc (T ) ≤ asc (T ∗). That is,

(b′) asc (T ) < ∞ ⇒ dsc (T ∗) ≤ asc (T ), and asc (T ∗) < ∞ ⇒ dsc (T ) ≤ asc (T ∗).

Therefore, since asc (T ) < ∞ if and only if dsc (T ∗) < ∞, and dsc (T ) < ∞ if and
only if asc (T ∗) < ∞ by (a), it follows by (b) and (b’) that

(c) asc (T ) = dsc (T ∗) and dsc (T ) = asc (T ∗)

whenever T is Fredholm. �

Proposition 8.2. [28, pp.272,273]. Let T be an arbitrary operator in B[H]. If

asc (T ) < ∞ and dsc (T ) < ∞, then asc (T ) = dsc (T ).

Proposition 8.3. [8]. Take any operator T in B[H].

(a) If dimN (T ) < ∞ or dimN (T ∗) < ∞, then (a1) asc (T ) < ∞ implies

dimN (T ) ≤ dimN (T ∗), (a2) dsc (T ) < ∞ implies dimN (T ∗) ≤ dimN (T ).

(b) If dimN (T ) = dimN (T ∗) < ∞, then asc (T ) < ∞ if and only if dsc (T ) < ∞.

Corollary 8.4. Suppose T ∈ B[H] is a Fredholm operator.

(a) If asc (T ) < ∞ and dsc (T ) < ∞, then ind (T ) = 0.

(b) If ind (T ) = 0, then asc (T ) < ∞ if and only if dsc (T ) < ∞.

Proof. Immediate from Proposition 8.3. �

A Browder operator is a Fredholm operator with finite ascent and descent. Let
B denote the class of all Browder operators from B[H]:

B =
{

T ∈ F : asc (T ) < ∞ and dsc (T ) < ∞
}

;

equivalently, according to Proposition 8.2,

B =
{

T ∈ F : asc (T ) = dsc (T ) < ∞
}

.

Thus
F \B =

{

T ∈ F : asc (T ) = ∞ or dsc (T ) = ∞
}
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and, by Proposition 8.3, T ∈ B if and only if T ∗ ∈ B. Observe that, according to
Corollary 8.4, every Browder operator is a Weyl operator,

B ⊂ W ⊂ F ,

and
T ∈ W =⇒

{

asc (T ) < ∞ ⇐⇒ dsc (T ) < ∞
}

so that
W\B =

{

T ∈ W : asc (T ) = dsc (T ) = ∞
}

.

Since dimN (T n) ≤ dimN (T n+1) ≤ dimH, it follows that if H is finite-dimensional,
then asc (T ) < ∞. Thus, according to Remark 3.1, every operator on a finite-
dimensional space is a Browder operator.

Recall that ρ(T ) = C\σ(T ) is the resolvent set of T , and σiso(T ) = σ(T )\σacc(T )
is the set of all isolated points of the spectrum σ(T ) — the complement in σ(T )
of the set σacc(T ) of all accumulation points of the spectrum. The class B of all
Browder operators can be equivalently described as follows.

Proposition 8.5. B =
{

T ∈ F : 0 ∈ ρ(T ) ∪ σiso(T )
}

.

Proof. An operator T in B[H] is Browder if and only if it is Fredholm and, λI − T
is invertible for sufficiently small λ 6= 0 [15]. Equivalently, T is Fredholm and, for
some ε > 0, λ ∈ ρ(T ) for every 0 6= |λ| < ε; that is, Bε(0)\{0} ⊂ ρ(T ), where Bε(0)
is the open ball centered at 0 with radius ε. Since ρ(T ) is an open subset of C, this
simply means that either 0 ∈ ρ(T ) or 0 is an isolated point of σ(T ) = C\ρ(T ). �

Thus, since W\B = W ∩ (F \B), we get from Proposition 8.5 that

F \B =
{

T ∈ F : 0 ∈ σacc(T )
}

and W\B =
{

T ∈ W : 0 ∈ σacc(T )
}

.

9 Browder Spectrum

The Browder spectrum of an operator T ∈ B[H] is the set

σb(T ) =
⋂

K∈B
∞

[H]∩{T}′

σ(T + K),

where {T}′ denote the commutant of T (i.e., the collection of all operators in B[H]
that commute with T ). Thus σb(T ) is the largest part of σ(T ) that remains un-
changed under compact perturbations in the commutant of T , and this coincides
with the set of all scalars λ for which (λI − T ) is not a Browder operator (i.e., for
which (λI − T ) is not a Fredholm operator with a finite ascent and a finite descent).
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Proposition 9.1. [8]. σb(T ) =
{

λ ∈ C : (λI − T ) 6∈ B
}

.

Since an operator lies in B together with its adjoint, it follows by Proposition
9.1 that λ ∈ σb(T ) if and only if λ ∈ σb(T

∗):

σb(T ) = σb(T
∗)∗.

Also observe that
σe(T ) ⊆ σw(T ) ⊆ σb(T ) ⊆ σ(T ).

Indeed, since B ⊂ W, Corollary 7.2 and Proposition 9.1 ensure that σw(T ) ⊆ σb(T ).
Moreover, σb(T ) ⊆ σ(T ) by the very definition of σb(T ), but this can also be directly
verified from Proposition 9.1 as follows. If (λI − T ) /∈ B, then either (λI − T ) /∈ F
or (λI − T ) ∈ F and asc (λI − T ) = dsc (λI − T ) = ∞. In the former case, λ lies
in σe(T ) ⊆ σ(T ). In the latter case, λ /∈ ρ(T ) so that λ ∈ σ(T ). Indeed, if λ ∈ ρ(T );
that is, if (λI − T ) is invertible, then asc (λI − T ) = 0 because N (λI − T ) = {0}
(and dsc (λI − T ) = 0 because R(λI − T ) = H).

Corollary 9.2. σb(T ) = σe(T ) ∪ σacc(T ).

Proof. According to Propositions 8.5 and 9.1,

σb(T ) = {λ ∈ C : (λI − T ) 6∈ F or 0 6∈ ρ(λI − T ) ∪ σiso(λI − T )
}

= {λ ∈ C : λ ∈ σe(T ) or λ 6∈ ρ(T ) ∪ σiso(T )
}

= σe(T ) ∪
(

σ(T )\σiso(T )
)

= σe(T ) ∪ σacc(T ).

�

Remark 9.3. Take any T ∈ B[H]. Since every operator on a finite-dimensional
space is a Browder operator, it follows by Proposition 9.1 that

dimH < ∞ =⇒ σb(T ) = ∅.

The converse holds by Remark 7.3, since σw(T ) ⊆ σb(T ):

dimH = ∞ =⇒ σb(T ) 6= ∅,

and σb(T ) is compact because it is the intersection
⋂

K∈B
∞

[H]∩{T}′ σ(T +K) of com-
pact sets. Moreover, since σacc(T ) ⊆ {0} whenever T is compact, it follows by
Remark 7.3, Corollary 9.2, and the preceding implication that, if dimH = ∞, then

T is compact =⇒ σe(T ) = σw(T ) = σb(T ) = {0}.

Alternate characterizations of the Browder spectrum were given in the previ-
ous two results. Another one is given next, which says that σb(T ) is precisely the
complement of the Riesz points π0(T ) = σiso(T ) ∩ σ0(T ) in σ(T ).
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Corollary 9.4. σb(T ) = σ(T )
∖(

σiso(T ) ∩ σ0(T )
)

.

Proof. By Proposition 5.1 and Corollary 9.2 we get

σ(T )\σb(T ) = σ(T )
∖(

σe(T ) ∪ σacc(T )
)

=
(

σ(T )\σe(T )
)

∩ (σ(T )\σacc(T )
)

=
⋃

k∈Z

σk(T ) ∩ σiso(T ) = σ0(T ) ∩ σiso(T ),

because σk(T ) is open in C for each 0 6= k ∈ Z, and so has no isolated point. �

Thus {σb(T ), π0(T )} forms a partition of the spectrum σ(T ):

σ(T ) = σb(T ) ∪ π0(T ) and σb(T ) ∩ π0(T ) = ∅.

Indeed, since π0(T ) = σiso(T ) ∩ σ0(T ), and since σb(T ) and π0(T ) are both subsets
of σ(T ), Corollary 9.4 says that σb(T ) is the complement of π0(T ) in σ(T ), that is,
σb(T ) = σ(T )\π0(T ) and, consequently, π0(T ) is the complement of σb(T ) in σ(T ),
that is, π0(T ) = σ(T )\σb(T ).

Corollary 9.5. σb(T ) = σw(T ) ∪ σacc(T ).

Proof. Corollary 9.4 says that σb(T ) =
(

σ(T )\σiso(T )
)

∪
(

σ(T )\σ0(T )
)

, and there-

fore, by Corollary 7.4, σb(T ) = σacc(T ) ∪ σw(T ). �

Note that, according to Proposition 9.1 and Corollary 9.4, the set π0(T ) =
σiso(T ) ∩ σ0(T ) of Riesz points of T is also given by

π0(T ) = σ(T )\σb(T ) =
{

λ ∈ σ(T ) : (λI − T ) ∈ B
}

.

Corollary 9.6. π0(T ) = σiso(T )\σb(T ) = π00(T )\σb(T ).

Proof. Since π0(T ) ⊆ π00(T ) ⊆ σiso(T ) ⊆ σ(T ) we get by Corollary 9.4 that

π0(T ) = π0(T )\σb(T ) ⊆ π00(T )\σb(T ) ⊆ σiso(T )\σb(T ) = σ(T )\σb(T ) = π0(T ). �

Remark 9.7. We had seen in Remark 7.7 that the set of Riesz points π0(T ) =
σiso(T ) ∩ σ0(T ) and the set of isolated eigenvalues of finite multiplicity π00(T ) =
σiso(T ) ∩ σPF (T ) coincide whenever any of the equivalent assertions of Proposition
7.6 holds. According to Corollaries 7.5 and 9.6 the next four assertions (which
include the identity in Remark 7.7) are pairwise equivalent.

(a) π0(T ) = π00(T ).

(b) σe(T ) ∩ π00(T ) = ∅ (i.e., σe(T ) ∩ σiso(T ) ∩ σPF (T ) = ∅ ).

(c) σw(T ) ∩ π00(T ) = ∅ (i.e., σw(T ) ∩ σiso(T ) ∩ σPF (T ) = ∅ ).

(d) σb(T ) ∩ π00(T ) = ∅ (i.e., σb(T ) ∩ σiso(T ) ∩ σPF (T ) = ∅ ).

The equivalent assertions in the next proposition define an important class of
operators. An operator for which any of those equivalent assertions holds is said to
satisfy Browder’s theorem. This will be discussed later in Section 10.
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Proposition 9.8. For any T ∈ B[H] the assertions below are pairwise equivalent.

(a) σ(T )\σw(T ) = π0(T ).

(b) σ0(T ) = π0(T ).

(c) σ(T ) = σw(T ) ∪ π00(T ).

(d) σ0(T ) ⊆ π00(T ).

(e) σ0(T ) ⊆ σiso(T ).

(f) σacc(T ) ⊆ σw(T ).

(g) σw(T ) = σb(T ).

Proof. Assertion (a) implies (b) and (b) implies (c) by Corollary 7.4. In fact, since
σ(T )\σw(T ) = σ0(T ) (Corollary 7.4), it follows that (a) implies (b) and, if (b) holds,
then (apply Corollary 7.4 again and recall that π0(T ) ⊆ π00(T ))

σ(T ) = σw(T ) ∪ σ0(T ) = σw(T ) ∪ π0(T ) ⊆ σw(T ) ∪ π00(T ) ⊆ σ(T )

so that (b) implies (c). Corollaries 7.4 and 7.5 ensure that (c) implies (a). Actually,
recall that π00(T )\σw(T ) = π0(T ) (Corollary 7.5), π0(T ) ⊆ σ0(T ), and σ0(T ) =
σ(T )\σw(T ) (Corollary 7.4). If (c) holds, then

σ(T )\σw(T ) = π00(T )\σw(T ) = π0(T ) ⊆ σ0(T ) = σ(T )\σw(T ),

which implies (a). Thus (a), (b) and (c) are pairwise equivalent. Moreover, since
π00 = σiso(T ) ∩ σPF (T ) and σ0(T ) ⊆ σPF (T ), it follows that (d) is equivalent to (e).
Furthermore, since π0(T ) = σiso(T ) ∩ σ0(T ), it also follows that (b) is equivalent to
(e). Now recall that σacc(T ) and σiso(T ) are complement of each other in σ(T ), and
σw(T ) and σ0(T ) also are complement of each other in σ(T ) (Corollary 7.4). There-
fore, (e) and (f) are equivalent. Similarly, since σw(T ) and σ0(T ) are complement of
each other in σ(T ) (Corollary 7.4), and since σb(T ) and π0(T ) also are complement
of each other in σ(T ) (Corollary 9.4), it follows that (g) and (b) are equivalent as
well. �

10 Browder and Weyl Theorems

Take an arbitrary operator T in B[H]. Consider the set σ0(T ) of all λ in σ(T ) for
which (λI − T ) is a Weyl operator. As we saw in Section 5, it is given by

σ0(T ) =
{

λ ∈ σP (T ) : R(λI − T )− = R(λI − T ) 6= H and

dimN (λI − T ) = dimN (λI − T ∗) < ∞
}

.

According to Corollaries 7.4 and 9.4 the Weyl and Browder spectra can be written
in terms of σ0(T ) as follows.

σw(T ) = σ(T )\σ0(T ) and σb(T ) = σ(T )
∖(

σiso(T ) ∩ σ0(T )
)

.
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Although σ0(T ) ⊆ σPF (T ) and σacc(T ) ⊆ σb(T ), in general σ0(T ) may not consist
of isolated points only or, equivalently, σacc(T ) may not be included in σw(T ). An
operator T is said to satisfy Weyl’s theorem (or Weyl’s theorem holds for T ) if

σ0(T ) = σiso(T ) ∩ σPF (T ).

That is, since π00(T ) = σiso(T ) ∩ σPF (T ), an operator T satisfies Weyl’s theorem if
σ0(T ) = π00(T ), or any of the equivalent assertions in Proposition 7.6. An operator
T is said to satisfy Browder’s theorem (or Browder’s theorem holds for T ) if

σ0(T ) ⊆ σiso(T ) ∩ σPF (T ).

Thus an operator T satisfies Browder’s theorem if σ0(T ) ⊆ π00(T ), or any of the
equivalent assertions in Proposition 9.8. In particular, T satisfies Browder’s theorem
if σ0(T ) = π0(T ), where π0(T ) = σiso(T ) ∩ σ0(T ) or, equivalently, if

σ0(T ) ⊆ σiso(T ), or σacc(T ) ⊆ σw(T ), or σw(T ) = σb(T ).

(These are the usual terminologies, although saying that T “satisfies Weyl’s or
Browder’s property”, rather than “satisfies Weyl’s or Browder’s theorem”, would
perhaps sound more appropriate.)

It is plain that, if T satisfies Weyl’s theorem, then it also satisfies Browder’s the-
orem. Note that, if σw(T ) = σacc(T ) or, equivalently, if σ0(T ) = σiso(T ), then T sat-
isfies Weyl’s theorem. (Reason: σ0(T ) = σiso(T ) implies σ0(T ) = σiso(T ) ∩ σPF (T )
because σ0(T ) ⊆ σPF (T ).) In fact (see Remark 9.7),

T satisfies Browder’s theorem but not Weyl’s =⇒ σw(T ) ∩ σiso(T ) ∩ σPF (T ) 6= ∅.

Remark 10.1. Consider the equivalent assertions of Proposition 7.6 and of Propo-
sition 9.8. If Browder’s theorem holds and π0(T ) = π00(T ) then Weyl’s theorem
holds (i.e., if σ0(T ) = π0(T ) and π0(T ) = π00(T ), then σ0(T ) = π00(T ) tautologi-
cally). Conversely, if Weyl’s theorem holds, then π0(T ) = π00(T ) (cf. Remark 7.7)
and Browder’s theorem holds trivially. Summing up,

Weyl’s theorem holds ⇐⇒ Browder’s theorem holds and π0(T ) = π00(T ).

In other words, Weyl’s theorem holds if and only if Browder’s theorem and any of
the equivalent assertions of Remark 9.7 hold.

Further necessary and sufficient conditions for an operator to satisfy Weyl’s the-
orem can be found in [12]. According to Remark 7.3 every operator T on a finite-
dimensional space satisfies Weyl’s theorem with σ0(T ) = π00(T ) = σ(T ) (this ex-
tends to finite-rank but not to compact operators — see examples in [11]) and, on the
other hand, every operator T without eigenvalues (σP (T ) = ∅) also satisfies Weyl’s
theorem with σ0(T ) = π00(T ) = ∅. These are the trivial cases. Weyl proved in [30]
that Weyl’s theorem holds for self-adjoint operators. This was extended to normal
operators in [26], to hyponormal operators in [5], and to seminormal operators in
[2]. Recall that T ∈ B[H] is hyponormal if O ≤ T ∗T − T T ∗ and cohyponormal if
T ∗ is hyponormal, so that T is normal if it is both hyponormal and cohyponormal.
If T is either hyponormal or cohyponormal, then it is seminormal.
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A subspace M of H is invariant for an operator T ∈ B[H] (or T -invariant) if
T (M) ⊆ M, and reducing if it is invariant for both T and T ∗. A part of an operator
is a restriction of it to an invariant subspace, and a direct summand is a restriction
of it to a reducing subspace. An operator is isoloid if every isolated point of its
spectrum is an eigenvalue (i.e., T is isoloid if σiso(T ) ⊆ σP (T )), and dominant if
R(λI − T ) ⊆ R(λI − T ∗). The main theorem from [2], namely, if each finite-dimen-

sional eigenspace of an operator T ∈ B[H] is reducing and every direct summand of

it is isoloid, then T satisfies Weyl’s theorem, includes many of the previous results
along this line, and has also been frequently applied to yield further results; mainly
through the following corollary [11]: If T ∈ B[H] is dominant and every direct

summand of it is isoloid, then T satisfies Weyl’s theorem. Since every hyponormal
operator is dominant, every part (and, in particular, every direct summand) of a
hyponormal operator is again hyponormal, and every hyponormal operator is isoloid,
it follows by the above italicized result that every hyponormal operator satisfies
Weyl’s theorem.

Weyl’s theorem has been extended to classes of nondominant operators that
properly include the hyponormal operators. In particular, it was extended to para-
normal operators [29] and, beyond, to totally hereditarily normaloid operators [9].
Recall that a normaloid is an operator whose spectral radius coincides with the
norm, an operator T is paranormal if ‖Tx‖2 ≤ ‖T 2x‖ ‖x‖ for all vectors x, and a
totally hereditarily normaloid operator is one whose all parts are normaloid, as well
as the inverse of all invertible parts — these classes are related by proper inclusion
[10]: Hyponormal ⊂ Paranormal ⊂ Totally Hereditarily Normaloid ⊂ Normaloid.

Let T and S be arbitrary operators acting on Hilbert spaces. First we consider
their direct sum. It is readily verified that the spectrum of a direct sum coincides
with the union of the spectra of the summands, σ(T ⊕ S) = σ(T ) ∪ σ(S). For the
Weyl spectrum only inclusion is ensured: the Weyl spectrum of a direct sum is
included in the union of the Weyl spectra of the summands,

σw(T ⊕ S) ⊆ σw(T ) ∪ σw(S),

but equality does not hold in general. However, it does if the essential and Weyl
spectra coincide for one of the direct summands [15],

σe(T ) = σw(T ) =⇒ σw(T ⊕ S) = σw(T ) ∪ σw(S),

and also if σw(T ) ∩ σw(S) has empty interior [22],
(

σw(T ) ∩ σw(S)
)◦

= ∅ =⇒ σw(T ⊕ S) = σw(T ) ∪ σw(S).

In general, Weyl’s theorem does not transfer from T and S to their direct sum T ⊕ S.
The above identity involving the Weyl spectrum of a direct sum plays an important
role in establishing sufficient conditions for a direct sum to satisfy Weyl’s theorem,
as it was recently investigated in [21] and [11]. As for the problem of transferring
Browder’s theorem from T and S to their direct sum T ⊕ S, the following necessary
and sufficient condition was proved in [15].

Proposition 10.2. If both operators T and S satisfy Browder’s theorem, then the

direct sum T ⊕ S satisfies Browder’s theorem if and only if

σw(T ⊕ S) = σw(T ) ∪ σw(S).
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Now consider the tensor product T ⊗ S of a pair of Hilbert space operators T
and S (see [19] for an expository paper containing the essential properties of tensor
products needed here). It is known from [4] that the spectrum of a tensor product
coincides with the product of the spectra of the factors, σ(T ⊗ S) = σ(T ) · σ(S).
For the Weyl spectrum it was proved in [16] that the inclusion

σw(T ⊗ S) ⊆ σw(T ) · σ(S) ∪ σ(T ) · σw(S)

holds, but it remains as an open question whether the equality holds. That is, it is
not know if there exist a pair of operators T and S for which the above inclusion
may be proper. Sufficient conditions ensuring that the equality holds were recently
investigated in [20]. For instance, if

σe(T )\{0} = σw(T )\{0} and σe(S)\{0} = σw(S)\{0}

(which holds, in particular, for compact operators T and S), then

σw(T ⊗ S) = σw(T ) · σ(S) ∪ σ(T ) · σw(S).

Also, if the tensor product satisfies Browder’s theorem, then the equality holds:

σw(T ⊗ S) = σb(T ⊗ S) =⇒ σw(T ⊗ S) = σw(T ) · σ(S) ∪ σ(T ) · σw(S).

Again, Weyl’s theorem does not transfer from T and S to their tensor product
T ⊗ S in general. The above identity involving the Weyl spectrum of a tensor
product plays a crucial role in establishing sufficient conditions for a tensor product
to satisfy Weyl’s theorem, as it was recently investigated in [27] and [20]. As for the
problem of transferring Browder’s theorem from T and S to their tensor product
T ⊗ S, the following necessary and sufficient condition was proved in [20].

Proposition 10.3. If both operators T and S satisfy Browder’s theorem, then the

tensor product T ⊗ S satisfies Browder’s theorem if and only if

σw(T ⊗ S) = σw(T ) · σ(S) ∪ σ(T ) · σw(S).
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