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Abstract

Clifford analysis is a higher dimensional function theory offering a refine-

ment of classical harmonic analysis, which has proven to be an appropriate

framework for developing a higher dimensional continuous wavelet transform

theory. In this setting a very specific construction of the wavelets has been

established, encompassing all dimensions at once as opposed to the usual

tensorial approaches, and being based on generalizations to higher dimen-

sion of classical orthogonal polynomials on the real line, such as the radial

Clifford–Hermite polynomials, leading to Clifford–Hermite wavelets. More

recently, Hermitian Clifford analysis has emerged as a new and successful

branch of Clifford analysis, offering yet a refinement of the orthogonal case.

In this new setting a Clifford–Hermite continuous wavelet transform has al-

ready been introduced in earlier work, its norm preserving character however

being expressed in terms of suitably adapted scalar valued inner products

on the respective L2–spaces of signals and of transforms involved. In this

contribution we present an alternative Hermitian Clifford–Hermite wavelet

theory with Clifford algebra valued inner products, based on an orthogonal

decomposition of the space of square integral functions, which is obtained by

introducing a new Hilbert transform in the Hermitian setting.
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1 Introduction

The one–dimensional continuous wavelet transform (CWT) is a successful tool for
signal and image analysis, which has found numerous applications in mathematics,
physics and engineering (see e.g. [13, 14]). On the real line wavelets constitute
a family of functions ψa,b derived from one original function ψ, called the mother
wavelet, by change of scale a (i.e. by dilation) and by change of position b (i.e. by
translation):

ψa,b(x) =
1√
a
ψ

(
x− b

a

)
, a > 0 , b ∈ R .

On this mother wavelet ψ some conditions have to be imposed. First, ψ is required
to be an L2–function, i.e. a signal of finite energy, which is well localized both in
the time and in the frequency domain. Moreover it has to satisfy the so–called
admissibility condition

Cψ ≡ 2π
∫ +∞

−∞

|F [ψ](u)|2
|u| du < +∞ ,

where F [ψ] denotes the Fourier spectrum of ψ. If ψ is an L1–function as well, the
admissibility condition implies that ψ should have zero momentum, i.e.

∫ +∞

−∞
ψ(x) dx = 0

which can only be fulfilled if ψ is an oscillating function, explaining the terminology
wavelet. In applications, additional requirements are imposed, among which a given
number of vanishing moments, viz.

∫ +∞

−∞
xn ψ(x) dx = 0 , n = 0, 1, . . . , N .

This means that the corresponding CWT defined as

F (a, b) = < ψa,b , f > =
1√
a

∫ +∞

−∞

(
ψ

(
x− b

a

))c
f(x) dx

(where ·c denotes complex conjugation) will filter out polynomial behaviour of the
signal f up to degree N , making it adequate at detecting singularities. When
considering L2–functions f and g with respective transforms F and G, the following
weighted inner product may be introduced:

[F,G] =
1

Cψ

∫ +∞

−∞

∫ +∞

0

(
F (a, b)

)c
G(a, b)

da

a2
db .

Taking into account the above mentioned admissibility condition for the mother
wavelet ψ, the corresponding Parseval formula reads

[F,G] = < f, g > ,

showing that, as a consequence of the admissibility condition, the CWT is an iso-
metry, or a norm preserving map, from L2(R) into L2(R+ × R, C−1

ψ a−2 da db).
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Higher dimensional CWTs typically originate as tensor products of one–dimensio-
nal phenomena. As opposed to these tensorial approaches, Clifford analysis (see e.g.
[2, 15, 16]) offers an appropriate framework for developing a higher dimensional
CWT theory where all dimensions are encompassed at once as an intrinsic feature
(see e.g. [7, 8, 9, 10, 12]). Standard Euclidean Clifford analysis focusses on so–called
monogenic functions, i.e. null solutions of the rotation invariant vector valued Dirac
operator

∂x =
m∑

j=1

ej∂xj
,

where (e1, . . . , em) forms an orthonormal basis for the quadratic space R0,m underly-
ing the construction of the real Clifford algebra R0,m. As a function theory, Clifford
analysis may be considered both as a generalization of the theory of holomorphic
functions in the complex plane and as a refinement of harmonic analysis, since the
Dirac operator factorizes the Laplacian. The wavelets developed in this setting are
based on Clifford generalizations of classical orthogonal polynomials on the real
line. In this respect we explicitly mention the radial Clifford–Hermite polynomials
introduced in [20], which were applied to wavelet analysis in the Euclidean Clifford
setting in [11].

In earlier work the CWT has also been studied in a new branch of Clifford anal-
ysis: Hermitian Clifford analysis, focussing on Hermitian monogenic functions tak-
ing values in a complex Clifford algebra or in a complex spinor space (see e.g.
[5, 6, 18, 19]). Hermitian monogenicity, h–monogenicity for short, is expressed by
means of two mutually h–conjugate complex vector valued Dirac operators, which
are invariant under the action of a realization of the unitary group. New Hermitian
Clifford–Hermite polynomials were constructed in [5], starting in a natural way from
a Rodrigues formula involving both Hermitian Dirac operators mentioned. Due to
the specific features of the setting, four different types of polynomials were obtained,
two types of even and two types of odd degree. In [3] these polynomials were used as
building blocks for Hermitian Clifford–Hermite wavelets. Following the construction
of four types of polynomials, also four types of wavelets and corresponding CWTs
were introduced, two of even and two of odd order. However, the Hermitian setting
necessitated a major adaptation as compared to the Clifford–Hermite wavelets in
the orthogonal framework: the Parseval formula, expressing the norm preserving
character of the CWT, had to be reformulated in terms of suitably adapted scalar
valued inner products on the L2–spaces of signals and of wavelet transforms.

In this paper we present an alternative Hermitian Clifford–Hermite wavelet the-
ory with Clifford algebra valued inner products on the L2–spaces of signals and of
transforms. This new theory is based on the decomposition of the space of square in-
tegrable functions as a direct sum of two orthogonal subspaces H±, obtained through
the introduction of a new Hilbert transform in the Hermitian setting (see [1]). More-
over, the spaces H± turn out to be the respective kernels of, in each case, two out of
the four types of wavelet transforms obtained. Finally, the present approach clearly
shows that the Hermitian Clifford–Hermite CWTs offer a refinement of the Clifford–
Hermite CWTs in orthogonal Clifford analysis, since the Clifford–Hermite CWT of
a given order is seen to split into both Hermitian Clifford–Hermite CWTs of that
same order.
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2 Hermitian Clifford analysis

Let R0,m be endowed with a non–degenerate quadratic form of signature (0, m), let
(e1, . . . , em) be an orthonormal basis for R0,m and let R0,m be the real Clifford algebra
constructed over R0,m. The non–commutative multiplication in R0,m is governed by

ejek + ekej = −2δjk , j, k = 1, . . . , m . (2.1)

A basis for R0,m is obtained by considering for a set A = {j1, . . . , jh} ⊂ {1, . . . , m}
the element eA = ej1 . . . ejh, with 1 ≤ j1 < j2 < . . . < jh ≤ m. For the empty set ∅
one puts e∅ = 1, the identity element. Any Clifford number a in R0,m may thus be
written as a =

∑
A eAaA, aA ∈ R, or still as a =

∑m
k=0[a]k, where [a]k =

∑
|A|=k eAaA

is the so–called k–vector part of a (k = 0, 1, . . . , m). The Euclidean space R0,m is
embedded in R0,m by identifying (x1, . . . , xm) with the Clifford vector x given by
x =

∑m
j=1 ejxj . The product of two vectors is given by

x y = x • y + x ∧ y ,

where

x • y = − < x, y > = −
m∑

j=1

xjyj , x ∧ y =
m∑

i=1

m∑

j=i+1

eiej(xiyj − xjyi)

are a scalar and a bivector (or 2–vector) respectively. Note that the square of a
vector x is scalar valued and equals the norm squared up to a minus sign: x2 = −
< x, x > = −|x|2. The dual of the vector x is the rotation invariant, vector valued
first order differential operator

∂x =
m∑

j=1

ej∂xj
,

called Dirac operator, which factorizes the Laplacian, viz ∆m = −∂2
x. It is precisely

this Dirac operator which underlies the notion of monogenicity of a function, a
notion which is the higher dimensional counterpart of holomorphy in the complex
plane. A function f defined and differentiable in an open region Ω of Rm and taking
values in R0,m is called left–monogenic in Ω if ∂x[f ] = 0.

When allowing for complex constants and moreover taking the dimension to be
even, say m = 2n, the same set of generators as above, (e1, . . . , e2n), still satisfying
the defining relations (2.1), may in fact also produce the complex Clifford algebra
C2n. As C2n is the complexification of the real Clifford algebra R0,2n, i.e. C2n =
R0,2n ⊕ iR0,2n, any complex Clifford number λ ∈ C2n may be written as λ = a + ib,
a, b ∈ R0,2n, leading to the definition of the Hermitian conjugation

λ† = (a+ ib)† = a− ib ,

where the bar denotes the usual conjugation in R0,2n, i.e. the main anti–involution
for which ej = −ej , j = 1, . . . , 2n. This Hermitian conjugation leads to a Hermitian
inner product and its associated norm on C2n given by

(λ, µ) = [λ†µ]0 and |λ| =
√

[λ†λ]0 = (
∑

A

|λA|2)1/2 .
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The above framework will be referred to as the Hermitian Clifford setting, as op-
posed to the traditional Euclidean Clifford setting. Hermitian Clifford analysis then
focusses on the null solutions of two Hermitian Dirac operators ∂z and ∂†z , introduced
by means of the so–called Witt basis for the complex Clifford algebra C2n:

fj =
1

2
(ej − ien+j) , f

†
j = −1

2
(ej + ien+j) , j = 1, . . . , n

satisfying the Grassmann identities

fjfk + fkfj = f
†
jf

†
k + f

†
kf

†
j = 0 , j, k = 1, . . . , n

and the duality identities

fjf
†
k + f

†
kfj = f

†
jfk + fkf

†
j = δjk , j, k = 1, . . . , n .

The Grassmann algebras generated by (fj)
n
j=1 and (f†j)

n
j=1 are denoted by CΛn and

CΛ†
n respectively. Using this Witt basis, the vector (X1, . . . , X2n) = (x1, . . . , xn, y1,

. . . , yn) in R0,2n is identified with the Clifford vector

X =
n∑

j=1

(ejxj + en+jyj) =
n∑

j=1

fjzj −
n∑

j=1

f
†
jz
c
j

where the complex variables zj = xj+iyj and their complex conjugates zcj = xj−iyj ,
j = 1, . . . , n have been introduced. Defining the Hermitian vector variables

z =
n∑

j=1

fjzj and z† = (z)† =
n∑

j=1

f
†
jz
c
j ,

the Clifford vector X clearly takes the form

X = z − z† .

To this vector X the traditional Dirac operator is associated, rewritten as

∂X =
n∑

j=1

(ej∂xj
+ en+j∂yj

) = 2 (
n∑

j=1

fj∂zc
j
−

n∑

j=1

f
†
j∂zj

) = 2(∂†z − ∂z) .

Here we have introduced the Hermitian Dirac operators

∂z =
n∑

j=1

f
†
j∂zj

and ∂†z = (∂z)
† =

n∑

j=1

fj∂zc
j
,

involving the classical Cauchy–Riemann operators and their complex conjugates in
the complex zj planes, i.e. ∂zj

= 1
2
(∂xj

− i∂yj
) and ∂zc

j
= 1

2
(∂xj

+ i∂yj
), j = 1, . . . , n.

In what follows also a second Clifford vector is considered, viz

X| =
n∑

j=1

(ejyj − en+jxj) =
1

i

n∑

j=1

fjzj +
1

i

n∑

j=1

f
†
jz
c
j =

1

i
(z + z†)
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with corresponding Dirac operator

∂X | =
n∑

j=1

(ej∂yj
− en+j∂xj

) =
2

i
(
n∑

j=1

fj∂zc
j
+

n∑

j=1

f
†
j∂zj

) =
2

i
(∂†z + ∂z) .

Note that the vectors X and X| are orthogonal, which implies that the Clifford
vectors X and X| anti–commute: X X| = − < X,X| > + X ∧ X| = X ∧ X| =
−X | ∧ X = −X| X. On account of the isotropy of the Witt basis elements, the
Hermitian vector variables and Dirac operators are isotropic as well, i.e.

(z)2 = (z†)2 = 0 and (∂z)
2 = (∂†z)

2 = 0 , (2.2)

from which it directly follows that the Laplacian ∆2n = −∂2
X = −∂2

X | allows for the
decomposition

∆2n = 4(∂z∂
†
z + ∂†z∂z) . (2.3)

Moreover, one also has that

zz† + z†z = |z|2 = |z†|2 = |X|2 = |X||2 .

A continuously differentiable function g on R2n with values in C2n is called a
Hermitian monogenic (or h–monogenic) function if and only if it satisfies the system

∂Xg = 0 = ∂X |g or equivalently ∂zg = 0 = ∂†zg .

The Hermitian Dirac operators ∂z and ∂†z are invariant under the action of a reali-
sation of the unitary group in terms of the Clifford algebra, see [5, 6]. This group
Ũ(n) ⊂ Spin(2n) is given by

Ũ(n) = {s ∈ Spin(2n) | ∃θ ≥ 0 : sI = exp (−iθ)I} , (2.4)

its definition involving the primitive selfadjoint idempotent I, which is introduced
as follows. Put, for each j = 1, . . . , n, Ij = fjf

†
j = 1

2
(1 − iejen+j), then the Ij

are mutually commuting idempotents for which moreover I†j = Ij. Now, let I =

I1 . . . In = f1f
†
1f2f

†
2 . . . fnf

†
n, then obviously I2 = I and I† = I. The invariance of the

operators ∂z and ∂†z under the action of Ũ(n) is then expressed as

[∂z , L(s)] = 0 = [∂†z , L(s)] , s ∈ Ũ(n) ,

where [. , .] denotes the commutator and L(s) is the so–called ℓ–representation of an
arbitrary spin element s (see e.g. [2]).

In the sequel we will use the following definition of the standard Fourier transform
in R2n:

F [f ](U) =
1

(2π)n

∫

R2n
exp (−i < X,U >) f(X) dV (X) ,

where dV (X) denotes the differential form dV (X) = dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧
. . . ∧ dxn ∧ dyn, and where we have put U = (u1, . . . , un, v1, . . . , vn) and X =
(x1, . . . , xn, y1, . . . , yn). Let us now rewrite this Fourier transform in terms of the
Hermitian vector variables. From the foregoing we know that X = z − z† and
U = w − w†, with z =

∑n
j=1 fjzj , zj = xj + iyj and w =

∑n
j=1 fjwj, wj = uj + ivj ,
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j = 1, . . . , n. When passing to these Hermitian vector variables, the Fourier trans-
form takes the form

F [f ](w,w†) =
in

(4π)n

∫

Cn
exp (−2iRe(w, z)) f(z, z†) dz ∧ dz† ,

where we have introduced the differential form

dz ∧ dz† ≡ dz1 ∧ dzc1 ∧ . . . ∧ dzn ∧ dzcn = (−2i)ndV (X) .

This Fourier transform satisfies the differentiation rules

F [∂zf ] =
i

2
w† F [f ] and F [∂†zf ] =

i

2
w F [f ] (2.5)

and the multiplication rules

F [zf ] = 2i∂†w F [f ] and F [z†f ] = 2i∂w F [f ] .

Moreover, the Fourier transform is an isometry on L2(R
2n), in other words, for all

f, g ∈ L2(R
2n) the Parseval formula holds:

< f, g > = < F [f ],F [g] > (2.6)

with the Clifford algebra valued inner product given by

< f, g > =
∫

R2n
f †(X) g(X) dV (X) .

We now introduce two Hilbert transforms, one in the Clifford vector X, viz

HX [f ] =
2

a2n+1
Pv

X

r2n+1
∗ f

and a second one in the associated Clifford vector X|, viz

HX|[f ] =
2

a2n+1

Pv
X|
r2n+1

∗ f ,

a2n+1 denoting the area of the unit sphere S2n in R2n+1. Their Fourier spectra are

F [HX [f ]](U) = i
U

|U |F [f ](U) and F [HX|[f ]](U) = i
U |
|U |F [f ](U) .

From the observation that

F
[
HX

[
HX|[f ]

]]
(U) = −U U |

|U |2 F [f ](U) =
U | U
|U |2 F [f ](U) = −F

[
HX|

[
HX [f ]

]]
(U) ,

we derive that both Hilbert transforms are anti–commuting, i.e.

HX ◦HX| = −HX | ◦HX .

The new transform H̃ , obtained by this composition, up to a factor i, viz

H̃ = −iHX | ◦HX = iHX ◦HX|

shows the usual properties of a Hilbert transform and plays an important rôle in
what follows.
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Lemma 2.1. One has:

• H̃ is a bounded linear operator in L2(R
2n);

• H̃ is norm preserving, i.e. for all f, g ∈ L2(R
2n) one has

< f, g > = < H̃ [f ], H̃ [g] > ;

• (H̃)2 = H̃ ◦ H̃ = I;

• H̃ is selfadjoint, i.e. (H̃)adj = H̃;

• H̃ is unitary, i.e. (H̃)adjH̃ = H̃(H̃)adj = I;

• the Fourier spectrum of H̃ is given by

F
[
H̃ [f ]

]
(U) = i

U | U
|U |2 F [f ](U) .

Next, we introduce the projection operators

P
±
h =

1

2
(I ± H̃)

for which, apart from (P±
h )2 = P

±
h , it also holds that P

+
h + P

−
h = I and P

+
h ◦ P

−
h =

P
−
h ◦ P

+
h = 0. This leads to the direct sum decomposition

L2(R
2n) = P

+
h [L2(R

2n)] ⊕ P
−
h [L2(R

2n)]

g = P
+
h [g] + P

−
h [g] . (2.7)

In frequency space, the decomposition (2.7) of the L2(R
2n) function g reads

F [g](U) =
1

2

(
1 + i

U |U
|U |2

)
F [g](U) +

1

2

(
1 − i

U |U
|U |2

)
F [g](U)

= Ψ+
hF [g](U) + Ψ−

hF [g](U) ,

where we have put

Ψ±
h =

1

2

(
1 ± i

U | U
|U |2

)
.

The above introduced functions Ψ±
h are selfadjoint mutually orthogonal idempotents

and can be regarded as a Hermitian analogue of the so–called Clifford–Heaviside
functions of orthogonal Clifford analysis (see [17] and [21]).

Lemma 2.2. The functions Ψ±
h show the following properties

• Ψ+
h + Ψ−

h = 1;
• (Ψ±

h )† = Ψ±
h ;

• Ψ+
hΨ−

h = Ψ−
hΨ+

h = 0;
• (Ψ±

h )2 = Ψ±
h .

3 The Hermitian Clifford–Hermite polynomials

The so–called radial Clifford–Hermite polynomials were introduced by Sommen in
[20] as a multidimensional generalization to orthogonal Clifford analysis of the classi-
cal Hermite polynomials on the real line. They are defined by means of the Rodrigues
formula:

Hℓ(x) = (−1)ℓ exp (
|x|2
2

) ∂ℓx[exp (−|x|2
2

)] , ℓ = 0, 1, 2, . . .
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and are orthogonal on R
2n with respect to the exponential weight function

exp (−|x|2/2). For their generalization to the Hermitian setting we restrict ourselves
to the basic results; for a detailed account, we refer the reader to [4, 5]. Instead
of the single operator ∂x, we now have two Hermitian Dirac operators ∂z and ∂†z ,
whence it is natural to consider the following Rodrigues formula for the Hermitian
Clifford–Hermite polynomials Hp:

Hp(z, z
†) = exp (

|z|2
2

) Dp(∂z , ∂
†
z)[exp (−|z|2

2
)] ,

where Dp(∂z, ∂
†
z) is a differential operator of order p, consisting of p factors ∂z and ∂†z .

Taking into account the properties (2.2) and (2.3), it is easily seen that the proposed
form of Dp results into four types of differential operators, viz two mutually adjoint
types of odd order, given by

D
(1)
2p+1 = ∂†z ∆p

2n and D
(2)
2p+1 = ∂z ∆p

2n

and two selfadjoint types of even order, given by

D
(3)
2p+2 = ∂z∂

†
z∆

p
2n and D

(4)
2p+2 = ∂†z∂z∆

p
2n .

Hence we are led to four types of Hermitian Clifford–Hermite polynomials, which
may be expressed in terms of the Laguerre polynomials on the real line as

H
(1)
2p+1(z, z

†) = (−1)p−12p−1p! z Lnp (
|z|2
2

)

H
(2)
2p+1(z, z

†) = (−1)p−12p−1p! z† Lnp (
|z|2
2

)

H
(3)
2p+2(z, z

†) = (−1)p−12p−1p!

(
β Lnp (

|z|2
2

) − 1

2
z†z Ln+1

p (
|z|2
2

)

)
(3.1)

H
(4)
2p+2(z, z

†) = (−1)p−12p−1p!

(
(n− β) Lnp (

|z|2
2

) − 1

2
zz† Ln+1

p (
|z|2
2

)

)
,

where β denotes the Clifford number β =
∑n
j=1 f

†
jfj. With respect to the Gaussian

weight exp (−|z|2/2) all Hermitian Clifford–Hermite polynomials are found to be
mutually orthogonal in L2(R

2n), i.e. for arbitrary degrees k, ℓ and indices i, j =
1, 2, 3, 4 they satisfy

∫

R2n
exp (−|z|2

2
)
(
H

(i)
k (z, z†)

)†
H

(j)
ℓ (z, z†) dV (X) = 0 , with k 6= ℓ when i = j .
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4 The Hermitian Clifford–Hermite wavelet kernels of the firs t

type

Following the construction of the four types of Hermitian Clifford–Hermite poly-
nomials in the previous section, also four different families of wavelet kernels with
their respective mother wavelets may be introduced. For the first type, this mother
wavelet function is

ψ
(1)
2p+1(z, z

†) = ∂†z∆
p
m

[
exp (−|z|2

2
)

]
= H

(1)
2p+1(z, z

†) exp (−|z|2
2

) .

In this section and the next one, we will study the family of wavelets and the
CWT stemming from ψ

(1)
2p+1. The other three types will be discussed briefly in the

last section. In [3] it is verified that the L1∩L2–functions ψ
(1)
2p+1 have zero momentum,

i.e.

∫

R2n
ψ

(1)
2p+1(z, z

†) dV (X) =
∫

R2n
exp (−|z|2

2
) H

(1)
2p+1(z, z

†) dV (X) = 0 . (4.1)

So they are good candidates for mother wavelets in R2n, if at least they satisfy an
appropriate admissibility condition, an issue which will be treated below. To that
end, we already calculate the mother wavelet ψ

(1)
2p+1 in frequency space. Taking into

account the decomposition (2.3) of the Laplace operator, it is easily seen that

ψ
(1)
2p+1(z, z

†) = 4p ∂†z(∂z∂
†
z)
p

[
exp (−|z|2

2
)

]
.

Hence, by means of the differentiation rule (2.5) we obtain (see also [3])

F [ψ
(1)
2p+1(z, z

†)](w,w†) = (−1)p
i

2
w|w|2p exp (−|w|2

2
) . (4.2)

The mother wavelet should also show a number of vanishing moments, in order
to filter out polynomial behaviour. By means of the orthogonality relations of the
previous section and the zero momentum condition (4.1), one can prove that (see
[3]): ∫

R2n
Pq(z − z†) ψ

(1)
2p+1(z, z

†) dV (X) = 0 if q < 2p+ 1 .

Here Pq is a polynomial of degree q in the variable X or equivalently in z − z†

which may in particular be replaced by either of the functions (z†z)t, (zz†)t, z(z†z)s

or z†(zz†)s, 0 ≤ t ≤ p and 0 ≤ s < p, revealing the exact meaning of the term
vanishing moments in the Hermitian context.

In [3] a family of wavelet kernels stemming from a mother wavelet ψ(z, z†) ∈
L1 ∩ L2 is defined, taking into account not only scaling and translation, but also
rotation in space. Starting from the Clifford vector X and considering a scaling
factor a > 0 and a translation vector B ∈ R2n, the corresponding operations are
transferred to the Hermitian setting by

X − B

a
=
z − b

a
− z† − b†

a
,
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when B = b − b†. For the rotations, we consider spin elements from the unitary
subgroup Ũ(n) of Spin(2n), see (2.4), and the h–transformation associated to them,
viz

h(s) : a ∈ C2n → h(s)[a] = sas† = sas = sas−1 ,

leaving the k–blades of the Grassmann algebras CΛn and CΛ†
n invariant. The corre-

sponding operator action on functions, given by H(s)[g(X)] = sg(sXs)s thus takes
the form

H(s)[g(z, z†)] = s g(szs, sz†s) s ,

whence the family of wavelet kernels originating from ψ(z, z†) is eventually defined
as

ψa,b,s(z, z†) =
1

an
s ψ

(
s(z − b)s

a
,
s(z† − b†)s

a

)
s ,

a being a positive real number, b a vector from the Grassmann algebra CΛn and s a
spin element belonging to the group Ũ(n). Next, invoking the basic calculation rules
of the Fourier transform for scaling, translation and rotation, the Fourier transforms
of these wavelet kernels are easily found to be

F [ψa,b,s](w,w†) = an exp (−2iRe(w, b)) s F [ψ](asws, asw†s) s . (4.3)

Returning to the Hermitian Clifford–Hermite mother wavelets of the first type, we
observe that s ψ

(1)
2p+1(szs, sz

†s) s = ψ
(1)
2p+1(z, z

†) for any s ∈ Spin(2n), showing that,
in particular, these mother wavelets are invariant under the action of the unitary
group Ũ(n). Hence, in this case, we may omit this group action while defining the
continuous family of wavelets:

ψ
(1)
2p+1

a,b
(z, z†) =

1

an
ψ

(1)
2p+1

(
z − b

a
,
z† − b†

a

)
, (4.4)

where a ∈ R+ and b ∈ CΛn ∩ C
(1)
2n .

5 The Hermitian Clifford–Hermite CWT of the first type

In this section, we will use the family of functions (4.4) as kernel functions for a
new multidimensional CWT. To this end, take g ∈ L2(R

2n) and define its Hermitian
Clifford–Hermite CWT of the first type by:

T(1)[g](a, b) =
∫

R2n

(
ψ

(1)
2p+1

a,b
(z, z†)

)†

g(z, z†) dV (X) . (5.1)

In the sequel we will show that all types of Hermitian Clifford–Hermite wavelet
transforms take their values in the weighted L2–space

L2

(
R+ × CΛn ∩ C

(1)
2n , a

−(2n+1)da(−2i)−n(db ∧ db†)
)
,

equipped with the Clifford algebra valued inner product

[F,G] =
∫

R2n∼=Cn

∫ +∞

0

(
F (a, b)

)†
G(a, b)

da

a2n+1
(−2i)−n(db ∧ db†)
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and corresponding norm

‖F‖ =
([

[F, F ]
]
0

)1/2
=

(∫

R2n∼=Cn

∫ +∞

0
|F (a, b)|2 da

a2n+1
(−2i)−n(db ∧ db†)

)1/2

.

By means of (2.6) and (4.3), (5.1) can be rewritten in frequency space as

T(1)[g](a, b) = an
∫

R2n
exp

(
2iRe(w, b)

) (
F [ψ

(1)
2p+1](aw, aw

†)
)†F [g](w,w†) dV (U) .

(5.2)
Moreover, (4.2) yields

(
F [ψ

(1)
2p+1](aw, aw

†)
)†

= (−1)p+1 i

2
a2p+1|w|2p exp

(
−a

2|w|2
2

)
w† .

Hence, (5.2) becomes

T(1)[g](a, b) = (−1)p+1 i

2
an+2p+1

∫

R2n
exp (2iRe(w, b)) |w|2p exp

(
−a

2|w|2
2

)

w† F [g](w,w†) dV (U) .

Next, let us decompose g ∈ L2(R
2n) as g = P

+
h [g]+P

−
h [g] by means of the projection

operators introduced in Section 2. In what follows, we shortly denote g± = P
±
h [g].

We then know that F [g±](U) = Ψ±
h F [g](U) or

F [g+](w,w†) =
w†w

|w|2 F [g](w,w†) and F [g−](w,w†) =
w w†

|w|2 F [g](w,w†) ,

where we have rewritten the idempotents Ψ±
h in the Hermitian variables w and w†:

Ψ+
h =

w†w

|w|2 and Ψ−
h =

w w†

|w|2 .

As (w†)2 = 0, we thus obtain that

T(1)[g
+](a, b) = 0 ,

showing that the Hermitian Clifford–Hermite CWT T(1) has a non–trivial kernel,
since any function belonging to the L2–subspace

H+ := {g ∈ L2(R
2n) | g = P

+
h [g]}

is mapped to zero. In view of the above, it thus is sufficient to study the Her-
mitian Clifford–Hermite CWT of the first type acting on g−, since T(1)[g](a, b) =
T(1)[g

−](a, b). We put

G−(a, b) =< ψ
(1)
2p+1

a,b
, g− > .

In frequency space, this takes the form (see (5.2))

G−(a, b) = an (2π)n F
[(

F [ψ
(1)
2p+1](aw, aw

†)

)†

F [g−](w,w†)

]
(−b,−b†) . (5.3)
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Now our aim is to prove that the Hermitian Clifford–Hermite CWT T(1) is a
bounded linear operator from the L2–subspace

H− := {g ∈ L2(R
2n) | g = P

−
h [g]}

to L2

(
R+ × CΛn ∩ C

(1)
2n , a

−(2n+1) da (−2i)−n (db ∧ db†)
)
. To that end we calculate

[G−
1 , G

−
2 ] =

∫

R2n∼=Cn

∫ +∞

0

(
G−

1 (a, b)
)†
G−

2 (a, b)
da

a2n+1
(−2i)−n (db ∧ db†) ,

where G−
1 and G−

2 denote the images of two signals g−1 , g
−
2 ∈ H−. In view of (5.3)

and the Parseval formula (2.6), we obtain

[G−
1 , G

−
2 ] = (2π)2n(−2i)−n

∫

R2n∼=Cn

(
F [g−1 ](w,w†)

)†

(∫ +∞

0
F [ψ

(1)
2p+1](aw, aw

†)
(
F [ψ

(1)
2p+1](aw, aw

†)
)†da
a

)
F [g−2 ](w,w†) (dw ∧ dw†) . (5.4)

By means of the substitution w = r
a
ξ, |ξ| = 1, or in other words: |w| = r

a
and

ξ = w
|w|

, the integral between brackets becomes

∫ +∞

0
F [ψ

(1)
2p+1](aw, aw

†)
(
F [ψ

(1)
2p+1](aw, aw

†)
)† da

a

=
∫ +∞

0
F [ψ

(1)
2p+1](rξ, rξ

†)
(
F [ψ

(1)
2p+1](rξ, rξ

†)
)† dr

r
.

Next, using expression (4.2) we find

F [ψ
(1)
2p+1](rξ, rξ

†)
(
F [ψ

(1)
2p+1](rξ, rξ

†)
)†

=
r4p+2

4
exp (−r2) ξ ξ† ,

yielding first

∫ +∞

0
F [ψ

(1)
2p+1](aw, aw

†)
(
F [ψ

(1)
2p+1](aw, aw

†)
)† da

a
=

(2p)!

8
Ψ−
h

and next

[G−
1 , G

−
2 ] = (2π)2n (−2i)−n

(2p)!

8

∫

R2n∼=Cn

(
F [g−1 ](w,w†)

)†
Ψ−
h F [g−2 ](w,w†) (dw∧dw†)

for the integral (5.4). Moreover, having Ψ−
hF [g−2 ](w,w†) = F [g−2 ](w,w†), we finally

obtain that
[G−

1 , G
−
2 ] = C(1) < g−1 , g

−
2 > , (5.5)

with C(1) = (2π)2n (2p)!
8

, implying the CWT T(1) not only to be bounded but even to

be an isometry from H− to L2

(
R+ × CΛn ∩ C

(1)
2n , C

−1
(1)a

−(2n+1)da(−2i)−n(db ∧ db†)
)
.

From (5.5) we also obtain the reconstruction formula

g−2 (z, z†) = C−1
(1)

∫

R2n∼=Cn

∫ +∞

0
ψ

(1)
2p+1

a,b
(z, z†) T(1)[g

−
2 ](a, b)

da

a2n+1
(−2i)−n (db ∧ db†) .

(5.6)
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6 The Hermitian Clifford–Hermite CWTs of types two, three an d

four

6.1 The Hermitian Clifford–Hermite CWT of type two

The Hermitian Clifford–Hermite mother wavelets of type two are derived from the
second type of Hermitian Clifford–Hermite polynomials and take the form

ψ
(2)
2p+1(z, z

†) = exp (−|z|2
2

) H
(2)
2p+1(z, z

†) = 4p ∂z(∂
†
z∂z)

p

[
exp (−|z|2

2
)

]
.

Let us first verify that the L1 ∩L2–functions ψ
(2)
2p+1 have zero momentum. From the

form of the generating differential operator ∂z∆
p
2n one infers that

H
(2)
2p+1(z, z

†) = (−1)p (−1

2
z†) H̃2p(r)

where H̃2p(r) is a scalar polynomial of degree p in r2 = |z|2. Passing to spherical
co–ordinates z = r Ξ, with Ξ ∈ S2n−1, we obtain

∫

R2n
ψ

(2)
2p+1(z, z

†) dV (X) =
(−1)p+1

2

∫ +∞

0
r2n exp (−r

2

2
) H̃2p(r) dr

∫

S2n−1

Ξ† dS(Ω)

= 0 ,

the integral over the unit sphere S2n−1 vanishing since Ξ† is a spherical harmonic.
Along with that, the functions ψ

(2)
2p+1 also show a number of vanishing moments:

∫

R2n
{(z†z)t , (zz†)t , z(z†z)s , z†(zz†)s}ψ(2)

2p+1(z, z
†) dV (X) = 0

for 0 ≤ s < p, 0 ≤ t ≤ p.
Furthermore, the Fourier transforms of our second type mother wavelets read

F [ψ
(2)
2p+1](w,w

†) = (−1)p
i

2
w† |w|2p exp (−|w|2

2
) .

Again we do not have to take the unitary group Ũ(n) into consideration, since for

each s ∈ Spin(2n) we have s ψ
(2)
2p+1(szs, sz

†s) s = ψ
(2)
2p+1(z, z

†).
The corresponding Hermitian Clifford–Hermite CWT of the second type applies

to functions g ∈ L2(R
2n) through

T(2)[g](a, b) =
∫

R2n

(
ψ

(2)
2p+1

a,b
(z, z†)

)†

g(z, z†) dV (X) .

Similarly as in Section 5, this Hermitian Clifford–Hermite CWT can be rewritten as

T(2)[g](a, b) = (−1)p+1 i

2
an+2p+1

∫

R2n
exp (2iRe(w, b)) |w|2p exp

(
−a

2|w|2
2

)

w F [g](w,w†) dV (U) .
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Decomposing g ∈ L2(R
2n) as g = g+ + g− with g± = P

±
h [g], we now have that

T(2)[g
−](a, b) = 0 ,

since (w)2 = 0. Hence, we obtain that T(2)[g](a, b) = T(2)[g
+](a, b) and we denote

G+(a, b) = < ψ
(2)
2p+1

a,b
, g+ > .

In order to prove the boundedness of the Hermitian Clifford–Hermite CWT T(2) as a

linear operator from the L2–subspace H+ to L2

(
R+×CΛn∩C

(1)
2n , a

−(2n+1) da(−2i)−n

(db ∧ db†)
)
, we calculate

[G+
1 , G

+
2 ] =

∫

R2n∼=Cn

∫ +∞

0

(
G+

1 (a, b)
)†

G+
2 (a, b)

da

a2n+1
(−2i)−n (db ∧ db†)

with G+
1 and G+

2 the images of two signals g+
1 , g

+
2 ∈ H+. Similarly as in Section 5,

we obtain

[G+
1 , G

+
2 ] = (2π)2n(−2i)−n

(2p)!

8

∫

R2n∼=Cn

(
F [g+

1 ](w,w†)
)†

Ψ+
h F [g+

2 ](w,w†) (dw∧dw†) .

(6.1)
As Ψ+

h F [g+
2 ](w,w†) = F [g+

2 ](w,w†), the integral (6.1) becomes

[G+
1 , G

+
2 ] = C(1) < g+

1 , g
+
2 >

showing also the second type Hermitian Clifford–Hermite CWT to constitute an
isometry, now from H+ to L2

(
R+ × CΛn ∩ C

(1)
2n , C

−1
(1) a

−(2n+1) da (−2i)−n(db ∧ db†)
)
.

Moreover, the reconstruction formula takes the form

g+
2 (z, z†) =

1

C(1)

∫

R2n∼=Cn

∫ +∞

0
ψ

(2)
2p+1

a,b
(z, z†) T(2)[g

+
2 ](a, b)

da

a2n+1
(−2i)−n(db ∧ db†) .

6.2 The Hermitian Clifford–Hermite CWT of type three

In this subsection we study the CWT stemming from the Hermitian Clifford–Hermite
mother wavelets of type three given by

ψ
(3)
2p+2(z, z

†) = exp (−|z|2
2

) H
(3)
2p+2(z, z

†) = 4p(∂z∂
†
z)
p+1

[
exp (−|z|2

2
)

]
.

First we must verify that this mother wavelet of type three has zero momentum.
As for the mother wavelets of types one and two, this condition has to be carefully
checked, its proof however now being less straightforward than for the previous
types. From (3.1) we obtain the following expression for H

(3)
2p+2:

H
(3)
2p+2(z, z

†) = z†z K2p(r) + (−1)p+11

2
β H̃2p(r)

with K2p(r) = (−1)p2p−2p! Ln+1
p ( r

2

2
) and H̃2p(r) = 2pp! Lnp (

r2

2
). Hence we find

∫

R2n
ψ

(3)
2p+2(z, z

†) dV (X) =
∫ +∞

0
exp (−r

2

2
) r2n+1K2p(r) dr

(∫

S2n−1

Ξ† Ξ dS(Ω)

)

+ (−1)p+11

2
β a2n

∫ +∞

0
exp (−r

2

2
) r2n−1 H̃2p(r) dr ,
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where we have again used spherical co–ordinates z = rΞ, Ξ ∈ S2n−1. From the or-
thogonality of the radial Clifford–Hermite polynomials of orthogonal Clifford anal-
ysis, we know:

∫

R2n
exp (−r

2

2
) H2p+2(X) dV (X) = 0 , p = 0, 1, 2, . . .

As one can verify that

H2p+2(X) = (−1)p+14

(
r2K2p(r) + (−1)p+1 n

2
H̃2p(r)

)
,

this implies that for p = 0, 1, 2, . . .

∫

R2n
exp (−r

2

2
)

(
r2 K2p(r) + (−1)p+1 n

2
H̃2p(r)

)
dV (X) = 0 .

The whole integrand being a purely radial function, we finally obtain for p =
0, 1, 2, . . .

∫ +∞

0
exp (−r

2

2
) r2n+1K2p(r) dr = (−1)p

n

2

∫ +∞

0
exp (−r

2

2
) r2n−1 H̃2p(r) dr .

The above result eventually leads to

∫

R2n
ψ

(3)
2p+2(z, z

†) dV (X) = (−1)p
n

2

∫ +∞

0
exp (−r

2

2
) r2n−1 H̃2p(r) dr

(∫

S2n−1

Ξ†Ξ dS(Ω) − β

n
a2n

)
= 0 ,

since a subtle calculation yields (see [4])

∫

S2n−1

Ξ† Ξ dS(Ω) =
β

n
a2n .

The zero momentum condition combined with the orthogonality of the Hermitian
Clifford–Hermite polynomials again gives rise to a number of vanishing moments,
i.e. ∫

R2n
{(z†z)t , (zz†)t , z(z†z)s , z†(zz†)s}ψ(3)

2p+2(z, z
†) dV (X) = 0

for 0 ≤ t ≤ p, 0 ≤ s ≤ p.
The Fourier transforms of the mother wavelets take the form

F [ψ
(3)
2p+2](w,w

†) = (−1)p+11

4
(w†w)|w|2p exp (−|w|2

2
) .

Moreover, also the mother wavelets of type three are Ũ(n) invariant, yet another
result which is not as straightforward as for the mother wavelets of types one and
two.

Lemma 6.1. The Clifford number β =
∑n
j=1 f

†
j fj commutes with any s ∈ Ũ(n).
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Proof. Any s ∈ Ũ(n) may be written as s = exp (ǫσ) with ǫ ∈ R small and σ an
element of the associated Lie algebra ũ(n). In [6] it is proved that this Lie algebra
ũ(n) is generated by the following (real) bivectors

ifj ∧ f
†
j , j = 1, . . . , n

fjf
†
k − fkf

†
j , j, k = 1, . . . , n , j 6= k

i(fjf
†
k + fkf

†
j) , j, k = 1, . . . , n , j 6= k .

By a lengthy but straightforward computation each of these generators may be
shown to commute with β, which directly implies the same property for any element
σ of the Lie algebra. In particular we then also have that σkβ = β σk, which finally
yields

s β = exp (ǫσ) β =
∞∑

k=0

ǫk

k!
σk β =

∞∑

k=0

ǫk

k!
β σk = β exp (ǫσ) = β s . �

The above result is crucial, since, invoking also (3.1), we now easily find

s ψ
(3)
2p+2(szs, sz

†s) s = ψ
(3)
2p+2(z, z

†) , ∀s ∈ Ũ(n) .

The corresponding CWT applies to square integrable functions g through

T(3)[g](a, b) =
∫

R2n

(
ψ

(3)
2p+2

a,b
(z, z†)

)†

g(z, z†) dV (X) .

The equivalent expression

T(3)[g](a, b) =
(−1)p+1

4
an+2p+2

∫

R2n
exp (2iRe(w, b)) |w|2p exp

(
−a

2|w|2
2

)

(w†w) F [g](w,w†) dV (U)

yields
T(3)[g

−](a, b) = 0 .

Hence T(3)[g](a, b) = T(3)[g
+](a, b), also denoted by G+(a, b). We now find that

[G+
1 , G

+
2 ] =

∫

R2n∼=Cn

∫ +∞

0

(
G+

1 (a, b)
)†
G+

2 (a, b)
da

a2n+1
(−2i)−n (db ∧ db†)

= (2π)2n (−2i)−n
∫

R2n∼=Cn

(
F [g+

1 ](w,w†)
)†
(∫ +∞

0
F [ψ

(3)
2p+2](rξ, rξ

†)

(
F [ψ

(3)
2p+2](rξ, rξ

†)
)† dr

r

)
F [g+

2 ](w,w†) (dw ∧ dw†) ,

again with ξ = w
|w|

. As

F [ψ
(3)
2p+2](rξ, rξ

†)
(
F [ψ

(3)
2p+2](rξ, rξ

†)
)†

=
1

16
r4p+4 exp (−r2) (ξ†ξ)2 ,

the integral between brackets becomes

∫ +∞

0
F [ψ

(3)
2p+2](rξ, rξ

†)
(
F [ψ

(3)
2p+2](rξ, rξ

†)
)† dr

r
=

1

32
(2p+ 1)! P+

h .
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Hence we obtain that

[G+
1 , G

+
2 ] = C(3) < g+

1 , g
+
2 >

with C(3) = (2π)2n

32
(2p+1)!, which implies that the Hermitian Clifford–Hermite CWT

T(3) is a bounded linear operator from H+ to L2

(
R+×CΛn∩C

(1)
2n , a

−(2n+1) da (−2i)−n

(db∧db†)
)
, and an isometry from H+ to L2

(
R+×CΛn∩C

(1)
2n , C

−1
(3) a

−(2n+1) da (−2i)−n

(db ∧ db†)
)
. Again, a reconstruction formula is obtained as well:

g+
2 (z, z†) =

1

C(3)

∫

R2n∼=Cn

∫ +∞

0
ψ

(3)
2p+2

a,b
(z, z†) T(3)[g

+
2 ](a, b)

da

a2n+1
(−2i)−n (db ∧ db†) .

6.3 The Hermitian Clifford–Hermite CWT of type four

Finally we consider the CWT stemming from the Hermitian Clifford–Hermite mother
wavelets of type four:

ψ
(4)
2p+2(z, z

†) = exp (−|z|2
2

) H
(4)
2p+2(z, z

†) = 4p(∂†z∂z)
p+1

[
exp (−|z|2

2
)

]
.

The proof of the zero momentum condition for the mother wavelets of type four runs
along similar lines as the one for the mother wavelets of type three (see subsection
6.2). Again the mother wavelets also have a number of vanishing moments:

∫

R2n
{(z†z)t , (zz†)t , z(z†z)s , z†(zz†)s}ψ(4)

2p+2(z, z
†) dV (X) = 0

for 0 ≤ t ≤ p, 0 ≤ s ≤ p.
By means of the differentiation rule (2.5), we obtain the following expressions for
their Fourier transforms:

F [ψ
(4)
2p+2](w,w

†) = (−1)p+11

4
(ww†)|w|2p exp (−|w|2

2
) .

Again, the considered mother wavelets are Ũ(n) invariant, whence we do not take
the group Ũ(n) into consideration when defining the Hermitian Clifford–Hermite
CWT T(4):

T(4)[g](a, b) =
∫

R2n

(
ψ

(4)
2p+2

a,b
(z, z†)

)†

g(z, z†) dV (X) .

This CWT can be rewritten as

T(4)[g](a, b) =
(−1)p+1

4
an+2p+2

∫

R2n
exp (2iRe(w, b)) |w|2p exp

(
−a

2|w|2
2

)

(ww†) F [g](w,w†) dV (U) ,

which implies that

T(4)[g
+](a, b) = 0 .
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We thus obtain T(4)[g](a, b) = T(4)[g
−](a, b), denoted as G−(a, b). Similarly as in

subsection 6.2, we find

[G−
1 , G

−
2 ] =

∫

R2n∼=Cn

∫ +∞

0

(
G−

1 (a, b)
)†
G−

2 (a, b)
da

a2n+1
(−2i)−n (db ∧ db†)

= C(3) < g−1 , g
−
2 > .

Hence the Hermitian Clifford–Hermite CWT T(4) is a bounded linear operator from

H− to L2

(
R+×CΛn∩C

(1)
2n , a

−(2n+1) da (−2i)−n (db∧db†)
)

and moreover an isometry

from H− to L2

(
R+ × CΛn ∩ C

(1)
2n , C

−1
(3)a

−(2n+1) da (−2i)−n (db ∧ db†)
)
. The Parseval

formula also yields the following reconstruction formula:

g−2 (z, z†) =
1

C(3)

∫

R2n∼=Cn

∫ +∞

0
ψ

(4)
2p+2

a,b
(z, z†)T(4)[g

−
2 ](a, b)

da

a2n+1
(−2i)−n (db ∧ db†) .

7 Final remarks

In [11] the so–called Clifford–Hermite wavelets in orthogonal Clifford analysis were
introduced. In even dimension, we may write them as

ψℓ(X) = (−1)ℓ ∂ℓX

[
exp (−|X|2

2
)

]
= Hℓ(X) exp (−|X|2

2
) .

and we may similarly introduce

ψℓ(X|) = (−1)ℓ ∂ℓX |

[
exp (−|X|2

2
)

]
= Hℓ(X|) exp (−|X|2

2
) .

Between these Clifford–Hermite wavelets and their Hermitian analogues, the follow-
ing relations then hold:

ψ2p+1(X) = (−1)p−12
(
ψ

(1)
2p+1(z, z

†) − ψ
(2)
2p+1(z, z

†)
)

ψ2p+1(X|) = (−1)p−12

i

(
ψ

(1)
2p+1(z, z

†) + ψ
(2)
2p+1(z, z

†)
)

ψ2p+2(X) = ψ2p+2(X|) = (−1)p−14
(
ψ

(3)
2p+2(z, z

†) + ψ
(4)
2p+2(z, z

†)
)

.

Subsequently, also the corresponding Clifford–Hermite CWT is defined, viz

Tℓ : L2(R
2n) −→ L2(R+ × R

2n, C−1
ℓ a−(2n+1)da dV (B))

g −→ Gℓ(a,B) = < ψ
a,B
ℓ , g > =

∫

R2n

(
ψ
a,B
ℓ (X)

)†
g(X) dV (X)

the continuous family of wavelets being given by

ψ
a,B
ℓ (X) =

1

an
ψℓ

(
X − B

a

)
, a ∈ R+ , B ∈ R

2n .

with admissibility constants Cℓ = (2π)2n (ℓ−1)!
2

.
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First note that the Hermitian Clifford–Hermite CWTs of types one and two can
be considered as a refinement of the above Clifford–Hermite CWT of odd order,
since

G2p+1(a,B) = (−1)p−12
(
T(1)[g

−](a, b) − T(2)[g
+](a, b)

)

with B = b−b†. Furthermore, the Hermitian Clifford–Hermite CWTs of types three
and four can be considered as a refinement of the Clifford–Hermite CWT of even
order, since

G2p+2(a,B) = 4(−1)p−1
(
T(3)[g

+](a, b) + T(4)[g
−](a, b)

)
.

References

[1] F. Brackx, B. De Knock, H. De Schepper, N. De Schepper, F. Sommen, A new
Hilbert transform in Hermitean Clifford analysis, to appear in the Proceedings
of the 14th International Conference on Finite or Infinite Dimensional Complex
Analysis and Applications, Hue University, Vietnam, August 01-05, 2006.

[2] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Pitman Publishers,
Boston-London-Melbourne, 1982.

[3] F. Brackx, H. De Schepper, N. De Schepper and F. Sommen, The Hermitian
Clifford–Hermite wavelets. In: 17th International Conference on the Applica-
tion of Computer Science and Mathematics in Architecture and Civil Engineer-
ing; K. Gürlebeck and C. Könke (eds.); Weimar, Germany, 12–14 July 2006.

[4] F. Brackx, H. De Schepper, N. De Schepper and F. Sommen, Hermitean
Clifford–Hermite polynomials, accepted for publication in Proceedings of Func-
tion Theories in Higher Dimensions, Tampere University of Technology, June
12-16 2006.

[5] F. Brackx, H. De Schepper and F. Sommen, A theoretical framework for wavelet
analysis in a Hermitean Clifford setting, Comm. Pure Appl. Anal. 6(3) (2007),
549–567.

[6] F. Brackx, H. De Schepper and F. Sommen, The Hermitian Clifford analysis
toolbox, accepted for publication in Proceedings of ICCA7.

[7] F. Brackx, N. De Schepper and F. Sommen, The Bi–axial Clifford–Hermite
Continuous Wavelet Transform, Journal of Natural Geometry 24 (2003), 81–
100.

[8] F. Brackx, N. De Schepper and F. Sommen, The Clifford–Gegenbauer Polyno-
mials and the Associated Continuous Wavelet Transform, Integral Transform.

Spec. Funct. 15(5) (2004), 387–404.

[9] F. Brackx, N. De Schepper and F. Sommen, The Clifford–Laguerre Continuous
Wavelet Transform, Bull. Belg. Math. Soc. – Simon Stevin 11(2) (2004), 201–
215.



Hermitian Clifford–Hermite wavelets: an alternative approach 107

[10] F. Brackx, N. De Schepper and F. Sommen, Clifford–Jacobi Polynomials and
the Associated Continuous Wavelet Transform in Euclidean Space. Wavelet

Analysis and Applications (Proceedings of WAA2005), T. Qian, M.I. Vai and
X. Yuesheng (eds.). In Series: Applied and Numerical Harmonic Analysis,
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