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Abstract

We consider spacelike graphs Γf of simple products (M × N, g × −h)
where (M,g) and (N,h) are Riemannian manifolds and f : M → N is a
smooth map. Under the condition of the Cheeger constant of M to be zero
and some condition on the second fundamental form at infinity, we conclude
that if Γf ⊂ M × N has parallel mean curvature H then H = 0. This holds
trivially if M is closed. If M is the m-hyperbolic space then for any constant
c, we describe an explicit foliation of H

m × R by hypersurfaces with constant
mean curvature c.

1 Introduction

The problem of estimating the mean curvature of a surface of R
3 described by a

graph of a function f : R
2 → R was first introduced in 1955 by E. Heinz [12]. He

proved that if f is defined on the disc x2 + y2 < R2 and the mean curvature satisfies
‖H‖ ≥ c > 0, where c is a constant, then R ≤ 1

c
. So, if f is defined in all R

2 and
‖H‖ is constant, then H = 0. Ten years later this problem was extended and solved
for the case of a map f : R

m → R by Chern [5] and independently, by Flanders [9].
In 1986, Jim Eells suggested to the author a generalization of this problem in her
Ph.D thesis ([15], [16]). We recall the formulation of the problem.

Let (M, g) and (N, h) be two Riemannian manifolds of dimension m and n respec-
tively, and f : M → N a smooth map. The graph of f , Γf := {(p, f(p)) : p ∈ M} is
a submanifold of M × N of dimension m. We take on M × N the product metric
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g × h, and on Γf , the induced one g̃. Let H denote the mean curvature vector of
Γf . On M it is defined the Cheeger constant

h(M) = inf
D

A(∂D)

V (D)

where D ranges over all open submanifolds of M with compact closure in M and
smooth boundary (see e.g. [4]), and A(∂D) and V (D) are respectively the area of
∂D and the volume of D, with respect to the metric g. This constant is zero, if,
for example, M is a closed manifold, or if (M, g) is a simple Riemannian manifold,
i.e., there exists a diffeomorphism φ : (M, g) → (Rm, <, >) onto R

m such that
λg ≤ φ∗ <, >≤ µg for some positive constants λ, µ. Then we have got

Theorem 1.1. ([15],[16]) If Γf has parallel mean curvature with c = ‖H‖, then for
each oriented compact domain D ⊂ M we have the isoperimetric inequality

c ≤ 1

m

A(∂D)

V (D)
.

Thus, c ≤ 1
m

h(M). In particular if (M, g) has zero Cheeger constant then Γf is in
fact a minimal submanifold of M × N .

In case N is oriented one dimensional with unit vector field ”1”, we do not need
parallel mean curvature to obtain a formula

m 〈H, ν〉(g×h) = divg(
∇f

√

1 + ‖∇f‖2
) (1.1)

where ν = (−∇f,1)√
1+‖∇f‖2

is a unit normal to Γf . This led to a more general result:

Theorem 1.2. ([15],[16]) If N is oriented of dimension one and f : M → N is any
map, then

min
D̄

‖H‖ ≤ 1

m

A(∂D)

V (D)
. (1.2)

This generalizes the inequality of Heinz-Chern-Flanders to graphs of functions f :
M → R. We note that it is not possible to relax the assumption of H to be constant
to 0 ≤ H ≤ C, where C is a constant, without further assumptions, to conclude
minimality. In fact we have the following example: Set f : R

2 → R given by
f(x, y) = ex. Then 0 = limx→±∞ H < 1

2
div( ∇f√

1+‖∇f‖2
) = 1

2
ex(1 + e2x)−

3

2 ≤ C.

A more difficult kind of problem is the so-called Bernstein-type problems, that
amounts to determine geometric conditions to conclude that a minimal submanifold
must be totally geodesic. Recently Rosenberg [14] obtained a Bernstein type result
for entire minimal graphs in M2 × R. Aĺıas, Dajczer and Ripoll have obtained
in [2] a Bernstein-type result for surfaces in an ambient space a three-dimensional
Riemannian manifold endowed with a homothetic Killing field, that includes the
case of [14]:
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Theorem 1.3. ([2]) Let M2 be a complete surface with Gauss curvature KM ≥ 0.

(i) Any entire constant mean curvature graph in M2 × R is totally geodesic.

(ii) If, in addition, KM(q) > 0 at some point q ∈ M , then the graph is a slice.

The proof is inspired in the ideas of Chern [6] of a proof of a Bernstein theorem
in case m = 2, and consists on computing the Laplacian of the support function
Θ = 〈ν, e〉, where ν is a globally defined unit normal vector field of the normal bun-
dle, and e is a constant unit vector field tangent to the factor R. The assumption
of KM ≥ 0 is necessary, since in [7] and [13] it is shown the existence of non-trivial
entire minimal graphs when M2 = H

2 is the hyperbolic plane.

In the case M = H
m the Cheeger constant is (m − 1). We have an example con-

structed by the author in [15] of a graph in H
m × R with non-zero constant mean

curvature:

Proposition 1.1. Consider the hyperbolic space H
m = (Bm, g) where Bm is the

unit open disk in R
m with centre 0 and g is the complete metric given by g =

4|dx|2/(1−|x|2)2, of constant sectional curvature equal to −1. Let c ∈ [1−m, m−1]
and fc : H

m → R defined by:

fc(x) =
∫ r(x)

0

c
(sinh r)m−1

∫ r
0 (sinh t)m−1dt

√

1 −
(

c
(sinh r)m−1

∫ r
0 (sinh t)m−1dt

)2
dr,

where r(x) = log
(

1+|x|
1−|x|

)

is the distance function in H
m to 0. Then fc is smooth on

all H
m, and for each d ∈ R, Γfc+d ⊂ H

m × R has constant mean curvature given by

‖H‖ = |c|
m

. In the particular case m = 2 and c = 1, fc can be written as

fc(x) =
∫ r(x)

0

√

1

2
(cosh r − 1)dr =

2
√

1 − |x|2
− 2

In [16] we only give a brief explanation that this example exists in [15]. So we
will give in the Appendix (section 3) the proof of Proposition 1.1, that reproduces
the proof in [15]. Moreover, a slightly modified proof of this one gives a proof of
Proposition 1.3 for the Lorentzian case. We also note the following:

Proposition 1.2. For each c ∈ [1 − m, m − 1], {Γfc+d(x) : x ∈ H
m, d ∈ R} defines

a foliation of H
m × R by hypersurfaces with constant mean curvature c.

Remark. If we fix d and let c to vary, then we also have a foliation of H
m × R by

hypersurfaces with constant mean curvature c, with c varying on each leaf. This also
holds for the Lorentzian case of Proposition 1.3. The author would like to thank
the referee for pointing out this interesting detail.

In this note we study the case of M×N is endowed with the pseudo-Riemannian
metric g×−h. We abusively still call ”minimal” submanifolds, the ones that satisfy
H = 0. Note that a graph Γf is spacelike iff f ∗h ≤ bg with b : M → R a continuous
locally Lipschitz function satisfying 0 ≤ b(p) < 1, ∀p ∈ M . If N is one-dimensional
then b = ‖∇f‖. In section 2 we will prove the following:
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Theorem 1.4. Let Γf be a spacelike graph with parallel mean curvature with ‖H‖ =
√

|〈H, H〉| = |c|. Then ‖∇df‖ ≥ √
m|c|(1 − b)2, with equality iff ∇df = c = 0.

Furthermore, if h(M) = 0 and if ‖∇df‖ = O((1− b)2), then Γf is minimal. This is
the case of M compact.

Assume N is oriented one-dimensional and f : M → N defines a spacelike graph.
Then ν = − (∇f,1)√

1−‖∇f‖2
is a unit timelike vector field that spans the normal bundle,

and defines a timelike direction. H is future directed if H = −‖H‖ν, with ‖H‖ ≥ 0.

Theorem 1.5. Assume N is oriented one-dimensional and f : M → N defines a
spacelike graph with future directed mean curvature. On a compact domain D, let
bD = maxD̄ ‖∇f‖ = maxD̄ b. Then

min
D̄

‖H‖ ≤ 1

m

bD
√

1 − b2
D

A(∂D)

V (D)
. (1.3)

In particular, if (1) or (2) below holds:

(1) Γf has constant mean curvature, h(M) = 0, and b ≤ C < 1 for some constant
C;

(2) |H| and b/(
√

1 − b2) are both integrable on M ;

then Γf is a minimal spacelike hypersurface. This is the case of M compact.

If h(M) 6= 0, we have an example, very similar to the one of Proposition 1.1, except
on a sign in some term of the denominator.

Proposition 1.3. Let c be any constant and fc : H
m → R defined by:

fc(x) =
∫ r(x)

0

c
(sinh r)m−1

∫ r
0 (sinh t)m−1dt

√

1 +
(

c
(sinh r)m−1

∫ r
0 (sinh t)m−1dt

)2
dr,

where r(x) = log
(

1+|x|
1−|x|

)

is the distance function in H
m to 0. Then fc is smooth on

all H
m, and for each d ∈ R, Γfc+d ⊂ H

m ×R is a spacelike graph with constant mean
curvature given by 〈H, ν〉 = c

m
, and ‖∇fc‖2 ≤ (c2/(c2+(m−1)2)) < 1. Furthermore,

{Γfc+d(x) : x ∈ H
m, d ∈ R} defines a foliation of H

m × R by hypersurfaces with
constant mean curvature c.

Examples of spacelike constant mean curvature H = c hypersurfaces of R
n+1
1 are the

hyperboloids, i.e. the graph of f(x) =
√

k2

m2

1
c2

+
∑k

i=1 x2
i , for k = 1, . . . , n. If k = n

this example and the ones of Propositions 1.1 and 1.3 are described as constant
mean curvature graphs of a function f : (M, g) → R of the form f(x) = φ(r(x)),
where r(x) is the distance function in (M, g) to a fixed point and φ : R → R is a
smooth function. Such f are in fact smooth maps because r2 is so, and φ (unique
for a chosen constant c) can be expressed in terms of r2.

It has been a relevant problem in General Relativity the study of the existence
and uniqueness of space-like hypersurfaces with constant mean curvature in glob-
ally hyperbolic connected Lorentzian manifolds having a compact Cauchy surface
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(GHLCS), and the existence of foliations by such hypersurfaces. Here we are treat-
ing only the case M ×N with a simple product g ×−h. The metric of a GHLCS is
conformally equivalent to a a warped product metric. For example, if (M, g) is closed
and R is endowed with the metric dt2 and α : M → R is any positive smooth function
( the lapse function), then spacelike graphs Γf in (M ×R, g−α2dt2) exist with pre-
scribed mean curvature H : M → R for any function H satisfying

∫

M HαV olM = 0.
These graphs are unique up to a constant (i.e, if Γf is a solution then Γf+d is also a
solution). This was proved by Akutagawa ([1]) using the invertibility of the Laplace
operator for closed M . In particular, if H is constant, then the submanifold must
be minimal. On the other hand on Robertson-Walker spacetimes the slice hyper-
surfaces have constant mean curvature, and recently, Aĺıas and Montiel [3] proved
that under certain conditions on the warping function, these are the only closed ex-
amples. Gerhardt [11] proved that GHLCS spaces can be foliated by constant mean
curvature hypersurfaces if the big bang and the big crunch hypothesis is satisfied
and if a time-like convergence condition holds.

2 Spacelike graphs

Now we take in the product M × N the pseudo-Riemannian metric g × −h. If
f : M → N then we denote by

Γf : M → (M × N, g × h)
p → (p, f(p))

and identify the set Γf with the embedding Γf , and let g̃ = Γ∗
f(g ×−h) = g − f ∗h.

Assume that f satisfies h(df(X), df(X)) < g(X, X). Then g̃ is a Riemannian metric
of Γf , that is Γf is a space-like submanifold of (M ×N, g ×−h). Let H denote the
mean curvature of Γf . Note that H is a time-like vector.

Let Xi a local o.n. frame of (M, g) and g̃ij = g(Xi, Xj) − h(df(Xi), df(Xj)). Set

W = traceg−f∗h(∇df) ∈ C∞(f−1TN), (2.1)
Z =

∑

ij

g̃ijh(W, df(Xi))Xj ∈ C∞(TM) (2.2)

The following formulas hold:

Lemma 2.1. If Γf has parallel mean curvature, then:
(1) mH = (Z, W + df(Z)) = (0, W )⊥.
(2) m2c2 = divg(Z), where c2 = −〈H, H〉(g×−h).

Proof. The proof is very similar to the one of lemmas 1,2 and 3 of [16] with some
adjustments on the sign of h. So we omit it. �

Taking Xi a o.n. basis of TpM that diagonalizes f ∗h, i.e, df(Xi) = λiei, for i ≤ k
where ei is an o.n. system of Tf(p)N , and df(Xi) = 0 for i ≥ k + 1, we conclude
that ag ≤ f ∗h ≤ bg, and 1

1−a
g ≤ g̃−1 ≤ 1

1−b
g where a = infi λ

2
i is the smallest

eigenvalue of f ∗h and b = supi λ
2
i the largest. If N is one-dimensional and m ≥ 2,

then a = 0 and b = ‖∇f‖. If we reorder the eigenvalues b = λ2
1 ≥ λ2

2 ≥ . . . ≥
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λ2
n = a, including repeated eigenvalues according their multiplicity, by the Weyl’s

perturbation theorem each λ2
i is a continuous locally Lipschitz function. In particular

b : M → [0, 1) is a continuous locally Lipschitz function.

From (2.1)-(2.2) we conclude:

Lemma 2.2. ‖Z‖ ≤
√

b
1−b

‖W‖, and ‖W‖ ≤
√

m

1−b
‖∇df‖.

Proof of Theorem 1.4.

Let Γf be a spacelike graph with parallel mean curvature. Using Lemma 2.1

−m2c2 = 〈(Z, W + df(Z)), (Z, W + df(Z))〉g×−h

= ‖Z‖2 − ‖W‖2 − 2h(W, df(Z)) − ‖df(Z)‖2

Thus,

‖Z‖2 ≤ −m2c2 + ‖W‖2 + 2‖W‖‖df(Z)‖+ ‖df(Z)‖2

≤ −m2c2 + (‖W‖ +
√

b‖Z‖)2

≤ −m2c2 +
m

(1 − b)4
‖∇df‖2 (2.3)

what implies the first assertion. If ‖∇df‖2 = mc2(1 − b)4, then from (2.3) Z = 0.
Consequently, by lemma 2.1(b), c = 0, and so ∇df = 0. Now denote by n̄ the unit
outward of ∂D. By lemma 2.1(2), Stokes and Lemma 2.2

m2c2V (D) =
∫

∂D
g(Z, n̄) ≤

∫

∂D
‖Z‖ ≤ A(∂D) sup

D̄

√
mb

(1 − b)2
‖∇df‖ (2.4)

If ‖∇df‖ = O((1− b)2), there exist a constant C > 0 s.t. ‖∇df‖ ≤ C(1− b)2. Then,

from (2.4), m2c2 ≤ C ′ A(∂D)
V (D)

for some constant C ′ and Theorem 1.4 is proved. �

Now let us now assume N is oriented of dimension one with global vector field ”1”.
If pi = h(df(Xi), 1), then g̃ij = δij − pipj, g̃ij = δij +

pipj

(1−‖∇f‖2)
. Similarly to the

Riemannian case [15], we can obtain a formula:

Lemma 2.3.

m〈H, ν〉 = divg





∇f
√

1 − ‖∇f‖2



 (2.5)

Proof of Theorem 1.5.

We obtain (1.3) by integration over D of (2.5) and use Stokes. (1) is an immediate
consequence of the definition of h(M), and (2) is a consequence of the extended
theorem of Stokes due to Gaffney [10] applied to (2.5). �
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3 Appendix

3.1 Proof of Propositions 1.1 and 1.2

First we note that if f satisfies c = (1.1) then it does so f +d, where d is a constant.

The function r(x) = log
(

1+|x|
1−|x|

)

= 2 tanh−1(|x|) has the following properties: ∀x 6= 0,

∇r = 1−|x|2
2

x
|x| , where the gradient of r is w.r.t. the metric g. Hence , ‖∇r‖g = 1

and ∆r = (m− 1) coth r. We observe that r2 is smooth. Let us write f = φ(r) with
φ : R

+
0 → R. Then ∇f = φ′(r)∇r, and so (1.1) applied to f becomes equivalent to

c = div( ∇f
√

1 + ‖∇f‖2
g

) = div( φ′(r)∇r
√

1 + (φ′(r))2
)

=
φ′(r)∆r

√

1 + (φ′(r))2
− (φ′(r))2φ′′(r)‖∇r‖2

(1 + (h′(r))2)
3

2

+
φ′′(r)‖∇r‖2

g
√

1 + (φ′(r))2

Using the above properties of r we get

c(1 + (φ′(r))2)
3

2 =

= (m − 1) coth r(φ′(r))(1 + (φ′(r))2) − (φ′(r))2φ′′(r) + φ′′(r)(1 + ((φ′(r))2)

= (m − 1) coth r(φ′(r))(1 + (φ′(r))2) + φ′′(r)

With the substitution w(r) = φ′(r) the equation becomes

w′ = c(1 + w2)
3

2 − (m − 1) coth r w (1 + w2), ∀r > 0 (3.1)

The next step is to reduce this differential equation to a linear one through several
changes of variables. First write (3.1) as

w w′

(1 + w2)
3

2

= cw − (m − 1) coth r
w2

(1 + w2)
1

2

Let y = 1

(1+w2)
1
2

∈ (0, 1]. Then w = ±
√

1−y2

y
. Assume first the sign +. Then

(3.1) ⇐⇒ − y′ = c

√
1 − y2

y
− (m − 1) coth r

1 − y2

y2
y.

Thus, −yy′ = c
√

1 − y2 − (m − 1) coth r (1 − y2). Let v = y2 ∈ (0, 1]. Then

(3.1) ⇐⇒ − 1

2

v′
√

1 − v
= c − (m − 1) coth r

√
1 − v.

Finally, let u =
√

1 − v ∈ [0, 1). Hence

(3.1) ⇐⇒ u′ = c − (m − 1) coth r u (3.2)
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which equation is linear. Let us first suppose c = 1. Then, the general solution of
(3.2) is given by

u(r) = e
−
∫ r

r0
(m−1) coth tdt

(∫ r

r0

e
(m−1)

∫ s

r0
(m−1) coth tdt

ds + u0

)

= e−(m−1)(log sinh r−log sinh r0)
(∫ r

r0

e(m−1)(log sinh s−log sinh r0)ds + u0

)

=
(sinh r0)

m−1

(sinh r)m−1

(

1

(sinh r0)m−1

∫ r

r0

(sinh s)m−1ds + u0

)

=
1

(sinh r)m−1

∫ r

r0

(sinh s)m−1ds + u0
(sinh r0)

m−1

(sinh r)m−1
.

Let us now put r0 = u0 = 0. Then we have

u(r) =
1

(sinh r)m−1

∫ r

0
(sinh s)m−1ds, ∀r > 0 (3.3)

Next we prove that u ∈ [0, 1) with u(0) = 0, and, moreover, that supr∈(0,+∞) u(r) =

limr→+∞ u(r) = 1
m−1

. Obviously u is positive and with l’Hospital rule,

u(0) = lim
r→0

u(r) = lim
r→0

(sinh r)m−1

(m − 1)(sinh r)m−2 cosh r
= lim

r→0

tanh r

(m − 1)
= 0.

If u(r) attains a local maximum at some r0 ∈ (0, +∞), then u′(r0) = 0. From (3.2)
we have u(r0) = tanh r0

m−1
. Thus, u(r0) < 1

m−1
≤ 1. On the other hand, if there are no

local maxima, then, necessarily, supr∈(0,+∞) u(r) = limr→+∞ u(r). So only we have
to calculate this limit. With partial integration

∫ r

0
(sinh s)m−1ds =

= [ cosh s(sinh s)m−2]
r

0
− (m − 2)

∫ r

0
cosh2 s(sinh s)m−3ds

= cosh r(sinh r)m−2 − (m − 2)
∫ r

0
(1 + sinh2 s)(sinh s)m−3ds

= cosh r(sinh r)m−2 − (m − 2)
∫ r

0
(sinh s)m−3ds − (m − 2)

∫ r

0
(sinh s)m−1ds.

Thus
∫ r
0 (sinh s)m−1ds = 1

m−1
cosh r(sinh r)m−2 − m−2

m−1

∫ r
0 (sinh s)m−2ds, and

∫ r
0 (sinh s)m−1ds

(sinh s)m−1
=

1

m − 1
coth r − (m − 2)

(m − 1) sinh2 r

∫ r
0 (sinh s)m−3ds

(sinh r)m−3
.

Since ∀p,

∫ r

0
(sinh s)pds

(sinh s)p is a bounded function on r ∈ [0, +∞), we have

lim
r→+∞

∫ r
0 (sinh s)m−1ds

(sinh s)m−1
=

1

m − 1
lim

r→+∞
coth r =

1

m − 1
.

Therefore,

sup
r∈[0,+∞)

u(r) =
1

m − 1
(3.4)
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which is not a maximum. So, 0 ≤ u(r) < 1
m−1

, ∀r ∈ [0, +∞) and u(r) satisfies (3.2)
for c = 1. Let now c be any arbitrary constant. Then, the function ũ(r) = cu(r)
is a solution of (3.2), but we have to impose ũ(r) ∈ [0, 1). From (3.4) we conclude
that c must satisfy 0 ≤ c ≤ m − 1. That is, ∀0 ≤ c ≤ m − 1, the function

ũ(r) = c

∫ r
0 (sinh s)m−1ds

(sinh s)m−1

fulfills the condition specified in (3.2). In terms of the original function f , we have
f given by the expression in the Prop.1.2. If we had chosen the sign − for the
expression of w we would get in (3.2) a −c instead c and we would obtain ũ with
a change of sign, or equivalently, the same expression as in the Proposition, with
c ∈ [−m + 1, 0]. Obviously, f is smooth on H

m ∼ {0}. Let us now investigate
the behaviour of f close to the origin. Near t = 0 we have the following Taylor
expansions:

sinh t = t + t3

6 + O(t5) = t(1 + t2

6 + O(t4))
(1 + t)m = 1 + mt + θ(t2)

1√
1 + t

= 1 − t
2 + θ(t2),

1

1 − t
= 1 + t + θ(t2)

where θ(t) and O(tk) are analytic functions of the form

θ(tk) =
∑

n≥0

ak+n

(k+n)!t
k+n O(tk) =

∑

n≥0

ak+2n

(k+2n)!t
k+2n

Then we have 1√
1+t2

= 1 − t2

2 + θ(t4), 1
1−t2

= 1 + t2 + θ(t4), and

(sinh t)m−1 = tm−1(1 + t2

6 + O(t4))m−1 = tm−1(1 + (m−1)
6 t2) + O(tm+3).

Hence

1

(sinh s)m−1

∫ s

0
(sinh t)m−1dt =

sm

m
+ m−1

m−2
sm+2

6
+ O(sm+4)

sm−1(1 + (m−1)
6

s2 + O(s4))
=

=
s
m

+ m−1
m−2

s3

6
+ O(s5)

(1 + (m−1)
6

s2 + O(s4))

=
(

s
m

+ m−1
m−2

s3

6 + O(s5)
) (

1 − s2(m−1
6 + O(s2)) + O(s4)

)

= s
(

1 − (m−1)
6 s2

) (

1
m

+ (m−1)
(m+2)

s2

6

)

+ O(s5)

= s
m

(

1 − (m−1)
(m+2)

s2

3

)

+ O(s5)

For A close to zero, A√
1−A2

= A(1 + 1

2
A2) + O(A5). Putting

A =
c

(sinh s)m−1

∫ s

0
(sinh t)m−1dt = c s

m

(

1 − (m−1)
(m+2)

s2

3

)

+ O(s5)

we have O(A5) = O(s5) and

A√
1 − A2

=

= (s c
m

(

1 − (m−1)
(m+2)

s2

3

)

+ O(s5))(1 + 1

2
( cs

m
(1 − (m−1)

(m+2)
s2

3 ) + O(s5))
2) + O(s5)

= s c
m

(

1 + s2( c2

2m2 − (m−1)
3(m+2) )

)

+ O(s5).
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Therefore

∫ r

0

A√
1 − A2

ds =
c

m

r2

2
+

c

m

r4

4
( c2

2m2
− (m − 1)

3(m + 2)
) + O(r6) =

c

m

r2

2
+ O(r4)

Consequently

f(x) =
∫ r(x)

0

A√
1 − A2

ds =
c

m

r2(x)

2
+ O(r4(x)).

Since r2(x) is smooth on all H
m, we conclude that f(x) is, too.

Finally, for each x 6= 0 fixed, the function c → fc(x) has non-zero derivative. More-
over, Γfc+d(x) = Γfc+d′(x

′) implies x = x′ and d = d′. So we have two possible
foliations, either varying c or d. Note that O(r4) also depends on c. �.

3.2 Proof of Proposition 1.3

We solve c = (2.5) for f = φ(r). In this case we follow the previous proof, with the
following replacements:

c = div





φ′(r)∇r
√

1 − (φ′(r))2





w = φ′(r), |w| < 1 w′ = c(1 − w2)
3

2 − (m − 1) coth r w(1 − w2)

y =
1

√

(1 − w2)
∈ [1, +∞) v = y2 ∈ [1, +∞)

u =
√

v − 1 ∈ [0, +∞) u′ = c − (m − 1) coth r u

Thus u(r) is the same function as in the Riemannian case, but now we do not have
any restriction on the range of values of u(r). This implies we may choose first u(r)
as defined in (3.3), that corresponds to take c = 1, and next take ũ = cu for any
constant c with no restrictions on the chosen c. Finally, the proof that f is smooth
close the origin we use A√

1+A2
= A(1 − 1

2
A2) + O(A5) obtaining as well

f(x) =
∫ r(x)

0

A√
1 + A2

ds =
c

m

r2(x)

2
+ O(r4(x)).

and proving its smoothness.

We also note that the hyperboloid with k = n is obtained in the same way, by
taking r(x) = ‖x‖ the Euclidean norm. �



Spacelike Graphs with Parallel Mean Curvature 75

References

[1] K. Akutagawa, A note on spacelike hypersurfaces with prescribed mean curva-
ture in a spatially closed globally static Lorentzian manifold, Mem. Fac. Sci.
Kyushu Univ. Ser. A 40 (1986), no. 2, 119–123.
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