On the stability of a mixed n-dimensional quadratic functional equation

Hahng-Yun Chu Dong Seung Kang
Themistocles M. Rassias

Abstract

In this paper, we investigate the modified Hyers-Ulam stability of a mixed n-dimensional quadratic functional equation in Banach spaces and also Banach modules over a Banach algebra and a C^{*}-algebra. Finally, we study the stability using the alternative fixed point of the functional equation in Banach spaces:

$$
{ }_{n-2} C_{m-2} f\left(\sum_{j=1}^{n} x_{j}\right)+_{n-2} C_{m-1} \sum_{i=1}^{n} f\left(x_{i}\right)=\sum_{1 \leq i_{1}<\cdots<i_{m} \leq n} f\left(x_{i_{1}}+\cdots+x_{i_{m}}\right),
$$

for all $x_{j}(j=1, \cdots, n)$ where $n \geq 3$ is an integer number and $2 \leq m \leq n-1$.

1 Introduction

In 1940, the problem of stability of functional equations was originated by Ulam [24] as follows: Under what condition does there exist an additive mapping near an approximately additive mapping ?

The first partial solution to Ulam's question was provided by D. H. Hyers [7]. Let X and Y are Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Hyers showed that if a function $f: X \rightarrow Y$ satisfies the following inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

Received by the editors June 2006 - In revised form in December 2006.
Communicated by F. Bastin.
2000 Mathematics Subject Classification : 39B52.
Key words and phrases : Hyers-Ulam-Rassias Stability, Quadratic mapping.
for a given fixed $\epsilon \geq 0$ and for all $x, y \in X$, then the limit

$$
a(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)
$$

exists for each $x \in X$ and $a: X \rightarrow Y$ is the unique additive function such that

$$
\|f(x)-a(x)\| \leq \epsilon
$$

for any $x \in X$. Moreover, if $f(t x)$ is continuous in t for each fixed $x \in X$, then a is linear.

Hyers's theorem was generalized in various directions. In particular, thirty seven years after Hyers's Theorem, Th.M.Rassias provided a generalization of Hyers's result by allowing the Cauchy difference to be unbounded; see [15]. He proved the following theorem: if a function $f: X \rightarrow Y$ satisfies the following inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|x\|^{p}\right)
$$

for some $\theta \geq 0,0 \leq p<1$, and for all $x, y \in X$, then there exists a unique additive function such that

$$
\|f(x)-a(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in X$. Moreover, if $f(t x)$ is continuous in t for each fixed $x \in X$, then a is linear.

Th.M. Rassias result provided a generalization of Hyers Theorem, a fact which rekindled interest in the study of stability of functional equations. Taking this fact into consideration the Hyers-Ulam stability is called Hyers-Ulam-Rassias stability. In 1990, Th.M.Rassias during the 27th International Symposium on Functional Equations asked the question whether an extension of his Theorem can be proved for all positive real numbers p that are greater or equal to one. A year later in 1991, Gajda provided an affirmative solution to Rassias's question in the case the number p is greater than one; see [5].

During the last two decades several results for the Hyers-Ulam-Rassias stability of functional equations have been proved by several mathematicians worldwide in the study of several important functional equations of several variables. Gǎvruta [6] following Rassias's approach for the unbounded Cauchy difference provided a further generalization.

The quadratic function $f(x)=c x^{2}(c \in \mathbb{R})$ satisfies the functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

Hence this question is called the quadratic functional equation, and every solution of the quadratic equation (1.1) is called a quadratic function.

A Hyers-Ulam stability theorem for the quadratic functional equation (1.1) was proved by Skof [23] for functions $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an abelian group. In [3], Czerwik proved the Hyers-UlamRassias stability of the quadratic functional equation. Several functional equations have been investigated; see [19], [20], and [21]. Recently, Bae and Park investigated
that the generalized Hyers-Ulam-Rassias stability of n-dimensional quadratic functional equations in Banach modules over a C^{*}-algebra and unitary Banach algebra; see [1].

In particular, Trif [14] proved that, for vector spaces V and W, a mapping $f: V \rightarrow W$ with $f(0)=0$ satisfies the functional equation

$$
\begin{gather*}
n \cdot{ }_{n-2} C_{m-2} f\left(\frac{x_{1}+\cdots+x_{n}}{n}\right)+{ }_{n-2} C_{m-1} \sum_{i=1}^{n} f\left(x_{i}\right) \tag{1.2}\\
=k \sum_{1 \leq i_{1}<\cdots<i_{m} \leq n} f\left(\frac{x_{i_{1}}+\cdots+x_{i_{m}}}{k}\right),
\end{gather*}
$$

for all $x_{1}, \cdots, x_{n} \in V$ if and only if the mapping $f: V \rightarrow W$ satisfies the additive Cauchy equation $f(x+y)=f(x)+f(y)$ for all $x, y \in V$. He also proved the stability of the functional equation (1.2); see [14]. Note that the notation ${ }_{n} C_{k}$ is defined by ${ }_{n} C_{k}=\frac{n!}{(n-k)!k!}$.

In this paper, we consider the following functional equation:

$$
\begin{gather*}
{ }_{n-2} C_{m-2} f\left(\sum_{j=1}^{n} x_{j}\right)+{ }_{n-2} C_{m-1} \sum_{i=1}^{n} f\left(x_{i}\right) \tag{1.3}\\
=\sum_{1 \leq i_{1}<\cdots<i_{m} \leq n} f\left(x_{i_{1}}+\cdots+x_{i_{m}}\right),
\end{gather*}
$$

where $n \geq 3$ is an integer number and $2 \leq m \leq n-1$. Then for any $m \in\{2, \cdots, n-$ $1\}$, we will show that the even mapping f satisfying the equation (1.3) is quadratic, investigate the generalized Hyers-Ulam-Rassias stability of the mixed n-dimensional functional equation in Banach spaces and also extend to Banach modules over a C^{*}-algebra and a unital Banach algebra. Finally, we study the stability using the alternative fixed point of the functional equation in Banach spaces.

2 A Mixed n-dimensional quadratic mapping

Lemma 2.1. Let $n \geq 3$ be an integer, and let X, Y be vector spaces. For any $m \in\{2, \cdots, n-1\}$, suppose an even mapping $f: X \rightarrow Y$ is defined by

$$
\begin{gather*}
{ }_{n-2} C_{m-2} f\left(\sum_{j=1}^{n} x_{j}\right)+{ }_{n-2} C_{m-1} \sum_{i=1}^{n} f\left(x_{i}\right) \tag{2.1}\\
=\sum_{1 \leq i_{1}<\cdots<i_{m} \leq n} f\left(x_{i_{1}}+\cdots+x_{i_{m}}\right),
\end{gather*}
$$

for all $x_{1}, \cdots, x_{n} \in X$. Then f is quadratic.
Proof. By letting $x_{1}=\cdots=x_{n}=0$ in (2.1), we have

$$
\left({ }_{n-2} C_{m-2}+n_{n-2} C_{m-1}-{ }_{n} C_{m}\right) f(0)=0
$$

Then we obtain

$$
\frac{(m-1)(n-1)!}{m!(n-m-1)!} f(0)=0 .
$$

Since $n \geq 3, f(0)=0$. Also, letting $x_{1}=x, x_{2}=-y, x_{3}=y$, and $x_{k}=0(4 \leq k \leq$ n) in (2.1), we get

$$
\begin{gathered}
{ }_{n-2} C_{m-2} f(x)+{ }_{n-2} C_{m-1} f(x)+2{ }_{n-2} C_{m-1} f(y) \\
={ }_{n-3} C_{m-2}(f(x+y)+f(x-y))+\left({ }_{n-3} C_{m-3}+{ }_{n-3} C_{m-1}\right) f(x)+2{ }_{n-3} C_{m-1} f(y) .
\end{gathered}
$$

Since ${ }_{n} C_{r+1}={ }_{n-1} C_{r}+{ }_{n-1} C_{r+1}$, then

$$
\begin{aligned}
& { }_{n-3} C_{m-2}(f(x+y)+f(x-y)) \\
& =\left({ }_{n-2} C_{m-2}+{ }_{n-2} C_{m-1}-_{n-3} C_{m-3}-_{n-3} C_{m-1}\right) f(x) \\
& \quad+2\left({ }_{n-2} C_{m-1}-{ }_{n-3} C_{m-1}\right) f(y) \\
& =2_{n-3} C_{m-2}(f(x)+f(y)) .
\end{aligned}
$$

Hence we may have

$$
{ }_{n-3} C_{m-2}(f(x+y)+f(x-y))=2_{n-3} C_{m-2}(f(x)+f(y)),
$$

that is, f is quadratic, as desired.
The mapping $f: X \rightarrow Y$ as in the Lemma 2.1 is called a n-dimensional quadratic mapping.

3 Stability of a mixed n-dimensional quadratic mapping with

$$
2 \leq m \leq n-1
$$

Throughout in this section, let X be a normed vector space with norm $\|\cdot\|$ and Y be a Banach space with norm $\|\cdot\|$. Let $n \geq 3$ be an integer number and $2 \leq m \leq n-1$.

For the given mapping $f: X \rightarrow Y$, we define

$$
\begin{gather*}
D_{m} f\left(x_{1}, \cdots, x_{n}\right):={ }_{n-2} C_{m-2} f\left(\sum_{j=1}^{n} x_{j}\right)+{ }_{n-2} C_{m-1} \sum_{i=1}^{n} f\left(x_{i}\right) \tag{3.1}\\
-\sum_{1 \leq i_{1}<\cdots<i_{m} \leq n} f\left(x_{i_{1}}+\cdots+x_{i_{m}}\right),
\end{gather*}
$$

for all $x_{1}, \cdots, x_{n} \in X$.
In this section, for any $m \in\{2, \cdots, n-1\}$, we will investigate the generalized Hyers-Ulam-Rassias stability of the equation (3.1). Before proceeding the proofs, we note that

$$
{ }_{n} C_{r}=0,
$$

when $n<r$, or $r<0$. Also, we denote ${ }_{0} C_{0}=1$.
Theorem 3.1. Let $n \geq 3$, and let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ for which there exists a function $\phi: X^{n} \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\widetilde{\phi}\left(x_{1}, \cdots, x_{n}\right):=\sum_{j=0}^{\infty} 2^{-2 j} \phi\left(2^{j} x_{1}, \cdots, 2^{j} x_{n}\right)<\infty \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\left\|D_{m} f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \phi\left(x_{1}, \cdots, x_{n}\right) \tag{3.3}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{n} \in X$. Then for any $m \in\{2, \cdots, n-1\}$, there exists a unique n-dimensional quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{4_{n-3} C_{m-2}} \widetilde{\phi}(x,-x, x, 0, \cdots, 0) \tag{3.4}
\end{equation*}
$$

for all $x \in X$.
Proof. By letting $x_{1}=x, x_{2}=-x, x_{3}=x$, and $x_{k}=0(4 \leq k \leq n)$ in (3.3), we have

$$
\begin{aligned}
\|\left({ }_{n-2} C_{m-2}\right. & \left.+3 \cdot{ }_{n-2} C_{m-1}-3 \cdot{ }_{n-3} C_{m-1}-{ }_{n-3} C_{m-3}\right) f(x) \\
& -{ }_{n-3} C_{m-2} f(2 x) \| \leq \phi(x,-x, x, 0, \cdots, 0),
\end{aligned}
$$

for all $x \in X$. Since

$$
{ }_{n-2} C_{m-2}+3 \cdot{ }_{n-2} C_{m-1}-3 \cdot{ }_{n-3} C_{m-1}-{ }_{n-3} C_{m-3}=4 \cdot{ }_{n-3} C_{m-2},
$$

we get

$$
\begin{equation*}
\left\|f(x)-2^{-2} f(2 x)\right\| \leq \frac{1}{4 \cdot{ }_{n-3} C_{m-2}} \phi(x,-x, x, 0, \cdots, 0) \tag{3.5}
\end{equation*}
$$

for all $x \in X$.
Inductively, if x is replaced by $2 x$ and apply to transitive inequality, we may have

$$
\begin{aligned}
& \| f(x)-\left(\frac{1}{2}\right)^{2 s} f\left(2^{s} x\right) \| \\
& \leq \frac{1}{4 \cdot n-3} C_{m-2} \\
& \sum_{k=0}^{s-1}\left(\frac{1}{2}\right)^{2 k} \phi\left(2^{k} x,-2^{k} x, 2^{k} x, 0, \cdots, 0\right)
\end{aligned}
$$

for all $x \in X$ and all positive integer s. Also, for all integers $r>l>0$, we have
$(*) \quad\left\|\left(\frac{1}{2}\right)^{2 r} f\left(2^{r} x\right)-\left(\frac{1}{2}\right)^{2 l} f\left(2^{l} x\right)\right\|$

$$
\leq \frac{1}{4 \cdot n-3} C_{m-2} \sum_{k=l}^{r-1}\left(\frac{1}{2}\right)^{2 k} \phi\left(2^{k} x,-2^{k} x, 2^{k} x, 0, \cdots, 0\right)
$$

for all $x \in X$.
Then the sequence $\left\{\left(\frac{1}{2}\right)^{2 s} f\left(2^{s} x\right)\right\}$ is a Cauchy sequence in a Banach space Y. Hence we may define a mapping $Q: X \rightarrow Y$ by

$$
Q(x)=\lim _{s \rightarrow \infty} 2^{-2 s} f\left(2^{s} x\right),
$$

for all $x \in X$. By the definition of $D_{m} Q\left(x_{1}, \cdots, x_{n}\right)$,

$$
\begin{aligned}
\left\|D_{m} Q\left(x_{1}, \cdots, x_{n}\right)\right\|= & \lim _{s \rightarrow \infty}\left(\frac{1}{2}\right)^{2 s}\left\|D_{m} f\left(2^{s} x_{1}, \cdots, 2^{s} x_{n}\right)\right\| \\
& \leq \lim _{s \rightarrow \infty}\left(\frac{1}{2}\right)^{2 s} \phi\left(2^{s} x_{1}, \cdots, 2^{s} x_{n}\right)=0
\end{aligned}
$$

for all $x_{1}, \cdots, x_{n} \in X$. That is, $D_{m} Q\left(x_{1}, \cdots, x_{n}\right)=0$. By Lemma 2.1, the mapping $Q: X \rightarrow Y$ is quadratic. Also, letting $l=0$ and passing the limit $r \rightarrow \infty$ in (*), we get the inequality (3.4).

Now, let $Q^{\prime}: X \rightarrow Y$ be another n-dimensional quadratic mapping satisfying (3.4). Then we have

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x)\right\| & =2^{-2 r}\left\|Q\left(2^{r} x\right)-Q^{\prime}\left(2^{r} x\right)\right\| \\
& \leq \frac{2 \cdot 2^{-2 r}}{4 \cdot{ }_{n-3} C_{m-2}} \widetilde{\phi}\left(2^{r} x,-2^{r} x, 2^{r} x, 0, \cdots, 0\right)
\end{aligned}
$$

for all $x \in X$. As $r \rightarrow \infty$, we may conclude that $Q(x)=Q^{\prime}(x)$, for all $x \in X$. Thus such an n-dimensional quadratic mapping $Q: X \rightarrow Y$ is unique.

Theorem 3.2. Let $n \geq 3$, and let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ for which there exists a function $\phi: X^{n} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\tilde{\phi}\left(x_{1}, \cdots, x_{n}\right):=\sum_{j=0}^{\infty} 2^{2 j} \phi\left(2^{-j} x_{1}, \cdots, 2^{-j} x_{n}\right)<\infty \tag{3.6}\\
\left\|D_{m} f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \phi\left(x_{1}, \cdots, x_{n}\right) \tag{3.7}
\end{gather*}
$$

for all $x_{1}, \cdots, x_{n} \in X$. Then for any $m \in\{2, \cdots, n-1\}$, there exists a unique n-dimensional quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{{ }_{n-3} C_{m-2}} \widetilde{\phi}\left(\frac{1}{2} x,-\frac{1}{2} x, \frac{1}{2} x, 0, \cdots, 0\right) \tag{3.8}
\end{equation*}
$$

for all $x \in X$.
Proof. If x is replaced by $\frac{1}{2} x$ in the inequality (3.5), then the proof follows from the proof of Theorem 3.1.

Corollary 3.3. Let $p \neq 2$ and θ be positive real numbers, let $n \geq 3$ be an integer and let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and for each integer m such that $2 \leq m \leq n-1$,

$$
\left\|D_{m} f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \theta \sum_{i=1}^{n}\left\|x_{i}\right\|^{p}
$$

for all $x_{1}, \cdots, x_{n} \in X$. Then there exists a unique n-dimensional quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq \frac{1}{2 \cdot{ }_{n-3} C_{m-2}} \cdot \frac{\theta}{\left|4-2^{p}\right|}\|x\|^{p}
$$

for all $x \in X$.
Proof. Let

$$
\phi\left(x_{1}, \cdots, x_{n}\right)=\theta \sum_{i=1}^{n}\left\|x_{i}\right\|^{p},
$$

and then apply to Theorem 3.1 when $0<p<2$, or apply to Theorem 3.2 when $p>2$.

4 Another stability of a mixed n-dimensional quadratic mapping with special cases $m=2$ and $m=n-1$

We will start with $m=2$ in the equation (3.1). Then the equation $D_{m} f\left(x_{1}, \cdots, x_{n}\right)$ can be reduced to the following form

$$
\begin{aligned}
D_{2} f\left(x_{1}, \cdots, x_{n}\right) & :=f\left(\sum_{j=1}^{n} x_{j}\right)+(n-2) \sum_{i=1}^{n} f\left(x_{i}\right) \\
& -\sum_{1 \leq i_{1} \leq i_{2} \leq n} f\left(x_{i_{1}}+x_{i_{2}}\right),
\end{aligned}
$$

for all $x_{1}, \cdots, x_{n} \in X$.
Theorem 4.1. Let $n \geq 3$ be an integer number and let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ for which there exists a function $\phi: X^{n} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\widetilde{\phi}\left(x_{1}, \cdots, x_{n}\right):=\sum_{j=0}^{\infty} 2^{-2 j} \phi\left(2^{j} x_{1}, \cdots, 2^{j} x_{n}\right)<\infty \tag{4.1}\\
\left\|D_{2} f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \phi\left(x_{1}, \cdots, x_{n}\right) \tag{4.2}
\end{gather*}
$$

for all $x_{1}, \cdots, x_{n} \in X$. Then for any odd integer t with $3 \leq t \leq n$, there exists a unique n-dimensional quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{(t-1)^{2}} \widetilde{\phi}(\underbrace{x,-x, \cdots,-x, x}_{t-\text { terms }}, 0, \cdots, 0), \tag{4.3}
\end{equation*}
$$

for all $x \in X$.
Proof. For any odd integer $3 \leq t \leq n$, let

$$
x_{j}= \begin{cases}(-1)^{j-1} x & 1 \leq j \leq t \\ 0 & t+1 \leq j \leq n\end{cases}
$$

in the inequality (4.2), we have

$$
\begin{aligned}
& \|D_{2} f(\underbrace{x,-x, \cdots,-x, x}_{t-\text { terms }}, 0, \cdots, 0)\| \\
= & \left\|f\left(\sum_{j=1}^{n} x_{j}\right)+(n-2) \sum_{i=1}^{n} f\left(x_{i}\right)-\sum_{1 \leq i_{1}<i_{2} \leq n} f\left(x_{i_{1}}+x_{i_{2}}\right)\right\| \\
= & \| f(x)+(n-2)\left(\frac{t+1}{2} f(x)+\frac{t-1}{2} f(-x)\right) \\
& -\left(\frac{t+1}{2} C_{2} f(2 x)+\frac{t-1}{2} C_{2} f(-2 x)\right. \\
& \left.+\frac{t+1}{2} C_{1} \cdot{ }_{n-t} C_{1} f(x)+\frac{t-1}{2} C_{1} \cdot{ }_{n-t} C_{1} f(-x)\right) \|
\end{aligned}
$$

$$
\begin{aligned}
= & \|(t(n-2)+1) f(x) \\
& -\left(\left[\frac{\frac{t+1}{2}\left(\frac{t+1}{2}-1\right)}{2}+\frac{\frac{t-1}{2}\left(\frac{t-1}{2}-1\right)}{2}\right] f(2 x)\right. \\
& \left.+\left[\frac{t+1}{2} \cdot(n-t)+\frac{t-1}{2} \cdot(n-t)\right] f(x)\right) \| \\
= & \left\|(t(n-2)-t(n-t)+1) f(x)-\frac{1}{4}(t-1)^{2} f(2 x)\right\| \\
\leq & \phi(\underbrace{x,-x, \cdots,-x, x}_{t-\text { terms }}, 0, \cdots, 0),
\end{aligned}
$$

that is,

$$
\begin{equation*}
\left\|f(x)-\left(\frac{1}{2}\right)^{2} f(2 x)\right\| \leq \frac{1}{(t-1)^{2}} \phi(\underbrace{x,-x, \cdots,-x, x}_{t-\text { terms }}, 0, \cdots, 0), \tag{4.4}
\end{equation*}
$$

for all $x \in X$. Remains follow from the proof of Theorem 3.1.
Theorem 4.2. Let $n \geq 3$ be an integer number and let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ for which there exists a function $\phi: X^{n} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\widetilde{\phi}\left(x_{1}, \cdots, x_{n}\right):=\sum_{j=0}^{\infty} 2^{-2 j} \phi\left(2^{j} x_{1}, \cdots, 2^{j} x_{n}\right)<\infty, \tag{4.5}\\
\left\|D_{2} f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \phi\left(x_{1}, \cdots, x_{n}\right), \tag{4.6}
\end{gather*}
$$

for all $x_{1}, \cdots, x_{n} \in X$. Then for any even integer t with $4 \leq t \leq n$, there exists a unique n-dimensional quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{t(t-2)} \widetilde{\phi}(\underbrace{x,-x, \cdots, x,-x}_{t-\text { terms }}, 0, \cdots, 0) \tag{4.7}
\end{equation*}
$$

for all $x \in X$.
Proof. For any even integer t such that $4 \leq t \leq n$, let

$$
x_{j}= \begin{cases}(-1)^{j-1} x & 1 \leq j \leq t \\ 0 & t+1 \leq j \leq n\end{cases}
$$

in the inequality (4.6), we have

$$
\left\|t(t-2) f(x)-\frac{1}{4} t(t-2) f(2 x)\right\| \leq \phi(\underbrace{x,-x, \cdots, x,-x}_{t-\text { terms }}, 0, \cdots, 0) .
$$

Then we have

$$
\begin{equation*}
\left\|f(x)-\left(\frac{1}{2}\right)^{2} f(2 x)\right\| \leq \frac{1}{t(t-2)} \phi(\underbrace{x,-x, \cdots, x,-x}_{t-\text { terms }}, 0, \cdots, 0) \tag{4.8}
\end{equation*}
$$

for all $x \in X$. Similar to the proof of Theorem 3.1, we have the desired result when t is even.

When $m=n-1$, the equation $D_{m} f\left(x_{1}, \cdots, x_{n}\right)$ in (3.1) forms

$$
\begin{aligned}
& D_{n-1} f\left(x_{1}, \cdots, x_{n}\right):= \\
& \quad(n-2) f\left(\sum_{j=1}^{n} x_{j}\right)+\sum_{i=1}^{n} f\left(x_{i}\right)-\sum_{1 \leq i_{1}<\cdots<i_{n-1} \leq n} f\left(x_{i_{1}}+\cdots+x_{i_{n-1}}\right),
\end{aligned}
$$

for all $x_{1}, \cdots, x_{n} \in X$.
We will consider two cases where $n \geq 3$ is odd and $n \geq 4$ is any integer.
Theorem 4.3. Let $n \geq 3$ be odd and let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ for which there exists a function $\phi: X^{n} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\widetilde{\phi}\left(x_{1}, \cdots, x_{n}\right):=\sum_{j=0}^{\infty} 4^{-j} \phi\left(2^{j} x_{1}, \cdots, 2^{j} x_{n}\right)<\infty \tag{4.9}\\
\left\|D_{n-1} f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \phi\left(x_{1}, \cdots, x_{n}\right) \tag{4.10}
\end{gather*}
$$

for all $x_{1}, \cdots, x_{n} \in X$. Then there exists a unique n-dimensional quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{2(n-1)} \widetilde{\phi}(x,-x, x,-x, \cdots,-x, x) \tag{4.11}
\end{equation*}
$$

for all $x \in X$.
Proof. For each $k=1, \cdots, n$, letting $x_{k}=(-1)^{k-1} x$ in (4.10), we have

$$
\left\|2(n-1) f(x)-\frac{n-1}{2} f(2 x)\right\| \leq \phi(x,-x, x,-x, \cdots,-x, x)
$$

for all $x \in X$. Then we write

$$
\begin{equation*}
\left\|f(x)-\frac{1}{4} f(2 x)\right\| \leq \frac{1}{2(n-1)} \phi(x,-x, x,-x, \cdots,-x, x) \tag{4.12}
\end{equation*}
$$

for all $x \in X$. The remains follow from the proof of Theorem 3.1.
Now, we may assume $n \geq 4$ is an integer.
Theorem 4.4. Let $n \geq 4$, and let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ for which there exists a function $\phi: X^{n} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\widetilde{\phi}\left(x_{1}, \cdots, x_{n}\right):=\sum_{j=0}^{\infty} 4^{-j} \phi\left(2^{j} x_{1}, \cdots, 2^{j} x_{n}\right)<\infty \tag{4.13}\\
\left\|D_{n-1} f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \phi\left(x_{1}, \cdots, x_{n}\right) \tag{4.14}
\end{gather*}
$$

for all $x_{1}, \cdots, x_{n} \in X$. Then for any integer m such that $4 \leq 2 m \leq n$, there exists a unique n-dimensional quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{4(m-1)} \widetilde{\phi}(\underbrace{2 x,-x, x, \cdots, x,-x}_{2 m-\text { terms }}, 0, \cdots, 0) \tag{4.15}
\end{equation*}
$$

for all $x \in X$.

Proof. By letting $x_{1}=2 x, x_{k}=(-1)^{k+1} x,(k=2, \cdots, 2 m)$, and $x_{k}=0,(2 m+1 \leq$ $k \leq n)$ in (4.14), we have

$$
\begin{aligned}
\|(n-2) f(x)+f(2 x) & +(2 m-1) f(x) \\
& -(m f(2 x)+f(x)+(n-2 m) f(x)) \| \\
\leq \phi(\underbrace{2 x,-x, x, \cdots, x,-x}_{2 m-\text { terms }}, 0, & \cdots, 0)
\end{aligned}
$$

for all $x \in X$. Then we have

$$
\begin{equation*}
\left\|f(x)-\frac{1}{4} f(2 x)\right\| \leq \frac{1}{4(m-1)} \phi(\underbrace{2 x,-x, x, \cdots, x,-x}_{2 m-\text { terms }}, 0, \cdots, 0) \tag{4.16}
\end{equation*}
$$

for all $x \in X$. Similar to the proof of Theorem 3.1, we have the desired results.

Note that Theorem 4.4 remains valid if $n \geq 4$ is either odd or even.
Remark 4.5. Similar to section 3, that is, Theorem 3.2 can be obtained from Theorem 3.1 by replacing x by $\frac{1}{2} x$, in section 4 similar Theorems can be obtained.

5 Results in Banach modules over a Banach algebra

Throughout this section, let B be a unital Banach *-algebra with norm || and $B_{1}=\{a \in B| | a \mid=1\}$, let ${ }_{B} \mathbb{B}_{1}$ and ${ }_{B} \mathbb{B}_{2}$ be left Banach modules with norms $\|\|$ and \|\|, respectively, and let

$$
\varphi:\left[{ }_{B} \mathbb{B}_{1} \backslash\{0\}\right]^{n} \rightarrow \mathbb{R}
$$

be the function such that

$$
\begin{equation*}
\widetilde{\varphi}\left(x_{1}, \cdots, x_{n}\right):=\sum_{j=0}^{\infty} 2^{-2 j} \varphi\left(2^{j} x_{1}, \cdots, 2^{j} x_{n}\right)<\infty \tag{5.1}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{n} \in_{B} \mathbb{B}_{1} \backslash\{0\}$.
Definition 5.1. An n-dimensional quadratic mapping

$$
Q:_{B} \mathbb{B}_{1} \rightarrow_{B} \mathbb{B}_{2}
$$

is called n-dimensional B-quadratic if $Q(a x)=a^{2} Q(x)$ for all $a \in B$ and all $x \in_{B}$ \mathbb{B}_{1}.

Definition 5.2. For $a \in B$, let $b=a a^{*}, a^{*} a$, or $\left(a a^{*}+a^{*} a\right) / 2$. An n-dimensional quadratic mapping $Q:_{B} \mathbb{B}_{1} \rightarrow_{B} \mathbb{B}_{2}$ is called n-dimensional $B_{s a}$-quadratic if $Q(a x)=$ $b Q(x)$, for all $a \in B$, and all $x \in_{B} \mathbb{B}_{1}$.

Since Banach spaces ${ }_{B} \mathbb{B}_{1}$ and ${ }_{B} \mathbb{B}_{2}$ are considered as Banach modules over $B:=\mathbb{C}$, the $B_{s a}$-quadratic mapping $Q:_{B} \mathbb{B}_{1} \rightarrow_{B} \mathbb{B}_{2}$ implies $Q(a x)=|a|^{2} Q(x)$, for all $a \in \mathbb{C}$.

We define the approximate remainder $\left(D_{m}\right)_{a} f$ for a mapping $f:_{B} \mathbb{B}_{1} \rightarrow_{B} \mathbb{B}_{2}$,

$$
\begin{gathered}
\left(D_{m}\right)_{a} f\left(x_{1}, \cdots, x_{n}\right):={ }_{n-2} C_{m-2} f\left(\sum_{j=1}^{n} a x_{j}\right)+{ }_{n-2} C_{m-1} \sum_{i=1}^{n} f\left(a x_{i}\right) \\
-b \sum_{1 \leq i_{1}<\cdots<i_{m} \leq n} f\left(x_{i_{1}}+\cdots+x_{i_{m}}\right)
\end{gathered}
$$

for all $x_{1}, \cdots, x_{n} \in \in_{B} \mathbb{B}_{1}$.
Theorem 5.3. Let $f:_{B} \mathbb{B}_{1} \rightarrow_{B} \mathbb{B}_{2}$ be a mapping with $f(0)=0$ for the case (5.1) which there is a mapping $\varphi:_{B} \mathbb{B}_{1} \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
\left\|\left(D_{m}\right)_{a} f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \varphi\left(x_{1}, \cdots, x_{n}\right), \tag{5.2}
\end{equation*}
$$

for all $a \in B_{1}, x_{1}, \cdots, x_{n} \in_{B} \mathbb{B}_{1} \backslash\{0\}$. If either f is measurable or $f(t x)$ is continuous in $t \in \mathbb{R}$, for each fixed $x \in_{B} \mathbb{B}_{1}$, then there exists a unique n-dimensional $B_{\text {sa }}$-quadratic mapping $Q:_{B} \mathbb{B}_{1} \rightarrow_{B} \mathbb{B}_{2}$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{4_{n-3} C_{m-2}} \widetilde{\varphi}(x,-x, x, 0, \cdots, 0) \tag{5.3}
\end{equation*}
$$

for all $x \in \in_{B} \mathbb{B}_{1}$.
Proof. By the same reasoning as the proof of Theorem 3.1, it follows from the inequality of the statement $a=1$ that there exists a unique n-dimensional quadratic mapping $Q:_{B} \mathbb{B}_{1} \rightarrow_{B} \mathbb{B}_{2}$ defined by

$$
Q(x)=\lim _{m \rightarrow \infty} 2^{-2 m} f\left(2^{m} x\right)
$$

which satisfies the inequality (5.3) for all $x \in_{B} \mathbb{B}_{1}$. Under the assumptions that either f is measurable or $f(t x)$ is continuous in $t \in \mathbb{R}$, for each fixed $x \in_{B} \mathbb{B}_{1}$, by the same reasoning as the proof of [3], one can show that Q is \mathbb{R}-quadratic, that is, $Q(t x)=t^{2} Q(x)$ for all $t \in \mathbb{R}$, for all $x \in_{B} \mathbb{B}_{1}$.

Putting $x_{1}=2^{m-1} x$ and $x_{j}=0(j=2, \cdots, n)$ in (5.2) and dividing the resulting inequality by $2^{2 m}$,

$$
\begin{aligned}
& \frac{1}{2^{2 m}}\left\|f\left(a 2^{m-1} x\right)-b f\left(2^{m-1} x\right)\right\| \\
& \leq \frac{1}{2^{2 m}} \frac{1}{n-1} C_{m-1}
\end{aligned}\left(2^{m-1} x, 0, \cdots, 0\right), ~ l
$$

for all $x_{1}, \cdots, x_{n} \in_{B} \mathbb{B}_{1}$. By the definition of Q,

$$
Q(a x)=\lim _{s \rightarrow \infty} \frac{1}{2^{2 s}} f\left(2^{s} a x\right)=\lim _{s \rightarrow \infty} \frac{2^{2}}{2^{2 s}} b f\left(2^{s-1} x\right)=b Q(x)
$$

for every $x \in_{B} \mathbb{B}_{1}$, for every $a \in B(|a|=1)$. For $a \in B \backslash\{0\}$,

$$
Q(a x)=Q\left(|a| \frac{a}{|a|} x\right)=|a|^{2} Q\left(\frac{a}{|a|} x\right)=|a|^{2} \frac{b}{|a|^{2}} Q(x)=b Q(x)
$$

for all $x \in_{B} \mathbb{B}_{1}$. Thus Q is n-dimensional $B_{s a}$-quadratic, which completes the proof.

Remark 5.4. By the similar method, we also obtain the unique n-dimensional B-quadratic mapping on the same conditions.

Corollary 5.5. Let $f:_{B} \mathbb{B}_{1} \rightarrow_{B} \mathbb{B}_{2}$ be a mapping with $f(0)=0$ for the case (5.1) which there exists mapping $\varphi:_{B} \mathbb{B}_{1} \rightarrow \mathbb{R}$ satisfying

$$
\begin{aligned}
& \| b \cdot{ }_{n-2} C_{m-2} f\left(\sum_{j=1}^{n} x_{j}\right)+b \cdot{ }_{n-2} C_{m-1} \sum_{i=1}^{n} f\left(x_{i}\right) \\
& \quad-\sum_{1 \leq i_{1}<\cdots<i_{m} \leq n} f\left(a\left(x_{i_{1}}+\cdots+x_{i_{m}}\right)\right) \| \\
& \leq \varphi\left(x_{1}, \cdots, x_{n}\right),
\end{aligned}
$$

for all $a \in B_{1}$, for all $x_{1}, \cdots, x_{n} \in_{B} \mathbb{B}_{1} \backslash\{0\}$. If either f is measurable or $f(t x)$ is continuous in $t \in \mathbb{R}$, for each fixed $x \in_{B} \mathbb{B}_{1}$, then there is an unique n-dimensional $B_{\text {sa }}$ - quadratic mapping $Q:_{B} \mathbb{B}_{1} \rightarrow_{B} \mathbb{B}_{2}$ which satisfies the inequality (5.3) for all $x \in \mathbb{B}_{1}$.

Proof. By the similar method of the proof of Theorem 5.3, one can obtain the result.

Definition 5.6. An n-dimensional quadratic mapping $Q: \mathbb{B} \rightarrow B$ is called an n-dimensional A-quadratic mapping if $Q(a x)=a Q(x) a^{*}$ for all $a \in B, x \in \mathbb{B}$.

Theorem 5.7. Let $f:_{B} \mathbb{B}_{1} \rightarrow_{B} \mathbb{B}_{2}$ be a mapping with $f(0)=0$ for the cases (5.1) and (5.2) and define $Q:_{B} \mathbb{B}_{1} \rightarrow_{B} \mathbb{B}_{2}$ defined by for all $x \in_{B} \mathbb{B}_{1}$,

$$
Q(x)=\lim _{m \rightarrow \infty} 2^{-2 m} f\left(2^{m} x\right)
$$

which there is mapping $\psi:_{B} \mathbb{B}_{1} \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
\left\|Q(a x)-a Q(x) a^{*}\right\| \leq \psi(x) \text { and } \lim _{m \rightarrow \infty} \frac{\psi\left(2^{2 m} x\right)}{2^{2 m}}=0 \tag{5.4}
\end{equation*}
$$

for all $a \in B_{1}, x \in_{B} \mathbb{B}_{1}$. If either f is measurable or $f(t x)$ is continuous in $t \in \mathbb{R}$, for each fixed $x \in_{B} \mathbb{B}_{1}$, then Q is the unique n-dimensional A-quadratic mapping which satisfies the inequality (5.3) for all $x \in_{B} \mathbb{B}_{1}$.

Proof. By the same reasoning as the proof of Theorem 3.1, Q is well-defined and Q is the unique n-dimensional \mathbb{R}-quadratic mapping which satisfies the inequality (5.3) for all $x \in_{B} \mathbb{B}_{1}$. By (5.4), for each element $a \in B_{1}, x \in_{B} \mathbb{B}_{1}$,

$$
Q(a x)=a Q(x) a^{*} .
$$

Since Q is n-dimensional \mathbb{R}-quadratic,

$$
Q(a x)=Q\left(|a| \frac{a}{|a|} x\right)=|a|^{2} Q\left(\frac{a}{|a|} x\right)=|a|^{2} \frac{a}{|a|} Q(x) \frac{a^{*}}{|a|}=a Q(x) a^{*},
$$

for all $a \in B(|a| \neq 0), x \in_{B} \mathbb{B}_{1}$. Thus Q is n-dimensional A-quadratic, as desired.

6 Stability using alternative fixed point

In this section, we will investigate the stability of the given n-dimensional quadratic functional equation (3.1) using the alternative fixed point. Before proceeding the proof, we will state theorem, the alternative of fixed point.

Theorem 6.1 (The alternative of fixed point [13], [22]). Suppose that we are given a complete generalized metric space (Ω, d) and a strictly contractive mapping T : $\Omega \rightarrow \Omega$ with Lipschitz constant L. Then for each given $x \in \Omega$, either

$$
d\left(T^{n} x, T^{n+1} x\right)=\infty \text { for all } n \geq 0
$$

or there exists a natural number n_{0} such that

1. $d\left(T^{n} x, T^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
2. The sequence $\left(T^{n} x\right)$ is convergent to a fixed point y^{*} of T;
3. y^{*} is the unique fixed point of T in the set

$$
\triangle=\left\{y \in \Omega \mid d\left(T^{n_{0}} x, y\right)<\infty\right\}
$$

4. $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, T y)$ for all $y \in \triangle$.

Now, let $\phi: X^{n} \rightarrow[0, \infty)$ be a function such that

$$
\lim _{m \rightarrow \infty} \frac{\phi\left(\lambda_{i}^{m} x_{1}, \cdots, \lambda_{i}^{m} x_{n}\right)}{\lambda_{i}^{2 m}}=0
$$

for all $x_{1}, \cdots, x_{n} \in X$, where $\lambda_{i}=2$ if $i=0$ and $\lambda_{i}=\frac{1}{2}$ if $i=1$.
Theorem 6.2. Let $2 \leq m \leq n-1$ be an integer number. Suppose that an even function $f: X \rightarrow Y$ satisfies the functional inequality

$$
\begin{equation*}
\left\|D_{m} f\left(x_{1}, \cdots, x_{n}\right)\right\| \leq \phi\left(x_{1}, \cdots, x_{n}\right), \tag{6.1}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{n} \in X$ and $f(0)=0$. If there exists $L=L(i)<1$ such that the function

$$
\begin{equation*}
x \mapsto \psi(x)=\phi\left(\frac{1}{2} x,-\frac{1}{2} x, \frac{1}{2} x, 0, \cdots, 0\right) \tag{6.2}
\end{equation*}
$$

has the property

$$
\begin{equation*}
\psi(x) \leq L \cdot \lambda_{i}^{2} \cdot \psi\left(\frac{x}{\lambda_{i}}\right) \tag{6.3}
\end{equation*}
$$

for all $x \in X$, then there exists a unique n-dimensional quadratic function Q : $X \rightarrow Y$ such that the inequality

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{L^{1-i}}{1-L} \psi(x) \tag{6.4}
\end{equation*}
$$

holds for all $x \in X$.

Proof. Consider the set

$$
\Omega=\{g \mid g: X \rightarrow Y, g(0)=0\}
$$

and introduce the generalized metric on Ω,

$$
d(g, h)=d_{\psi}(g, h)=\inf \{K \in(0, \infty) \mid\|g(x)-h(x)\| \leq K \psi(x), x \in X\}
$$

It is easy to show that (Ω, d) is complete. Now we define a function $T: \Omega \rightarrow \Omega$ by

$$
\operatorname{Tg}(x)=\frac{1}{\lambda_{i}^{2}} g\left(\lambda_{i} x\right)
$$

for all $x \in X$. Note that for all $g, h \in \Omega$,

$$
\begin{aligned}
d(g, h)<K & \Rightarrow\|g(x)-h(x)\| \leq K \psi(x), \text { for all } x \in X, \\
& \Rightarrow\left\|\frac{1}{\lambda_{i}^{2}} g\left(\lambda_{i} x\right)-\frac{1}{\lambda_{i}^{2}} h\left(\lambda_{i} x\right)\right\| \leq \frac{1}{\lambda_{i}^{2}} K \psi\left(\lambda_{i} x\right), \text { for all } x \in X, \\
& \Rightarrow\left\|\frac{1}{\lambda_{i}^{2}} g\left(\lambda_{i} x\right)-\frac{1}{\lambda_{i}^{2}} h\left(\lambda_{i} x\right)\right\| \leq L K \psi(x), \text { for all } x \in X, \\
& \Rightarrow d(T g, T h) \leq L K .
\end{aligned}
$$

Hence we have that

$$
d(T g, T h) \leq L d(g, h)
$$

for all $g, h \in \Omega$, that is, T is a strictly self-mapping of Ω with the Lipschitz constant L. By setting $x_{1}=x, x_{2}=-x, x_{3}=x$, and $x_{4}=\cdots=x_{n}=0$, we have the inequality (3.5) as in the proof of Theorem 3.1 and we use the inequality (6.3) with the case where $i=0$, which is reduced to

$$
\begin{equation*}
\left\|f(x)-\frac{1}{4} f(2 x)\right\| \leq \frac{1}{4 \cdot{ }_{n-3} C_{m-2}} \psi(2 x) \leq L \psi(x), \tag{6.5}
\end{equation*}
$$

for all $x \in X$, that is, $d(f, T f) \leq L=L^{1}<\infty$. Now, replacing x by $\frac{1}{2} x$ in the inequality (6.5), multiplying 4 , and using the inequality (6.3) with the case where $i=1$, we have that

$$
\left\|f(x)-2^{2} f\left(\frac{x}{2}\right)\right\| \leq \psi(x)
$$

for all $x \in X$, that is, $d(f, T f) \leq 1=L^{0}<\infty$. In both cases we can apply the fixed point alternative and since $\lim _{r \rightarrow \infty} d\left(T^{r} f, Q\right)=0$, there exists a fixed point Q of T in Ω such that

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(\lambda_{i}^{r} x\right)}{\lambda_{i}^{2 r}}, \tag{6.6}
\end{equation*}
$$

for all $x \in X$. Letting $x_{j}=\lambda_{i}^{r} x_{j}$ for $j=1, \cdots, n$ in the inequality (6.1) and dividing by $\lambda_{i}^{2 r}$,

$$
\begin{aligned}
\left\|D_{m} Q\left(x, \cdots, x_{n}\right)\right\| & =\lim _{r \rightarrow \infty} \frac{\left\|D_{m} f\left(\lambda_{i}^{r} x_{1}, \cdots, \lambda_{i}^{r} x_{n}\right)\right\|}{\lambda_{i}^{2 r} x_{1}} \\
& \leq \lim _{r \rightarrow \infty} \frac{\left\|\phi\left(\lambda_{i}^{r} x_{1}, \cdots, \lambda_{i}^{r} x_{n}\right)\right\|}{\lambda_{i}^{2 r} x_{1}}=0
\end{aligned}
$$

for all $x_{1}, \cdots, x_{n} \in X$; that is it satisfies the inequality (2.1). By Lemma 2.1, the Q is quadratic. Also, the fixed point alternative guarantees that such a Q is the unique function such that

$$
\|f(x)-Q(x)\| \leq K \psi(x),
$$

for all $x \in X$ and some $K>0$. Again using the fixed point alternative, we have

$$
d(f, Q) \leq \frac{1}{1-L} d(f, T f)
$$

Hence we may conclude that

$$
d(f, Q) \leq \frac{L^{1-i}}{1-L}
$$

which implies the inequality (6.4).

References

[1] J.-H. Bae and W.-G. Park, On the generalized Hyers-Ulam-Rassias stability in Banach modules over a C^{*}-algebra, J. Math. Anal. Appl. 294(2004), 196-205.
[2] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes. Math. 27 (1984), 76-86.
[3] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[4] S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Inc., Palm Harbor,(2003).
[5] Z. Gajda, On the stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431-434.
[6] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.
[7] D. H. Hyers, On the stability of the linear equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[8] D. H.Hyers and Th.M.Rassias, Approximate homomorphisms, Aequationes Mathematicae 44 (1992), 125-153.
[9] D. H.Hyers, G. Isac and Th.M.Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston, Basel,Berlin, (1998).
[10] Soon-Mo Jung, Quadratic functional Equations of Pexider Type, Internat. J. Math. Math. Sci. 24(5) (2000), 351-359.
[11] Y.-S. Jung and I.-S. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl. in press (2005), 264284.
[12] K.-W. Jun and H.-M. Kim, The generalized Hyer-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878.
[13] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126, 74(1968), 305-309.
[14] T. Trift, On the stability of functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272 (2002), 604-616.
[15] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[16] Th.M.Rassias, On the stability of functional equations and a problem of Ulam, Acta Applicandae Math., 62 (2000), 23-130.
[17] Th.M.Rassias, The problem of S.M.Ulam for approximately multiplicative mappings, J.Math.Anal.Appl. 246 (2000), 352-378.
[18] Th.M.Rassias, Functional Equations and Inequalities, Kluwer Academic Publishers, Dordrecht, Boston.london, 2000.
[19] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[20] Th. M. Rassias, P. Šemrl On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
[21] Th. M. Rassias, K. Shibata, Variational problem of some quadratic functions in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253.
[22] I.A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979(in Romanian).
[23] F. Skof, Proprietà locali e approssimazione di operatori,Rend. Semin. Mat. Fis. Milano 53(1983) 113-129.
[24] S. M. Ulam, Problems in Morden MAthematics, Wiley, New York (1960).

Hahng-Yun Chu, School of Mathematics, Korea Institute for Advanced Study, Seoul 130-722, Korea
email:hychu@kias.re.kr

Dong Seung Kang (Corresponding author),
Department of Mathematics Education
Dankook University
Gyeonggi 448-701, South Korea
email:dskang@dankook.ac.kr

Themistocles M. Rassias, Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece email:trassias@math.ntua.gr

