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Abstract

By means of fields of formal power series, we construct definite Banach
spaces over (Krull) valued fields for any cofinal type ≥ ω0 of the value group.
Among these spaces are all known non-classical form-Hilbert spaces of infinite
dimension.

1 Introduction

In 1979 H.Keller [3] constructed the first example of an infinite-dimensional non-
classical orthomodular space. By studying his example and generalizations of it for
normed vector spaces over (Krull) valued fields (see f.e. [2], [5]), it seemed quite
natural to me to construct these spaces as linear subspaces of formal power series
fields. The method of construction is very general and includes also normed vector
spaces with higher cofinal type of their value set. But for cofinal types ≥ ω1, these
spaces are only definite Banach spaces and, as it is known, no form-Hilbert spaces.

2 Fields of formal power series

We recall the definition and some properties of fields of formal power series (for
more details see f.e. [1] or [7]). Let (Γ·, ·,≤) be a totally ordered abelian group and
F a field. Let f be a mapping from Γ· to F and supp(f) = {γ ∈ Γ· | f(γ) 6= 0}. Let
H = H(Γ·, F ) be the set of all f ∈ F Γ·

, for which supp(f) is dually well-ordered
in the order of Γ· (”dually well-ordered” means that each non-empty subset has a
largest element). By pointwise addition, i.e. (f + g)(γ) = f(γ)+ g(γ) for all γ ∈ Γ·,
and with the multiplication, defined by (fg)(γ) =

∑

αβ=γ

f(α)g(β), H is a field, the

field of formal power series. An element f ∈ H is said to be a formal power series.
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The unit element of H is given by f(γ) = 1, if γ = 1 and f(γ) = 0, if γ 6= 1; we
denote it by 1.

Adjoin to Γ· an element 0 such that 0 < γ and 0γ = γ0 = 0 = 00 for all γ ∈ Γ·.
Put Γ = Γ· ∪ {0}. The mapping w : H → Γ, 0 6= f 7−→ max supp(f), 0 7−→ 0, is a
(Krull) valuation, i.e.

w(f) = 0 ⇐⇒ f = 0,
w(f + g) ≤ max {w(f), w(g)} and
w(fg) = w(f)w(g).

H has with respect to w the value group Γ· and the residue field Hw, isomorphic
to F . By identifying a ∈ F with the formal power series fa ∈ H , where fa(γ) = a
for γ = 1, and fa(γ) = 0 for γ 6= 1, F is a subfield of H .

d(f, g) = w(f − g) defines an ultrametric distance d on H . The set BH
γ (f) =

{g ∈ H | w(f − g) ≤ γ}, with γ ∈ Γ·, f ∈ H , is a ball of H . The ultrametric space
(H, d,Γ) is spherically complete, i.e. every chain of balls has a non-empty intersec-

tion (see Appendix 6.5). In particular, each chain of the form
{

BH
γi

(fi) | i ∈ I
}

, with

0 = inf γi has a non-empty intersection. Thus H is complete (with respect to the
topology defined by the valuation).

Let ∆· = ∆ \ {0} be a cofinal subgroup of Γ·. The set F [∆·]of formal power
series of H , for which the support is a finite subset of ∆·, is a subring of H . Hence
the quotient field F (∆·)of F [∆·] is a subfield of H . Since H is complete, F (∆·) has
its completion K in H . The restriction of w to K is a valuation of K (again denoted
by w) with value group ∆·. As K is a subfield of H , the field H is a vector space
over K.

3 Construction of the Banach space E

Let Γ,∆ be as above, i.e. ∆· = ∆ \ {0} is a cofinal subgroup of the totally ordered
abelian group Γ· = Γ \ {0}. Let (K,w,∆) be a valued field and E a vector space
over K. The mapping ‖ ‖: E → Γ is said to be a norm of E, when the following
conditions are satisfied for all x ∈ E, k ∈ K:

‖ x ‖= 0 ⇔ x = 0,
‖ x+ y ‖≤ max {‖ x ‖, ‖ y ‖},
‖ kx ‖= w(k) ‖ x ‖.

The norm ‖ ‖: E → Γ does not need to be surjective. We denote by ‖ E ‖ the
image of E under ‖ ‖.

With ‖ ‖: H → Γ, defined by ‖ f ‖= w(f), (H, ‖ ‖,Γ) is a normed vector space
over the complete field (K,w,∆) from above.

We now specify the groups ∆·,Γ· to obtain the generalized Keller space as an
appropriate linear subspace of H . If Λ is a totally ordered abelian group and Λ
its totally ordered root-closed hull (in additive notation, the ”divisible hull”), then√

Λ =
{

λ ∈ Λ | λ2 ∈ Λ
}

is a subgroup of Λ which contains Λ. Let ρ be finite or a

limit ordinal. Let (Λξ)ξ<ρ be a strictly increasing family (i.e. ξ < ξ′ < ρ implies



Generalized Keller Spaces 981

Λξ < Λξ́′) of totally ordered abelian groups with the following properties for all
ξ < ρ:

(g1) Λξ is a convex subgroup of Λξ′ for each ξ′, ξ < ξ′ < ρ.

(g2) Λξ 6=
√

Λξ.

(g3) There exists 1 < γξ ∈
√

Λξ such that if ξ = 1, γξ /∈ Λξ, and if ξ > 1,

γξ

√

Λ−
ξ 6= δ

√

Λ−
ξ for all δ ∈ Λξ, with Λ−

ξ =
⋃

η<ξ
Λη.

Such groups Λξ, ξ < ρ, do exist. We give an example (with the operation, written
additively):

Let Σ =
∏

f
ξ<ρ

Z be the set of mappings from {ξ | ξ < ρ} to Z which have finite

support (for σ ∈ Σ, supp(σ) = {ξ < ρ | σ(ξ) 6= 0}). By pointwise addition, Σ is an
abelian group, which is totally ordered with respect to the anti-lexicographic order,
i.e. σ < σ′ if and only if σ(η) < σ′(η), where η = max {η′ < ρ | σ(η′) 6= σ′(η′)}. Re-
placing Z by 1

2
Z, we obtain in the same way the totally ordered group

1
2
Σ =

∏

f
ξ<ρ

1
2
Z. For each ξ < ρ, let Λξ = {σ ∈ Σ | σ(η) = 0 for all η > ξ} and

1
2
Λξ =

{

σ ∈ 1
2
Σ | σ(η) = 0 for all η > ξ

}

. Then the family (Λξ)ξ<ρ is strictly in-

creasing and for each ξ < ρ, Λξ 6= 1
2
Λξ and Λξ is convex in Λξ′ for all ξ′, ξ <

ξ′ < ρ. We have Λ−
ξ =

⋃

η<ξ
Λη = {σ ∈ Σ | σ(η′) = 0 for all η′ ≥ ξ} and 1

2
Λ−

ξ =
{

σ ∈ 1
2
Σ | σ(η′) = 0 for all η′ ≥ ξ

}

. Let γξ ∈ 1
2
Λξ be such that γξ(ξ) = 1

2
and

γξ(η) = 0 for η 6= ξ. Then for all σ ∈ Λξ, γξ + 1
2
Λ−

ξ 6= σ + 1
2
Λ−

ξ , since for all
σ′ ∈ 1

2
Λ−

ξ , 1
2

= γξ(ξ) 6= σ(ξ) + σ′(ξ) = σ(ξ) ∈ Z. Thus (Λξ)ξ<ρ has the properties
(g1),(g2),(g3).

Obviously, Σ =
⋃

ξ<ρ
Λξ. If ρ = ω0, it is this group Σ which is used by H.Keller in [3]

for the construction of his example of an orthomodular space of infinite dimension.
We continue our construction of the generalized Keller space as a linear subspace

of H . Let ∆· =
⋃

ξ<ρ

Λξ and Γ· =
⋃

ξ<ρ

√

Λξ =
√

∆·. For each ξ < ρ, define eξ ∈ H by

eξ(γξ) = 1 and eξ(γ) = 0 for γ 6= γξ. Put e0 = 1 and ρ∗ = {ξ | ξ < ρ} ∪ {0}. Let L
be the linear span of {eξ | ξ ∈ ρ∗} over K and E its completion in H . (Since H is a
complete vector space, H contains a complete vector space E in which L is dense;
see Appendix 6.3). E is a Banach space. We denote the norm ‖ ‖ of H , restricted
to E, again by ‖ ‖.

4 Construction of an inner product for E

We now assume throughout w(2) = 1, so charF 6= 2. (This assumption is needed
for the proof of the ”Ultrametric Pythagoras” and the ”Cauchy-Schwarz inequality”;
see Appendix 6.1). We shall construct a symmetric bilinear form< −,− >: E×E →
K which is non-degenerate (this means, if for all y ∈ E, < x, y >= 0, then x = 0).
Such a bilinear form is said to be an inner product. A normed vector space with
(w(2) = 1 and) an inner product < −,− > such that the norm of each element x

of the vector space is given by ‖ x ‖=
√

w(< x, x >) is called a definite space. We
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shall show that E is a definite space and prove this first for the linear span L of
{eξ | ξ ∈ ρ∗}.

By choice of the elements eξ, ξ ∈ ρ∗, supp(eξ) = {γξ}, where γ0 = 1. Hence we
obtain for the product (in the field H) of eξ with itself: e2ξ = gξ, with gξ(γ) = 1 for
γ = γ2

ξ ∈ ∆· and gξ(γ) = 0 for γ 6= γ2
ξ . Thus for all ξ ∈ ρ∗, gξ ∈ K. This allows to

define < eξ, eξ >= gξ, and < eξ, eη >= 0, if η 6= ξ. By bilinear extension, we obtain
an inner product < −,− > for the linear span L. We show that for ξ, η ∈ ρ∗, η < ξ,
and all 0 6= kξ, kη ∈ K, ‖kξeξ‖ 6= ‖kηeη‖. Indeed, if ‖kξeξ‖ = ‖kηeη‖, then ‖eξ‖ =

γξ = w(k−1
ξ kη)‖eη‖ and hence γξ = δ0γη, with δ0 = w(k−1

ξ kη) ∈ ∆· ∩
√

Λξ = Λξ.

This is against property (g3) of the elements γζ , ζ ∈ ρ∗. Thus if ξ, η ∈ ρ∗, ξ 6= η,
‖kξeξ‖ 6= ‖kηeη‖ for all 0 6= kξ, kη ∈ K. Therefore the norm of an element x = k1eξ1+
...+ kneξn

∈ L, with k1, ..., kn ∈ K \ {0} and pairwise different ξ1, ..., ξn ∈ ρ∗ is given

by ‖ x ‖= max {‖ kieξi
‖| i = 1, ..., n} = max

{√

w(< kieξi
, kieξi

>) | i = 1, ..., n
}

=
√

w(< x, x >). Hence L is a definite space.

Lemma 1. < −,− >: L× L → K has a continuous extension to an inner product
of E such that E is a definite space.

Proof. Let a ∈ L and ϕa : L→ K, x 7→< a, x >. By the Cauchy-Schwarz inequality
(see Appendix 6.1), w(< a, x >) ≤‖ a ‖‖ x ‖. Hence the linear mapping ϕa is
continuous and thus also uniformly continuous.

Let x ∈ E \ L. Since E is the completion of L, there exists a Cauchy family
(xι)ι<λ of L (see Appendix 6.3) such that x = lim

ι<λ
xι. Because ϕa : L → K is

uniformly continuous, also (ϕa(xι))ι<λ is a Cauchy family, and since furthermore
K is complete, there exists k ∈ K such that k = lim

ι<λ
ϕa(xι). We put < x, a >=

< a, x >= k. So < a, x >= lim
ι<λ

< a, xι >. Because the mappings ‖ ‖: E → Γ and

w : K → ∆ are continuous (with respect to the order topologies of Γ, resp. ∆),
we conclude from < a, x >= lim

ι<λ
< a, xι > that w(< a, x >) = lim

ι<λ
w(< a, xι >) ≤

lim
ι<λ

‖ a ‖‖ xι ‖=‖ a ‖ lim
ι<λ

‖ xι ‖=‖ a ‖‖ x ‖. Hence the Cauchy-Schwarz inequality

holds for all a ∈ L, x ∈ E. Since addition and multiplication (for E by scalars) are
continuous, < a,− >: E → K, x 7→< a, x > is linear.

So the mapping ψa : L→ K, x 7→< x, a > is defined for a ∈ E and has formally
the same properties as ϕa from above. Hence ψa has a continuous extension to
a linear mapping of E. Thus we obtain, if x = lim

ι<λ
xι ∈ E, xι ∈ L, < x, a >=

lim
ι<λ

< xι, a > and w(< x, a >) ≤‖ x ‖‖ a ‖.
So far we have shown that < −,− > is a bilinear form on E which satisfies the

Cauchy-Schwarz inequality. We still have to prove that < −,− > is non-degenerate

and that for all x ∈ E, ‖ x ‖=
√

w(< x, x >).

We show this latter first. The mapping x 7→< x, x > from E to K is continuous.
Indeed, if x = 0, then this follows directly from the Cauchy-Schwarz inequality. So
we assume now x 6= 0 and ‖ x − y ‖< γ <‖ x ‖. Then w(< y, y > − < x, x >) =
w (< y, y > − < x, y > + < x, y > − < x, x >) = w(< y−x, y > + < x, y−x >) ≤
max {w(< y − x, y >), w(< x, y − x >)} ≤ max {‖ y − x ‖‖ y ‖, ‖ x ‖‖ y − x ‖} <
γ ‖ x ‖. Hence the mapping is continuous.



Generalized Keller Spaces 983

Therefore we obtain for x = lim
ι<λ

xι ∈ E, xι ∈ L, < x, x >= lim
ι<λ

< xι, xι >. Thus

w(< x, x >) = w(lim
ι<λ

< xι, xι >) = lim
ι<λ

w(< xι, xι >) = lim
ι<λ

‖ xι ‖2=‖ lim
ι<λ

xι ‖2

=‖ x ‖2.
This implies that < −,− > on E is non-degenerate, since from < x, y >= 0 for

x ∈ E and all y ∈ E follows in particular that < x, x >= 0, hence w(< x, x >) =
‖ x ‖2= 0 and thus x = 0. �

Two elements x, y of a vector space with an inner product < −,− > are called
orthogonal if < x, y >= 0. A set {ai | i ∈ I} of pairwise orthogonal elements 6= 0 of
a definite Banach space X is said to be an orthogonal base of X if the linear span
of {ai | i ∈ I} is dense in X. (Since the elements ai, i ∈ I, are pairwise orthogonal,
the set {ai | i ∈ I} is linear independent).

We state now our main result:

Theorem 1. Let ρ be finite, ρ = n+ 1, or a limit ordinal. Let (Λξ)ξ<ρ be a strictly
increasing family of totally ordered abelian groups with the properties (g1)(g2)(g3).
Let ∆· =

⋃

ξ<ρ

Λξ and Γ· =
√

∆·. Let F be any field with charF 6= 2 and H = H(Γ·, F ).

Let w : H → Γ be the valuation f 7−→ max supp(f). Let K ⊂ H be the completion
of the subfield F (∆·) of H. The field H is with the norm ‖ ‖: H → Γ, ‖ f ‖= w(f),
a normed vector space over (K,w,∆). Let the elements eξ ∈ H, ξ ∈ ρ∗, be chosen as
pointed out above, and let E ⊂ H be the completion of the linear span of {eξ | ξ ∈ ρ∗}
over K. Then E is with the inner product < −,− >, defined as a bilinear and
continuous extension of < eξ, eξ >= e2ξ and < eξ, eη >= 0 for η 6= ξ, a definite
Banach space. {eξ | ξ ∈ ρ∗} is an orthogonal base for E. If ρ = n + 1, the cofinal
type of ∆ is equal to the cofinal type of Λn, hence countable or not countable; if ρ is
infinite, then ∆ has the cofinal type of ρ.

Proof. In view of the preceding presentations and Lemma 1, we only have to prove
the statements about the cofinal type (see Appendix 6.2) of ∆. If ρ = n + 1,
∆· = Λn. Thus ∆ has the same cofinal type as Λn. If ρ is a limit ordinal, then
the set

{

γ2
ξ | ξ ∈ ρ∗

}

, with γξ ∈
√

∆·, ξ ∈ ρ∗, chosen according to (g3), is cofinal in
∆·. Indeed, let 1 < δ ∈ ∆· =

⋃

ξ<ρ

Λξ. Then there exists ξ < ρ such that δ ∈ Λξ.

If γ2
ξ+1 < δ, then since Λξ is convex in Λξ+1 and γ2

ξ+1 ∈ Λξ+1, we get γ2
ξ+1 ∈ Λξ;

thus γξ+1 ∈
√

Λξ contrary to property (g3) of the elements γζ , ζ ∈ ρ∗. Therefore

δ ≤ γ2
ξ+1. Hence

{

γ2
ξ | ξ ∈ ρ∗

}

is cofinal in ∆·. This proves cf∆ = cfρ (for the

notation, see Appendix 6.2). �

We call the definite Banach space E of Theorem 1 a generalized Keller space.
Its construction depends on ρ, (Λξ)ξ<ρ, (γξ)ξ<ρ and F . If we shall refer to such a
space, we say the generalized Keller space relative to ρ, (Λξ)ξ<ρ, (γξ)ξ<ρ and F , and
we denote it by E(ρ, (Λξ)ξ<ρ, (γξ)ξ<ρ, F ).
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5 Some properties of generalized Keller spaces

Let X be a normed vector space with an inner product < −,− >. Two linear
subspaces D,S of X are called orthogonal if < s, d >= 0 for all s ∈ S, d ∈ D. When
S,D are orthogonal, then S ∩ D = {0}, hence the sum S + D is direct. A linear
subspace S of X, which is orthogonal to D such that D + S = X, is said to be an
orthogonal complement of D. A form-Hilbert space is a definite Banach space for
which each closed linear subspace has an orthogonal complement.

The following lemma is well-known from Linear Algebra.

Lemma 2. Let X be a definite space of finite dimension. Then X has an orthogonal
(algebraic) base.

Proof. Let {ai | i = 1, ..., n} be an algebraic base of X. By the Gram-Schmidt or-
thogonalization process results that {ej | j = 1, ..., n}, defined inductively by

e1 = a1,
e2 = a2− < a2, e1 >< e1, e1 >

−1 e1,
· · ·,
en = an− < an, e1 >< e1, e1 >−1 e1− < an, e2 >< e2, e2 >−1 e2 − · · ·−

< an, en−1 >< en−1, en−1 >
−1 en−1,

is an orthogonal algebraic base of E. �

From this lemma follows directly

Proposition 1. A finite-dimensional definite Banach space X is a form-Hilbert
space.

Proof. Let dimX = n and let D 6= {0} be a linear subspace of X with D 6= X.
So dimD = m < n. By the preceding lemma, D has an orthogonal base {e1, ..., em}.
Let S = {x ∈ X |< x, ei >= 0 for all i = 1, ..., m}. Let 0 6= x ∈ X and

y = x −
m
∑

i=1
< x, ei >< ei, ei >

−1 ei. So < y, ej >= 0 for all j = 1, ..., m. Hence

y ∈ S and thus x ∈ D + S, which proves that X is a form-Hilbert space. �

From Theorem 1 and Proposition 1 results:

Proposition 2. The generalized Keller spaces E(ρ, (Λξ)ξ<ρ, (γξ)ξ<ρ, F ) for finite ρ
are finite-dimensional form-Hilbert spaces. Their value group ∆· =

⋃

ξ<ρ
Λξ has finite

or infinite rank, and ∆· may have any infinite cofinal type.

We have now a look to the generalized Keller spaces E(ρ, (Λξ)ξ<ρ, (γξ)ξ<ρ, F ) with
infinite ρ. As proved in Theorem 1, they have an orthogonal base of cardinality cardρ
and their value group ∆· =

⋃

ξ<ρ
Λξ has cofinal type cf∆· = cfρ. By results of Gross

and Künzi (see [2], Theorem 17, Corollary 19 and Corollary 20), each form-Hilbert
space with an infinite orthogonal base has necessarily a value group of cofinal type
ω0 and its orthogonal base needs to be countable. Thus all the generalized Keller
spaces which don´t satisfy this condition are only definite Banach spaces. However if
cf∆ = cfρ ≥ ω1, the orthogonal base {eξ | ξ ∈ ρ∗} of E = E(ρ, (Λξ)ξ<ρ, (γξ)ξ<ρ, F )
is an algebraic base for E as will be shown in Appendix 6.4.
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We study now generalized Keller spaces E(ρ, (Λξ)ξ<ρ, (γξ)ξ<ρ, F ) with countable
ρ. By using a theorem of [6], we give a criterion, when these spaces are form-Hilbert
spaces. To apply this theorem, a further property of the generalized Keller spaces
will be needed. We prove this property in the next proposition.

Two linear subspaces D1, D2 of a normed vector space X over K are called
norm-orthogonal, if for all x1 ∈ D1, x2 ∈ D2, ‖ x1 + x2 ‖= max {‖ x1 ‖, ‖ x2 ‖}.
A set {ai | i ∈ I} of elements ai ∈ X is said to be norm-orthogonal if for each
j ∈ I, Kaj is norm-orthogonal to the linear span of {ai | i ∈ I, i 6= j}. A sequence
(an)n<ω0

of elements an ∈ X is said to be norm-orthogonal, if the set {an | n < ω0}
is norm-orthogonal.

Proposition 3. Let E(ρ, (Λξ)ξ<ρ, (γξ)ξ<ρ, F ) be a generalized Keller space with
countable ρ. Then every strictly decreasing, norm-orthogonal sequence (fj)j<ω0

of
elements of E converges to 0 if and only if ρ = ω0.

Proof. We use the notations which were introduced during the construction of the
generalized Keller spaces.

1) Assume ρ 6= ω0. Since cfρ = ω0, then ω0 + ω0 ≤ ρ. The set {eξ | ξ ∈ ρ∗} is
an orthogonal base of E. Hence {ej | j < ω0} is a form- (so also norm-) orthogonal
set and for all j, j′, j < j′ < ω0, γj = ‖ej‖ < ‖ej′‖ < ‖eω0

‖ = γω0
.

Put fj =< ej , ej >
−1 ej , j < ω0. Then the sequence (fj)j<ω0

is norm-orthogonal,
strictly decreasing and for all j < ω0, ‖fj‖ > ‖eω0

‖−1 = γ−1
ω0

. Thus if ρ 6= ω0 there
exists a strictly decreasing, norm-orthogonal sequence which does not converge to
0.

2) Let now ρ = ω0. Let (fj)j<ω0
be a strictly decreasing, norm-orthogonal

sequence. We wish to show that (fj)j<ω0
converges to 0. Since (fj)j<ω0

is strictly
decreasing, it suffices to prove that (fj)j<ω0

has a subsequence which converges to
0.

Because ‖E‖ \ {0} =
⋃

0≤n<ω0

∆·γn, for each j < ω0, ‖ fj ‖= δjγnj
, δj ∈ ∆·.

If j < i, then δjγnj
> δiγni

, hence a) δj > δi or b) γnj
> γni

and in the latter
case nj > ni. So for j < ω0, there are only finitely many i1, ..., im < ω0 such
that for l = 1, ..., m, il > j and γnj

> γnil
. Hence for each j < ω0, there exists an

i = ϕ(j) < ω0 such that j < i and γnj
≤ γni

. We show that γnj
= γni

is not possible.
Since {en | 0 ≤ n < ω0} is an orthogonal base for E, each x ∈ E has a representa-

tion as x = lim
m→∞

(

m
∑

n=0
< x, en >< en, en >

−1 en

)

=
∞
∑

n=0
< x, en >< en, en >−1 en

(see [2], Lemma 16), thus lim
n→∞

‖knen‖ = 0, with kn =< x, en >< en, en >−1.

The elements en, 0 ≤ n < ω0, are pairwise orthogonal, hence {en | n < ω0} is
norm-orthogonal (see Appendix 6.1), thus ‖x‖ = max {‖knen‖ | 0 ≤ n < ω0}. So
if γnj

= γni
, choose m, 0 ≤ m < ω0, such that γnj

= ‖em‖, then ‖ fj ‖=
‖kmem‖, km =< fj , em >< em, em >−1, and ‖ fi ‖= ‖k′mem‖, k′m =< fi, em >
< em, em >−1. Therefore ‖ k−1

m fj − (k′m)−1fi ‖/∈ ∆· ‖em‖, which implies that
‖ k−1

m fj − (k′m)−1fi ‖6= max {‖ k−1
m fj ‖, ‖ (k′m)−1fi ‖} ∈ ∆· ‖em‖. This contradicts

the norm-orthogonality of Kfj , Kfi. Thus γnj
< γni

for i = ϕ(j) > j.

Let j1 = 1, j2 = ϕ(j1), ..., jl+1 = ϕ(jl), .... Then {jl | l < ω0} is cofinal in ω0

and for each l < m, γjl
< γjm

. We prove now that the subsequence (fjl
)l<ω0

of
(fj)j<ω0

converges to 0. To simplify the notation, we show this directly for the
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sequence (fj)j<ω0
assuming for it the previous property. So we have for all j < ω0,

‖ fj ‖= δjγnj
and if j < i, δjγnj

> δiγni
, γnj

< γni
and δj > δi. If for some

j < ω0, δjγnj
∈

√

Λ−
nj

(we may assume nj ≥ 2), then γnj

√

Λ−
nj

= δ−1
j

√

Λ−
nj

, with

δ−1
j ∈ Λnj

, which is against property (g3) of the elements γn, n < ω0. Thus if mj =

min
{

m < ω0 | δjγnj
∈
√

Λm

}

, thenmj ≥ nj. Let j0 < ω0. Since (nj)j<ω0
is cofinal in

ω0, there exists i0 < ω0, i0 > j0 such that ni0 > mj0 . Then mi0 ≥ ni0 > mj0 > nj0 ,

furthermore δi0γni0
< δj0γnj0

, hence δi0γni0

√

Λmj0
< δj0γnj0

√

Λmj0
=

√

Λmj0
and

therefore δi0γni0
< 1. This implies that {δiγni

| i < ω0} is coinitial in
√

∆·. Thus
lim
j<ω0

fj = 0, and it is proved that, if ρ = ω0, each strictly decreasing, norm-orthogonal

sequence converges to 0. �

By means of this proposition, it follows from [6], Theorem 3.2.1 (see also Propo-
sition 2.3.2 of [6]) and from [4], Lemma 5.2 (the proof is valid also in this more
general situation) that for a countable ρ, with cfρ = ω0, E(ρ, (Λξ)ξ<ρ, (γξ)ξ<ρ, F ) is
a form-Hilbert space if and only if ρ = ω0. Hence summarizing, we have:

Theorem 2. The generalized Keller spaces E(ρ, (Λξ)ξ<ρ, (γξ)ξ<ρ, F ) for infinite ρ
are form-Hilbert spaces if and only if ρ = ω0.

We give now an example of a generalized Keller space E(ω0, (Λξ)ξ<ω0
, (γξ)ξ<ω0

,
F ) for which the value group ∆· =

⋃

ξ<ω0

Λξ does not satisfy the condition of Propo-

sition 1.4.4 of [5]. For ρ = ω0, this condition is equivalent to that each subset of
∆·, which is bounded above, is of cofinal type ≤ ω0. We use additive notation for
the operation of ∆·. The group ∆· will be constructed from totally ordered abelian
groups of the form

∏

f
ξ<λ

Z (such groups and their order are explained immediately be-

low the properties (g1),(g2),(g3)).Let Σ =
∏

f
ξ<ω0

Z, Σ′ =
∏

f
ξ<ω1

Z and let Λ be their direct

product Λ = Σ ⊗ Σ′, ordered lexicographically, that is (σ, σ′) < (τ, τ ′) if σ < τ or
(σ = τ and σ′ < τ ′). For n < ω0, let Σn = {σ ∈ Σ | σ(j) = 0 for all j, n < j < ω0}
and Λn = Σn ⊗ Σ′ = {(σ, σ′) ∈ Λ | σ ∈ Σn, σ

′ ∈ Σ′}. Then (Λn)n<ω0
is a strictly

increasing sequence of convex subgroups of Λ. Put ∆· =
⋃

n<ω0

Λn. Since Σ =
⋃

n<ω0

Σn,

we get ∆· = Λ. Replacing Z by 1
2
Z, we obtain in the same way, 1

2
∆· =

⋃

n<ω0

1
2
Λn, with

1
2
Λn = 1

2
Σn ⊗ 1

2
Σ′. Obviously, for all n < ω0,

1
2
Λn 6= Λn. For n < ω0, let σn ∈ 1

2
Σn

be defined by σn(n) = 1
2
, σn(j) = 0, if j < ω0, j 6= n. Put γn = (σn, 0) ∈ 1

2
Λn. It is,

if n ≥ 2, Λ−
n = Λn−1 and γn + 1

2
Λn−1 6= (σ, σ′)+ 1

2
Λn−1 for all (σ, σ′) ∈ Λn, since oth-

erwise σn = σ+ τ , with σ ∈ Σn, τ ∈ 1
2
Σn−1, and thus 1

2
= σn(n) = σ(n) + τ(n) ∈ Z,

which is absurd. Hence E(ω0, (Λξ)ξ<ω0
, (γξ)ξ<ω0

, F ) is a generalized Keller space.

We show that ∆· contains a subset which is bounded above and of cofinal type ω1.
The set

{

σ′
ξ | ξ < ω1

}

, with σ′
ξ ∈ Σ′ defined by σ′

ξ(ξ) = 1 and σ′
ξ(η) = 0 for η 6= ξ, is

cofinal in Σ′. Hence Λ0 =
{

(0, σ′
ξ) | ξ < ω1

}

is bounded above and without largest
element in ∆·. But there does not exist any countable subset of ∆· which is cofinal
in Λ0, since if this were the case, it would imply that cfΣ′ < ω1, a contradiction.
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6 Appendix

6.1 Ultrametric Pythagoras and Cauchy-Schwarz inequality .

The following lemma is well-known (see f.e. [2], Lemma 14).

Lemma 3. Let (X, ‖ ‖ ,
√

∆) be a definite space over the valued field (K,w,∆).
Then the following holds for all x, y ∈ X:

1. (”Ultrametric Pythagoras”) If < x, y >= 0, then ‖x+ y‖ = max {‖x‖ , ‖y‖}.

2. (”Cauchy-Schwarz inequality”) w(< x, y >) ≤ ‖x‖ ‖y‖.

Proof. (1): Let < x, y >= 0 and assume ‖y‖ ≤ ‖x‖. Since < x, y >= 0, we obtain
< x − y, x − y >=< x, x > + < y, y >=< x + y, x + y >, hence ‖x− y‖ =
‖x+ y‖. Thus ‖x‖ = ‖2x‖ = ‖x+ y + x− y‖ ≤ max {‖x+ y‖ , ‖x− y‖} = ‖x+ y‖
≤ ‖x‖. Therefore ‖x+ y‖ = max {‖x‖ , ‖y‖}.

(2): We may assume x 6= 0, y 6= 0. Let k =< x, y >< y, y >−1 and b = x− ky.
Then < b, y >= 0, hence < b, ky >= 0 and therefore by (1), ‖x‖ = ‖b+ ky‖ =
max {‖b‖ , ‖ky‖}. So ‖ky‖ ≤ ‖x‖. This yields with k =< x, y >< y, y >−1 that
w(< x, y >) = w(k) ‖y‖2 = ‖ky‖ ‖y‖ ≤ ‖x‖ ‖y‖. �

6.2 Cofinal and coinitial type of a totally ordered set.

Let Σ be a totally ordered set. A subset Υ of Σ is said to be cofinal in Σ (or a cofinal
subset of Σ), if for every σ ∈ Σ there exists τ ∈ Υ such that σ ≤ τ . We show that
there exists a cofinal subset Υ of Σ which is well-ordered (with respect to the order
induced by that of Σ). Let D be the set of all well-ordered subsets of Σ. We define
a partial order on D by Υ � Υ′ if Υ ⊆ Υ′ and τ ≤ τ ′ for all τ ∈ Υ, τ ′ ∈ Υ′ \ Υ. By
Zorn’s Lemma, there exists a maximal Υ ∈ D. Then Υ is cofinal in D. The cofinal
type cfΣ of Σ is the smallest ordinal λ such that Σ has a cofinal subset which is
well-ordered of ordinal type λ. The notions coinitial subset of Σ and coinitial type
ciΣ are defined in dual way.

Let λ be a limit ordinal and (σι)ι<λ a family of elements of Σ. We say that
(σι)ι<λ is cofinal (resp. coinitial) in Σ, if {σι | ι < λ} is cofinal (resp. coinitial) in Σ.

6.3 Cauchy families and completions of normed vector spaces

Let (X, ‖ ‖ ,Γ) be a normed vector space over the field (K,w,∆). Let Y be a linear
subspace of X. Then Y is with the restriction of ‖ ‖ to Y a normed vector space.
We denote this by (Y, ‖ ‖ ,Γ) ≺ (X, ‖ ‖ ,Γ) and say that X is an extension of Y .
The extension is called dense, if for every x ∈ X, each neighbourhood of x contains
an element of Y . Hence Y ≺ X is dense, if for every x ∈ X and for every 0 < γ ∈ Γ
there exists y ∈ Y such that ‖x− y‖ < γ. A dense extension Y ≺ X will be denoted
by Y de ≺ X.

Let λ be a limit ordinal and let (xι)ι<λ be a family of elements of X. (xι)ι<λ is
said to be a Cauchy family if the filter F generated by the sets Fµ = {xι | µ ≤ ι < λ}
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is a Cauchy filter with respect to the uniformity on X defined by the norm. This is
the case if for every 0 < γ ∈ Γ, there exists ι0 such that for all ι, µ, ι0 ≤ ι < µ < λ,
‖xµ − xι‖ < γ. The family (xι)ι<λ converges to x ∈ X (denoted by lim

ι<λ
xι = x), if the

filter F converges to x, that is, if for every 0 < γ ∈ Γ, there exists ι0 such that for
all ι, ι0 ≤ ι < λ, ‖x− xι‖ < γ. X is complete, if each Cauchy family of X converges
to an element of X. X is a completion of Y , if X is complete and Y de ≺ X. When
X is a completion of Y , then obviously ‖X‖ = ‖Y ‖. Indeed, let 0 6= x ∈ X. There
exists y ∈ Y such that ‖x− y‖ < ‖x‖. Thus ‖y‖ = max {‖y − x‖ , ‖x‖} = ‖x‖.

Proposition 4. Let (Y, ‖ ‖ ,Γ) ≺ (X, ‖ ‖ ,Γ) be an extension of normed vector
spaces and assume that X is complete. Then X contains a completion of Y .

Proof. Let D be the set of all linear subspaces D of X such that Y de ≺ D. D is
(partially) ordered by the relation of inclusion. Let {Di | i ∈ I} be a chain of D.
Then G =

⋃

i∈I
Di is a linear subspace of X and Y ≺ G. Since Y de ≺ Di for all i ∈ I,

Y is dense in G. Hence G ∈ D. Thus D is inductively ordered, and trivially, D 6= ∅.
So there exists, by Zorn’s Lemma, a maximal element G ∈ D.

We show that G is complete. If not, then there exists a Cauchy family (xι)ι<λ of
elements of G which has its limit z ∈ X \G. So G is properly contained in the linear
subspace G′ = G+Kz of X. We prove that Y de ≺ G′. Thus we have to show that
for every 0 < γ ∈ Γ and every g′ ∈ G′ there exists y ∈ Y such that ‖g′ − y‖ < γ. It
suffices to prove this for an element of the form g′ = g + z, g ∈ G. Since z = lim

ι<λ
xι,

xι ∈ G, there exists ι0 < λ such that ‖z − xι0‖ < γ. Because Y de ≺ G, we find
y1, y2 ∈ Y with ‖g − y1‖ < γ and ‖xι0 − y2‖ < γ. Then y = y1 + y2 ∈ Y and
‖g′ − y‖ = ‖g − y1 + z − xι0 + xι0 − y2‖ ≤ max {‖g − y1‖ , ‖z − xι0‖ , ‖xι0 − y2‖} <
γ. Thus Y de ≺ G′ and therefore G′ ∈ D. But this contradicts the maximality of G
in D. Hence G is complete.

Since furthermore Y de ≺ G, G is a completion of Y . �

6.4 Direct sums of normed vector spaces.

Let I 6= ∅ be a set and (Xi)i∈I a family of normed vector spaces (Xi, ‖ ‖ ,Γ) over the
valued field (K,w,∆). The cartesian product

∏

i∈I
Xi is (by pointwise addition and

multiplication by scalars) a vector space over K. As mentioned in [6], the subset
⊕

i∈I
Xi of elements f ∈ ∏

i∈I
Xi, for which for every 0 < ε ∈ Γ the set {i ∈ I | ‖f(i)‖ ≥ ε}

is finite, is a normed linear subspace of
∏

i∈I
Xi with respect to the norm ‖f‖ =

max {‖f(i)‖ | i ∈ I} ∈ Γ. The normed vector space (
⊕

i∈I
Xi, ‖ ‖ ,Γ) is called the

direct sum of the family (Xi)i∈I . If all the spaces Xi, i ∈ I, are complete, also
⊕

i∈I
Xi is complete. Let

∏

f
i∈I

Xi be the linear subspace of
⊕

i∈I
Xi, which consists of all f ,

for which supp(f) = {i ∈ I | f(i) 6= 0} is finite. Obviously,
∏

f
i∈I

Xi is dense in
⊕

i∈I
Xi.

Hence if all Xi, i ∈ I, are complete,
⊕

i∈I
Xi is the completion of

∏

f
i∈I

Xi.
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Proposition 5. Let (
⊕

i∈I
Xi, ‖ ‖ ,Γ) be the direct sum of the family (Xi)i∈I .

If cfΓ ≥ ω1, then
⊕

i∈I
Xi =

∏

f
i∈I

Xi. If cfΓ = ω0, then for each f ∈ ⊕

i∈I
Xi \

∏

f
i∈I

Xi,

supp(f) is countable and lim
n<ω0

f(jn) = 0 for any enumeration j1, j2, ... of supp(f).

Proof. 1) We first show the following: Let f ∈ ⊕

i∈I
Xi and assume, supp(f) is infinite.

Let (γn)n<ω0
be any sequence of Γ· and i1 any element of supp(f). Then there

exist elements in ∈ supp(f), 2 ≤ n < ω0, such that for all n < ω0, ‖f(in+1)‖ <
min {‖f(in)‖ , γn}.

This follows immediately by induction. Indeed, let i1, i2, ..., in be elements of
supp(f) with the property from above. Then there exists in+1 ∈ supp(f) such that
‖f(in+1)‖ < min {‖f(in)‖ , γn}, since {i ∈ supp(f) | ‖f(i)‖ ≥ min {‖f(in)‖ , γn}} is
finite and supp(f) is infinite.

2) Let cfΓ ≥ ω1 and assume that there exists f ∈ ⊕

i∈I
Xi such that supp(f)

is infinite. We choose an arbitrary i1 ∈ supp(f) and put γn = ‖f(i1)‖ for all
n < ω0. By part 1), there exist in ∈ supp(f), 2 ≤ n < ω0, such that the sequence
(‖f(in)‖)n<ω0

is strictly decreasing. Since ciΓ· = cfΓ ≥ ω1, (‖f(in)‖)n<ω0
is not

coinitial in Γ·. So there exists 0 < γ ∈ Γ such that for all n < ω0, ‖f(in)‖ > γ. But
then f /∈ ⊕

i∈I
Xi, a contradiction. This proves that

⊕

i∈I
Xi =

∏

f
i∈I

Xi.

We treat now the case cfΓ = ω0. Let f ∈ ⊕

i∈I
Xi \

∏

f
i∈I

Xi. Since ciΓ· = ω0,

there exists a strictly decreasing sequence (γn)n<ω0
which is coinitial in Γ·. Let

i1 ∈ supp(f) and choose in ∈ supp(f), 2 ≤ n < ω0, according to part 1). For
each n < ω0, the set Jn = {i ∈ supp(f) | ‖f(i)‖ ≥ ‖f(in)‖} is finite. Hence

⋃

n<ω0

Jn

is countable. This implies, since (‖f(in)‖)n<ω0
is coinitial in Γ·, that supp(f) is

countable.

Let now j1, j2, ... be any enumeration of supp(f). Let 0 < ε ∈ Γ. Since ‖f(i)‖ ≥
ε for only finitely many i ∈ supp(f), there exists n0 < ω0 such that for all n,
n0 ≤ n < ω0, ‖f(jn)‖ < ε. Hence lim

n<ω0

f(jn) = 0. �

A norm-orthogonal set B = {ei | i ∈ I} of elements 6= 0 of a Banach space X is
said to be a norm-orthogonal base of X, if the linear span of B is dense in X. A
subset B of X is an algebraic base if B is linear independent and if the linear span
of B is equal to X.

We obtain as a corollary from the preceding proposition:

Theorem 3. Let (X, ‖ ‖ ,Γ) be a Banach space with cfΓ ≥ ω1. Then every norm-
orthogonal base of X is an algebraic base.

Proof. Let B = {ei | i ∈ I} be a norm-orthogonal base of X. The mapping ϕ :
∏

f
i∈I

Kei → X, f 7−→ ∑

i∈supp(f)
f(i) is linear and norm preserving.

∏

f
i∈I

Kei is mapped

under ϕ onto the linear span F of B over K. Hence since by the previous proposition
∏

f
i∈I

Kei is complete, also F is complete. Thus F = X. �
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6.5 Spherical completeness of fields of formal power series.

Let Γ· = Γ \ {0} be a totally ordered abelian group, F a field and H = H(Γ·, F ) the
field of formal power series (from Γ· to F ).

Proposition 6. H = H(Γ·, F ) is spherically complete with respect to the valuation
w : H → Γ, 0 6= f 7→ max supp(f), 0 7→ 0.

Proof. Let B = {Bi | i ∈ I} be a chain of balls of H . We have to show that
⋂

B 6= ∅.
This is clear, if B has a smallest element. Therefore we assume now that B is
without smallest element. Then the coinitial type ciB is a limit ordinal λ. Thus
there exists a strictly decreasing family (Bι)ι<λ of balls Bι = Bγι

(fι) ∈ B, labelled
by ordinals, such that {Bι | ι < λ} is coinitial in B. We define a mapping f : Γ· → F
by f(γ) = fι(γ), if there exists ι < λ such that γ > γι, otherwise f(γ) = 0.

We have to show that f is well-defined. Assume γ > γι and γ > γι′ with
ι < ι′ < λ. Then γι > γι′ and fι′ ∈ Bγι

(fι), hence w(fι′ − fι) ≤ γι and therefore
fι′(γ) = fι(γ). Thus f is well-defined.

We prove that supp(f) is dually well-ordered. Let Υ be a non-empty subset
of supp(f). Let γ ∈ Υ. Since f(γ) 6= 0, there exists ι < λ such that γ > γι

and f(γ) = fι(γ). Hence γ ∈ Υ ∩ supp(fι). Let γ0 = max (Υ ∩ supp(fι)). Then
γ0 ≥ γ > γι. If γ′ > γ0, then γ′ > γι and therefore f(γ′) = fι(γ

′). Hence if
fι(γ

′) 6= 0, then γ′ /∈ Υ. Thus γ0 is the largest element of Υ. This shows that
supp(f) is dually well-ordered.

So f ∈ H . Since for all ι < λ, w(f − fι) ≤ γι, f ∈ ⋂

ι<λ
Bι =

⋂

B. Hence H is

spherically complete. �
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