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Abstract

In this paper, we shall study the unicity of meromorphic functions defined
over non-Archimedean fields of characteristic zero such that their valence func-
tions of poles grow slower than their characteristic functions. If f is such a
function, and f and a linear differential polynomial P (f) of f , whose coeffi-
cients are meromorphic functions growing slower than f , share one finite value
a CM, and share another finite value b (6= a) IM, then P (f) = f .

1 Introduction.

In 1929, R. Nevanlinna studied the unicity of meromorphic functions in C. The
five value theorem due to R. Nevanlinna states that if two non-constant meromor-
phic functions f and g in C share five distinct complex numbers aj IM (ignoring
multiplicity), which means

f−1(aj) = g−1(aj), j = 1, 2, ..., 5

in the sense of sets, then it follows that f = g. The four value theorem of R.
Nevanlinna states that if two non-constant meromorphic functions f and g in C
share four distinct complex numbers aj CM (counting multiplicity), which means

f−1(aj) = g−1(aj), j = 1, 2, ..., 4

in the sense of counting multiplicities, then f is some Möbius transformation of g.
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In 1977, replacing the function g by the first derivative f ′ of f , L. Rubel and
C. C. Yang proved that if f is an entire function in C such that f and f ′ share
only two distinct finite complex numbers a, b CM, then f = f ′. Further, it has
been generalized to IM value sharing assumptions by E. Mues and N. Steinmetz,
and independently by G. G. Gundersen when ab 6= 0. Afterwards, there are a
lot of researches along this direction. For example, G. Frank etc. proved that a
meromorphic function f in C and its m-th derivative f (m) are equal if they share
two distinct finite complex numbers CM. E. Mues and M. Reinders, G. Frank and
X. H. Hua, and P. Li continuously obtained that a meromorphic function f in C is
equal to a linear differential polynomial P (f) of f if f and P (f) share three distinct
finite complex numbers IM. In particular, when f in C is entire, C. A. Bernstein,
C. D. Chang and B. Q. Li, and P. Li and C. C. Yang also obtained the relationship
f = P (f) if and only if f and P (f) share two distinct finite complex numbers CM
(see, e.g., [1], [8], [10], [11] or [12]).

Let κ be an algebraically closed field of characteristic zero, complete for a non-
trivial non-Archimedean absolute value | · |. Let f and g be two non-constant
meromorphic functions on κ. A unicity theorem (cf. [7]) states that if f and g share
two distinct values a, b CM, then there exists some non-zero constant c ∈ κ such
that

c =
f − a

f − b
· g − b

g − a
. (1)

To determine f and g completely, we need other conditions to determine the constant
c. For example, c = 1 if there exists a point z0 ∈ κ such that f(z0) = g(z0) (6= a, b).
In this paper, we replace the function g by a linear differential polynomial of f with
the following expression

P (f) = b−1 + b0f + b1f
′ + · · ·+ bmf

(m), (2)

where m ≥ 1 is an integer, and bi are meromorphic functions in κ with bm(z) 6≡ 0
such that their characteristic functions grow slower than that of f , that is

T (r, bi) = o(T (r, f)), i = −1, 0, 1, ...,m as r →∞. (3)

Now, our main theorem states

Theorem 1.1. Let f be a non-constant meromorphic function on κ satisfying

N̄(r, f) = o(T (r, f)). (4)

If f and P (f) share a finite value a CM, and share another finite value b (6= a) IM,
then P (f) = f .

Conversely, it is easy to show that the condition P (f) = f implies the relation
(4). A natural question is that, under the condition (4), if f and P (f) share two
distinct finite values a, b IM, whether the relation P (f) = f still holds or not.
Further, we have the following

Corollary 1.2. Let f be a transcendental entire function on κ, or more generally,
a transcendental meromorphic function on κ having finitely many poles. If f and
P (f) share a finite value a CM, and share another finite value b (6= a) IM, then
P (f) = f .
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2 Preliminaries.

In this section, we recall some basic notations and information related to our proofs
of Theorem 1.1 and other results. Let κ be stated as in the previous section, and
let A(κ) be the ring of entire functions on κ. Then each f ∈ A(κ) can be given by
a power series

f(z) =
∞∑

n=0

anz
n

with coefficients in κ such that for any z ∈ κ, we have |anz
n| → 0 as n→∞. For a

positive real r, the maximum term of f is defined to be

µ(r, f) = max
n≥0

|an|rn.

Let n
(
r, 1

f

)
denote the counting function of zeros of f , which is the number of zeros

(counting multiplicities) of f in the disc κ[0; r] = {z ∈ κ | |z| ≤ r}. The following
fact is fundamental

n

(
r,

1

f

)
= max

n≥0

{
n
∣∣∣|an|rn = µ(r, f)

}
.

Fix a real number ρ0 > 0. For r > ρ0, define the valence function of zeros of f by

N

(
r,

1

f

)
=
∫ r

ρ0

n
(
t, 1

f

)
t

dt.

Then we have the following Jensen Formula

N

(
r,

1

f

)
= log µ(r, f)− log µ(ρ0, f).

We also denote the number of distinct zeros of f in κ[0; r] by n̄
(
r, 1

f

)
and define the

refined valence function to be

N̄

(
r,

1

f

)
=
∫ r

ρ0

n̄
(
t, 1

f

)
t

dt.

Let nk)

(
r, 1

f

) (
resp. n(k

(
r, 1

f

))
denote the number of zeros of f in κ[0; r] with

multiplicities no more (resp. less) than k and define Nk)

(
r, 1

f

) (
resp. N(k

(
r, 1

f

))
as above; n̄k)

(
r, 1

f

) (
resp. n̄(k

(
r, 1

f

))
and thus N̄k)

(
r, 1

f

) (
resp.

(
N̄(k

(
r, 1

f

))
are

similarly defined.

The fractional field of A(κ) is denoted by M(κ). An element f in the field
M(κ) will be called a meromorphic function on κ. Next, let f be a non-constant
meromorphic function in κ. Since the greatest common factors of any two elements
in A(κ) exist, there exist f0, f1 ∈ A(κ) with f = f0

f1
such that f0 and f1 have no

common factors in the ring A(κ). We can uniquely extend µ to a meromorphic
function f by defining

µ(r, f) =
µ(r, f0)

µ(r, f1)
.
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Define the compensation function of f by

m(r, f) = max
{
0, log µ(r, f)

}
.

As usual, we define the characteristic function of f by

T (r, f) = m(r, f) +N(r, f),

where N(r, f) = N
(
r, 1

f1

)
is the valence function of poles of f . Then, the first main

theorem (cf. [3] or [7]) claims

T (r, f) = m

(
r,

1

f − a

)
+N

(
r,

1

f − a

)
+O(1) (5)

for any a ∈ κ. Further, we have the basic formula (cf. [7])

T (r, f) = max

{
N

(
r,

1

f − a

)
, N

(
r,

1

f − b

)}
+O(1) (6)

for any two distinct values a, b ∈ κ ∪ {∞}.
The lemma of the logarithmic derivative now states that for any positive integer

k > 0,

µ

(
r,
f (k)

f

)
≤ 1

rk
,

which further means

m

(
r,
f (k)

f

)
≤ k log+ 1

r
= O(1). (7)

The Jensen formula can be generalized into the following form (cf. [7])

T

(
r,
Af

Bf

)
= max(p, q)T (r, f) +O

 p∑
i=0

T (r, ui) +
q∑

j=0

T (r, vj)

 , (8)

where Af =
p∑

i=0
uif

i and Bf =
q∑

j=0
vjf

j are two coprime polynomials of f of degrees

p and q, respectively, and ui, vj ∈M(κ) for all i = 0, 1, . . . , p and j = 0, 1, . . . , q.

The second main theorem (cf. [3] or [7]) states that for q distinct finite values
a1, a2, . . . , aq of κ,

(q − 1)T (r, f) ≤ N(r, f) +
q∑

i=1

N

(
r,

1

f − ai

)
−NRam(r, f)− log r +O(1)

≤ N̄(r, f) +
q∑

i=1

N̄

(
r,

1

f − ai

)
− log r +O(1),

where NRam(r, f) is defined by

NRam(r, f) = 2N(r, f)−N(r, f ′) +N

(
r,

1

f ′

)
,

and is called the ramification term of f .

For more details on functional analysis over non-Archimedean fields, we refer the
reader to books [6], [7] or [9].
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3 Proof of Theorem 1.1.

Set g := P (f). Without loss of generality, we may suppose a = 0. Otherwise, it is
sufficient to consider F = f − a and G = g − a.

At first, we consider the case that f and g share the two distinct finite values
0, b CM under the condition (4). By a basic unicity theorem in [7], there exists a
non-zero constant c ∈ κ such that

f

f − b
· g − b

g
= c, (9)

which implies that

f(g − b) = cg(f − b). (10)

If c = 1, then f = g, and so we are done. Next, suppose c 6= 1 and a contradiction
will be deduced. We rewrite (10) as

(g − b){(1− c)f + cb} = cb(f − b).

Then, we have

f − d =
cb

1− c
· f − b

g − b
,

where d := cb
c−1

6= 0, b. Since f and g share b CM, the zeros of f −d come from poles
of g, so

N

(
r,

1

f − d

)
≤ mN̄(r, f) + o(T (r, f)) = o(T (r, f)).

By using the formula (6), we obtain

N(r, f) 6= o(T (r, f)).

Thus, f and g have at least one common pole, say z0. Letting z → z0 in (9), we
immediately obtain c = 1. This is a contradiction. So, we derive f = g.

Now, we consider the general case under the assumptions of Theorem 1.1. Write

ϕ :=
f ′(f − g)

f(f − b)
. (11)

Note that

ϕ =
f ′

f − b
− b−1

b

{
f ′

f − b
− f ′

f

}
− f ′

f − b

m∑
i=0

bi
f (i)

f
.

Then the lemma of the logarithmic derivative yields immediately

m(r, ϕ) = o(T (r, f)).

Since f and g share 0 CM and b IM with the condition (4), we easily obtain an
estimate

N(r, ϕ) ≤ (m+ 1)N̄(r, f) +
m∑

i=−1

N(r, bi) = o(T (r, f)). (12)
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Therefore,

T (r, ϕ) = o(T (r, f)).

Similarly, we can prove that the function

ψ :=
f ′

f
− g′

g
(13)

satisfies

T (r, ψ) = o(T (r, f)).

Assume, to the contrary, that f 6≡ g. Thus ϕ 6≡ 0. From (11), we have

ϕ
f − b

f ′
≡ 1− g

f
.

By taking the derivative on both sides of the above equation and substituting (13)
into the resulted one, we have

ϕ′
f − b

f ′
+ ϕ

(
1− (f − b)f ′′

(f ′)2

)
≡ ψ

(
1− ϕ

f − b

f ′

)
,

which can be rewritten as

(ϕ− ψ)
f ′

f − b
− ϕ

f ′′

f ′
+ ϕ′ + ψϕ ≡ 0. (14)

We will distinguish three cases to study equation (14).

(i) ϕ− ψ ≡ 0. For this case, equation (14) becomes

−f
′′

f ′
+
ϕ′

ϕ
+
f ′

f
− g′

g
≡ 0. (15)

From (11), we have
ϕ′

ϕ
=
f ′′

f ′
+
f ′ − g′

f − g
− f ′

f
− f ′

f − b
.

Substituting this into (15), we obtain

f ′ − g′

f − g
=

f ′

f − b
+
g′

g
,

which means that the Wronskian determinant satisfies∣∣∣∣∣∣∣
f − g g(f − b)

f ′ − g′ f ′g + g′(f − b)

∣∣∣∣∣∣∣ ≡ 0.

Thus f−g and g(f−b) are linearly dependent. There exists a constant c ∈ κ (c 6= 0)
such that

f − g ≡ cg(f − b).
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If z0 is a zero of f − b and g − b with multiplicities p and q, respectively, then
the Taylor expansions of f and g around z0 are respectively

f(z) = b+
∞∑

n=p

An(z − z0)
n

and

g(z) = b+
∞∑

n=q

Bn(z − z0)
n.

By simple calculations, we find

p = q, bcAn = An −Bn (n ≥ p). (16)

Therefore, f and g share b CM, and hence f = g. This is a contradiction.

(ii) ϕ−kψ ≡ 0 for some integer k (> 1). Then equation (14) can be rewritten as

(
1− 1

k

)
f ′

f − b
− f ′′

f ′
+
ϕ′

ϕ
+
f ′

f
− g′

g
≡ 0.

By similar arguments as above, we can obtain

f ′ − g′

f − g
=

1

k
· f ′

f − b
+
g′

g
,

that is, the Wronskian determinant satisfies∣∣∣∣∣∣∣∣∣∣
f − b (f−g

g
)k

f ′ k (f−g)k−1

gk+1 {g(f ′ − g′)− g′(f − g)}

∣∣∣∣∣∣∣∣∣∣
≡ 0.

Hence f−b and
(

f−g
g

)k
are linearly dependent. There exists a constant d ∈ κ (d 6= 0)

such that

f = b+ d

(
f − g

g

)k

= b+ d

(
f

g
− 1

)k

.

By applying the estimate (8), we have

kT

(
r,
f

g

)
= T (r, f) +O(1). (17)

On the other hand, the poles of g
f

come only from poles of g, since f and g share
0 CM. So,

N

(
r,
g

f

)
≤ mN̄(r, f) + o(T (r, f)) = o(T (r, f)).

Similarly, we also have

N

(
r,
f

g

)
= o(T (r, f)).
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By using the formula (6), we have

T

(
r,
f

g

)
= max

{
N

(
r,
f

g

)
, N

(
r,
g

f

)}
+O(1) = o(T (r, f)).

This is a contradiction to (17), and so we can rule out of the case (ii), too.

(iii) ϕ− kψ 6≡ 0 for any integer k ≥ 1. For this case, we claim

N̄

(
r,

1

f − b

)
= o(T (r, f)). (18)

Let z0 be a zero of f − b with multiplicity p ≥ 1. If ϕ(z0) 6= ∞, from (14) it is easy
to show

ϕ(z0)− pψ(z0) = 0.

Thus we obtain

N̄m+1)

(
r,

1

f − b

)
≤ N̄(r, ϕ) +

m+1∑
p=1

N̄

(
r,

1

ϕ− pψ

)
= o(T (r, f)). (19)

Next, assume p ≥ m+ 2. If bi(z0) 6= ∞ (i = −1, 0, ...,m), g(z0) = b yields

b = b−1(z0) + bb0(z0).

If b−1(z) + b0(z)b 6≡ b, we obtain

N̄(m+2

(
r,

1

f − b

)
≤ N̄

(
r,

1

b−1 + bb0 − b

)
+

m∑
i=−1

N̄(r, bi) = o(T (r, f)).

If b−1(z) + b0(z)b ≡ b, we have

g − f ≡ (b0 − 1)(f − b) +
m∑

i=1

bif
(i),

which means that z0 is a multiple zero of f − g, and thus a zero of ϕ when bi(z0) 6=
∞ (i = −1, 0, ...,m). Therefore,

N̄(m+2

(
r,

1

f − b

)
≤ N̄

(
r,

1

ϕ

)
+

m∑
i=−1

N̄(r, bi) = o(T (r, f)).

Hence we obtain

N̄

(
r,

1

f − b

)
= N̄m+1)

(
r,

1

f − b

)
+ N̄(m+2

(
r,

1

f − b

)
= o(T (r, f)).

The claim (18) is proved completely. Applying the second main theorem to f and
three values 0, b,∞, then (4) and (18) yield immediately

T (r, f) = N̄

(
r,

1

f

)
+ o(T (r, f)).
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Combining the above equality, the first main theorem with the fact that

N

(
r,

1

f

)
≥ N̄

(
r,

1

f

)
+

1

2
N(2

(
r,

1

f

)
≥ N̄

(
r,

1

f

)

derives that

N(2

(
r,

1

f

)
= o(T (r, f))

and

T (r, f) = N1)

(
r,

1

f

)
+ o(T (r, f)). (20)

The condition (4) and (18) imply that the function

η :=
f ′

f − b
− g′

g − b
(21)

satisfies

T (r, η) = N(r, η) +O(1) ≤ N̄

(
r,

1

f − b

)
+ o(T (r, f)) = o(T (r, f)).

Similarly, we can obtain the equation

(ϕ− η)
f ′

f
− ϕ

f ′′

f ′
+ ϕ′ + ηϕ ≡ 0. (22)

We claim ϕ− η ≡ 0. Assume, to the contrary, that ϕ− η 6≡ 0. If z0 is a simple zero
of f , then z0 also is a simple zero of g, and so ϕ(z0) 6= ∞, η(z0) 6= ∞. It is easy to
show ϕ(z0)− η(z0) = 0 from (22). Thus we obtain an estimate

N1)

(
r,

1

f

)
≤ N̄

(
r,

1

ϕ− η

)
= o(T (r, f)).

Combining this with (20) yields a contradiction immediately. Hence ϕ− η ≡ 0. So
from (22), we obtain

−f
′′

f ′
+
ϕ′

ϕ
+

f ′

f − b
− g′

g − b
≡ 0.

In an analogous way as in case (i), we can obtain

f − g ≡ c0f(g − b) (c0 ∈ κ, c0 6= 0),

and similarly prove that f and g share b CM. It follows that f = g, a contradiction
again.

Therefore from the discussions in cases (i), (ii) and (iii), we find that it must be
f = g. The proof of Theorem 1.1 is finished completely.
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4 f and P (f) share two values IM.

Let f be a non-constant meromorphic function on κ satisfying the assumption (4),

and let P (f) be defined by (2). We further define NE

(
r, 1

f

)
to be the valence

function of common zeros of f and P (f) with the same multiplicities, and N̄E

(
r, 1

f

)
the corresponding refined valence function.

Proposition 4.1. Let f be a non-constant meromorphic function on κ satisfying
the assumption (4), and let P (f) be defined by (2). Assume that f and P (f) share
two distinct finite values a, b IM. Then we have either P (f) = f or

N̄

(
r,

1

f − b

)
≤ (m+ 1)

{
N̄

(
r,

1

f − a

)
− N̄E

(
r,

1

f − a

)}
+ o(T (r, f)).

Proof. Set g = P (f), a = 0 and define ϕ, ψ as in the proof of Theorem 1.1. First of
all, we assume

N̄

(
r,

1

f

)
6= o(T (r, f)).

We also get

T (r, ϕ) = o(T (r, f)),

and

T (r, ψ) = N(r, ψ) +O(1) = N̄(r, ψ) +O(1)

≤ N̄

(
r,

1

f

)
− N̄E

(
r,

1

f

)
+O(1). (23)

Next we distinguish two cases.

(i) ϕ− kψ ≡ 0 for some integer k ≥ 1. Then by (12) and (23), we know that f
and g share 0 CM, since poles of ϕ and ψ cannot coincide each other. Meanwhile
(16) or (17) still holds, thus we get either a contradiction or f = g from Theorem 1.1.

(ii) ϕ − kψ 6≡ 0 for any integer k ≥ 1. According to the proof of Theorem 1.1,
we have

N̄(m+2

(
r,

1

f − b

)
= o(T (r, f)).

Now the estimate (19) still holds, and hence

N̄m+1)

(
r,

1

f − b

)
≤ (m+ 1)T (r, ψ) + o(T (r, f))

≤ (m+ 1)

{
N̄

(
r,

1

f

)
− N̄E

(
r,

1

f

)}
+ o(T (r, f)).

Therefore,

N̄

(
r,

1

f − b

)
≤ (m+ 1)

{
N̄

(
r,

1

f

)
− N̄E

(
r,

1

f

)}
+ o(T (r, f)).
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Finally, we consider the case

N̄

(
r,

1

f

)
= o(T (r, f)).

By the proof above, we can still get that either f = g or

N̄

(
r,

1

f − b

)
= o(T (r, f)).

However, if the latter case holds, the second main theorem yields

T (r, f) ≤ N̄(r, f) + N̄

(
r,

1

f

)
+ N̄

(
r,

1

f − b

)
+O(1) = o(T (r, f)).

This is a contradiction, and so it must be f = g. The proof finishes completely. �

5 No condition (4).

Theorem 5.1. Let f be a non-constant meromorphic function on κ, and let P (f)
be defined by (2). If f and P (f) share two distinct finite values a CM and b IM,
then we have either P (f) = f or

N

(
r,

1

f − a

)
6= o(T (r, f)).

Proof. Set g = P (f), a = 0 as in the proof of Theorem 1.1. Assume, to the contrary,
that f 6≡ g and

N

(
r,

1

f

)
= o(T (r, f)).

Since f and g share 0 CM, we also have

N

(
r,

1

g

)
= o(T (r, f)).

Then from the formula (6), we obtain

T (r, f) = N(r, f) + o(T (r, f)),

and
T (r, g) = N(r, g) + o(T (r, f)). (24)

By considering the poles of g, it is easy to show

N(r, g) = N(r, f) +mN̄(r, f) + o(T (r, f)). (25)

The second main theorem yields immediately

T (r, g) ≤ N̄(r, g) + N̄

(
r,

1

g − b

)
+ o(T (r, f)). (26)
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Since

N̄

(
r,

1

g − b

)
≤ N

(
r,

1
g
f
− 1

)
≤ T

(
r,
g

f

)
+O(1)

= max

{
N

(
r,
g

f

)
, N

(
r,
f

g

)}
+O(1)

= N

(
r,
g

f

)
+ o(T (r, f))

≤ mN̄(r, f) + o(T (r, f)), (27)

we obtain

T (r, g) ≤ (m+ 1)N̄(r, f) + o(T (r, f)) ≤ N(r, g) + o(T (r, f)),

which together with the first main theorem implies

T (r, g) = (m+ 1)N̄(r, f) + o(T (r, f)). (28)

Comparing (24), (25) and (28), we find

N(r, f) = N̄(r, f) + o(T (r, f)),

and hence
T (r, f) = N̄(r, f) + o(T (r, f)). (29)

By using (26), (27) and (28), we also obtain

N̄

(
r,

1

f − b

)
= N̄

(
r,

1

g − b

)
= mN̄(r, f) + o(T (r, f)). (30)

Thus it follows that m = 1.
Consider the function

φ :=
g

f 2
.

Since f and g share 0 CM, m = 1, and N(2(r, f) = o(T (r, f)), it is obvious that

N

(
r,

1

φ

)
= o(T (r, f))

and

N(r, φ) ≤ N

(
r,

1

f

)
+ o(T (r, f)) = o(T (r, f)).

Therefore,

T (r, φ) = max

{
N(r, φ), N

(
r,

1

φ

)}
+O(1) = o(T (r, f)).

If z0 is a zero of f − b, then φ(z0) = 1
b
. If φ 6≡ 1

b
, we have

N̄

(
r,

1

f − b

)
≤ N̄

(
r,

1

φ− 1
b

)
≤ T (r, φ) +O(1) = o(T (r, f)),
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which contradicts against (29) and (30).

Therefore, it must be φ = 1
b
, and so bg ≡ f 2. Then f has no zeros. Note that

b(g − b) ≡ (f − b)(f + b).

Then f + b also has no zeros, since f and g share b IM. The formula (6) yields
directly

T (r, f) = max

{
N

(
r,

1

f

)
, N

(
r,

1

f + b

)}
+O(1) = O(1),

which also is impossible since T (r, f) →∞. The theorem is proved completely. �

6 Final notes.

The meromorphic function f in Theorem 1.1 is a solution of the linear differential
equation

w(m) + amw
(m−1) + · · ·+ a2w

′ + a1w + a0 = 0. (31)

In [7], P. C. Hu and C. C. Yang proved that (31) has no transcendental meromorphic
solutions provided that the coefficients are constants.

Take a prime number p. Here we consider the field κ = Cp, completion of the
algebraic closure of the field Qp of p-adic numbers. Let Q̄ be the algebraic closure
of Q in the field Cp. A. Boutabaa ([2], [4]) studied meromorphic solutions of (31)
and proved the following

Theorem 6.1. Suppose that the equation (31) is such that a1(z), ..., am(z) ∈ Q̄(z),
a0(z) ≡ 0, and let w(z) ∈M(Cp) be a solution of (31). Then w(z) ∈ Cp(z).

If a1(z), ..., am(z) are not all in Q̄(z), A. Boutabaa ([4], [5]) shows that the
Gaussian differential equation

z(1− z)
d2w

dz2
+ (c− (a+ b+ 1)z)

dw

dz
− abw = 0 (32)

does have transcendental entire solutions on Cp, where a, b, c are constants. We
think it is interesting to further study the equation (31).
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