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Abstract

In this paper, we study some Banach algebras with this property that each

linear isometry between them induces a Banach algebra isometry. We obtain

a Banach-Stone type theorem between Baire functions defined on completely

regular spaces. As a consequence, a similar result for the space of continuous

functions is deduced.

1 Introduction

Let X be a completely regular Hausdorff space and E a Banach space. We designate
by C(X,E) (resp. C(X)) the space of all E-valued (resp. real-valued) continuous
functions on X. The space of all members of C(X,E) (resp. C(X)) with relatively
compact ranges is denoted by C◦(X,E) (resp. C◦(X)).
The celebrated Banach-Stone Theorem says that if K and Q are compact Hausdorff
spaces and T is a linear isometric isomorphism of C(Q) onto C(K), then there is a
homeomorphism ϕ from K onto Q and a continuous unimodular function h on K
such that for each f ∈ C(Q),

Tf(t) = h(t)f(ϕ(t)) for each t ∈ K.

This Theorem has been generalized in three directions:
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1. Holsztynski [4] proved a similar result for nonsurjective isometries.

2. Behrends and some other authors investigated and extended this result for
vector-valued cases ([2, 3, 5, 14, 17, 19]).

3. Kadison [11] gave a similar theorem for C∗-algebras. The Kadison’s Theorem
is the following: Let A and B be two C∗-algebras. Then T is a linear isometry from
A onto B, if and only if there is a unitary element v of B and a C∗-isomorphism τ
such that T = vτ .

Jayne [16] proved that each linear isometry isomorphism between βα(X), space
of Baire functions of class α on X and βα(Y ), space of Baire functions of class α
on Y induces a Banach algebra isometry isomorphism between them, when X and
Y are compact. In [29], the authors proved that any isometry ring isomorphism
between βα(X) and βα(Y ) rises to a Banach-Stone type theorem when X and Y are
perfectly normal spaces . In this paper, we establish a similar result for the spaces
of bounded Baire functions defined on completely regular Hausdorff spaces.

Let X be a topological space and β0(X) = C(X). For each ordinal number α, we
define the real-valued Baire functions of class α as the following: (see [28])

βα(X) = {f : X → R; ∃(fn)∞n=1 ⊆ ∪∞

n=1βαn
(X), and,

∀n; αn < α , fn ∈ βαn
(X) , limn→∞ fn(x) = f(x) for each x ∈ X}.

The vector valued Baire functions of class α is defined as the following: (see [29])

β0(X,E) = C(X,E),

βα(X,E) = {f : X → E; ∃(fn)∞n=1 ⊆ ∪∞

n=1βαn
(X,E), and,

∀n; αn < α , fn ∈ βαn
(X,E) , limn→∞ fn(x) = f(x) for each x ∈ X}.

The set of all elements of βα(X,E) with relatively compact ranges is denoted by
β◦

α(X,E). For each f ∈ β◦

α(X,E), ‖f‖ is defined as

‖f‖ = sup{‖f(x)‖ : x ∈ X}.

For an ordinal number α, we denote the Borel sets of multiplicative (additive) class
α by Pα (Sα), beginning with P0 = F (S0 = G), as the following (see [18]):

Pα : F ,Gδ,Fσδ, . . .

Sα : G,Fσ,Gδσ, . . .

The ambiguous sets of class α is denoted by Hα ([18]) and defined as

Hα = Sα ∩ Pα.

We also define Borel functions of class α as:

B0(X) = C(X) , B0(X,E) = C(X,E),

Bα(X) = {f : X → R : f−1(F ) ∈ Pα for each closed set F ⊆ R},



A Banach-Stone Theorem for completely regular spaces 557

Bα(X,E) = {f : X → E : f−1(F ) ∈ Pα for each closed set F ⊆ E}.

The set of all elements of Bα(X,E) (resp. Bα(X)) with relatively compact ranges
is denoted by B◦

α(X,E) (resp. B◦

α(X)).

Let X be a completely regular space. For every f : X → R, we define Z(f) =
f−1({0}) [1, 10, 12, 25, 26 ], and

Zα(X) = {Z(f) : f ∈ βα(X)} , CZα(X) = {X \ Z(f) : f ∈ βα(X)},

and Aα(X) = Zα(X) ∩ CZα(X).

(Z(X) = {Z(f) : f ∈ C(X)} , CZ(X) = {X \ Z(f) : f ∈ C(X)},

and A(X) = Z(X) ∩ CZ(X).)

The class Zα(X)(resp. class CZα(X)) is a multiplicative (resp. additive) class α
of the Baire sets of X. The elements of Aα(X) are called the two-sided Baire sets
of class α. One can show that the results about separation of Borel sets in metric
spaces are also valid for Aα(X)([6, 15, 16]). Some algebraic properties of Baire-1
functions are investigated in [7, 27].

Let E be a Banach space. The space E is canonically embedded in the second
dual E∗∗ of E. For every set H ⊆ E∗∗, we denote by w∗

1(H) the set of all limits
in E∗∗ of w∗-convergent sequences in H . Denote w∗

0E = E ⊆ E∗∗ and w∗

α(E) =
w∗

1(∪{w
∗

βE : β < α}) for every α ≤ Ω. By construction w∗

Ω(E) = w∗

1(∪{w
∗

αE : α <
Ω}). The space w∗

α(E) is called the α-Baire space for E ([6]). McWilliams proved
that w∗

α(E) is a closed subspace of E∗∗ for every ordinal α ([21]). Also, we have
w∗

α(C(X)) = βα(X) for a pseudocompact space X and w∗

α(C(Y )) = βα(βY ) for a
completely regular space Y .

Let f : X → Y , we say that f is a Baire(resp. Borel) α-continuous map if one of
the following equivalent statements holds:
(1)- Inverse image by f of every CZα(resp. Sα) set in Y is a CZα(resp. Sα) set in
X.
(2)- Inverse image by f of every Zα(resp. Pα) set in Y is a Zα(resp. Pα) set in X.
(3)- Inverse image by f of every Aα(resp. Hα) set in Y is an Aα(resp. Hα) set in
X.

When f is bijective, if f and f−1 are both Baire(resp. Borel) α-continuous, then
we say that f is a Baire(resp. Borel) α-homeomorphism between X and Y , and we
say that X and Y are Baire(resp. Borel) α-homeomorphic. It is trivial that every
continuous function is Baire(resp. Borel) α-continuous for each ordinal α .
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2 Tietze extension Theorem for Baire functions

In general, βα is not equal to Bα, see [28]. The Lebesgue-Hausdorff theorem ([18],
page 391) says that if X is metric and Y is either an n-dimensional cube [0, 1]n, or
the Hilbert cube [0, 1]N, then the first Baire and Borel classes of functions from X
to Y coincide. Rolewicz showed in [24] that if Y is a separable convex subset of
a normal linear space, the first Baire and Borel classes of functions from X to Y
coincide. Here, as a consequence of a Tietze extension type theorem, we obtain an
extension of this result for the spaces of bounded vector-valued Baire and bounded
vector-valued Borel functions on completely regular Hausdorff spaces.

We first mention some of the properties of the completely regular spaces.

Remark 2.1. By the same argument as in metric spaces [18], one can easily show
that in a completely regular hausdorff space X, we have:

(a) Every set in CZα (α ≥ 1) is the union of some countable disjoint Aα sets.
Moreover, for each A ∈ Zα, there exists a sequence (Gn)∞n=1 ⊆ ∪αn<αCZαn

such that

A = ∩∞

n=1Gn.

Similarly, for additive sets, ”CZ”, ”Z”, and ”∩” are replaced by ”Z”, ”CZ”, and
”∪”, respectively.

(b) For each sequence (Gn)∞n=1 ⊆ CZα (α ≥ 1), there exists a mutually disjoint
sequence (Hn)∞n=1 in CZα such that ∪∞

i=1Hi = ∪∞

i=1Gi and Hi ⊆ Gi for each i. In
addition, if X = ∪∞

i=1Hi, then Hi’s belong to Aα.

(c) For every sequence (Fn)∞n=1 in Zα (α ≥ 1) such that ∩∞

n=1Fn = ∅, there
exists a sequence (En)∞n=1 ⊆ Aα such that ∩∞

n=1En = ∅ and Fn ⊆ En for each n. In
particular, if A and B are two disjoint Zα sets, then there exists E in Aα such that
A ⊆ E and B ∩ E = ∅. That is, if A ∈ Zα, C ∈ CZα and A ⊆ C, then there exists
E ∈ Aα such that A ⊆ E ⊆ C ([18]).

Remark 2.2. By a similar proof as that of Lemmas 1.2 and 1.3 in [28], one can
show the following facts hold for CZα sets. Let B ⊆ A ⊆ X. If B ∈ CZα(A) (resp.
Zα(A)), then there is an element G ∈ CZα(X) (resp. Zα(X)) such that A∩G = B.
Consequently, if A ⊆ X and B ∈ Zα(A) (resp. CZα(A) or Aα(A)), then B belongs
to Zα(X) (resp. CZα(X) or Aα(X)). Moreover, if A ∈ Zα(X) and K is Aα(A), then
there exists H ∈ Aα(X) such that K = A ∩H .

In the sequel, we give a refinement of Remark 2.2 for a countable partition of A.

Lemma 2.3. Let A ∈ Zα(X) and (An)∞n=1 be a partition of A consisting of Aα(A)
sets. Then there is a partition (On)

∞

n=1 of X consisting of CZα(X) sets such that
An = On ∩ A for each n in N.

Proof. By Remark 2.2, there exists a sequence (Cn)∞n=1 consisting of Aα(X) sets
such that An = Cn ∩ A. Let O = ∪∞

n=1Cn. Then O ∈ CZα(X) and A ⊆ O. From
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Remark 2.1(c), there is an element C ∈ Aα(X) such that A ⊆ C ⊆ O. Therefore,
{Cn : n ∈ N} ∪ {Cc} is a cover of X by Aα(X) sets. By Remark 2.1(b), there is
partition {Dj : j ≥ 1} of X by Aα(X) sets such that each Di is a subset of some
sets in the above cover. It’s obvious that each Dj that intersects A is contained in
some Ci and therefore intersects An if and only if n = i. For each i ∈ N, we define:

O∗

i = ∪{Dj : Dj ∩ Ai 6= ∅}.

Thus, O∗

i ’s are CZα(X) sets and we have O∗

i ∩ O∗

j = ∅ for i 6= j. Also, for each
positive integer i, we have O∗

i ∩ A = Ai. Let O∗ be C ∪ (∪∞

i=1O
∗

i ). Then O∗ is in
CZα(X). We choose an i0 ∈ N and set Oi0 = O∗

i0
∪O∗ and for i 6= i0, we set Oi = O∗

i .
Thus (Oi)

∞

i=1 is the desired partition.

We can give a Baire-α characterization of Aα(X) sets similar to the case of perfectly
normal spaces [29].

Remark 2.4. Let X be a completely regular topological space and E be a Banach
space. We have H ∈ Aα(X) if and only if χH ∈ βα(X). Furthermore, if e ∈ E and
H ∈ Aα(X), then e χH ∈ βα(X,E) .

The Tietze extension theorem has been generalized for many cases of continuous
functions [9, 22]. Hausdorff proved a Tietze extension type theorem for real valued
Borel functions [13]. Here, we prove a Tietze extension type theorem for vector
valued Baire(Borel) functions. This theorem improves a result of Leung and Tang
in [20] for vector-valued Baire functions.

Theorem 2.5. Let A ∈ Zα(X)(resp. Pα(X)) and E be a Banach space. Each f
in β◦

α(A,E)(resp. B◦

α(A,E)) has an extension g in β◦

α(X,E)(resp. B◦

α(A,E)).

Proof. We prove the theorem for vector valued Baire functions. The proof for the
vector valued Borel functions is similar and therefore is omitted. As the range(f)
is relatively compact, therefore there exists a countable set D ⊆ E such that the
range(f) is in the norm closure of D. For each positive integer n, let Cn be the
collection of open balls of radius 1

n
in E with centers in D. Hence the range(f) is

covered by finite members of Cn, denoted by Bn. Set B
′

n = f−1(Bn). Thus B
′

n is a
cover of A and its elements are CZα(A) sets. Part (b) of Remark 2.1 implies that
B

′

n has a countable refinement consisting of mutually disjoint elements of Aα(A)
sets. Denote this refinement by Wn = {Ai,n : i ∈ In }. We can suppose that for
any n ≥ 2, Wn refines Wn−1. For W1, Lemma 2.3 implies that there is a partition
K1 = {Oi,1 : i ∈ I1} of X consisting of CZα(X) sets such that:

Ai,1 = Oi,1 ∩A.

By induction, we will obtain a partition Kn = {Oi,n : i ∈ In} of X consisting of
CZα(X) sets such that Kn is a refinement of Kn−1, and for each i ∈ In

Ai,n = Oi,n ∩ A.
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By part (b) of Remark 2.1, elements of Kn are Aα(X) sets. Let n > 1 and assume
that Kn−1 has been defined. For each i ∈ In−1, let

Ji,n = {j ∈ In : Aj,n ⊆ Ai,n−1}.

Thus {Aj,n : j ∈ Ji,n} is a finite CZα(X) partition of Ai,n. From Lemma 2.3, there
is a finite CZα(X) partition {Oj,n : j ∈ Ji,n} of Oi,n−1 such that for each j ∈ Ji,n:

Oj,n ∩ Ai,n−1 = Aj,n.

Then In = ∪{Ji,n : i ∈ In−1}, and Kn = {Oj,n : j ∈ In} is the desired Aα(X)
partition of X.
Now, for each n ≥ 1 and each i ∈ In, choose yi,n ∈ f(Ai,n). Let x ∈ X and for each
n ≥ 1 let i(x, n) ∈ In be such that x ∈ Oi(x,n),n. If m ≥ n, then Oi(x,m),m ⊆ Oi(x,n),n

and so Ai(x,m),m ⊆ Ai(x,n),n. Consequently, since f(Ai(x,n),n) has diameter at most
2/n, {yi(x,n),n : n ≥ 1} is a Cauchy sequence.
We define:

g(x) = lim
n→∞

yi(x,n),n.

Notice that
‖g(x) − yi(x,n),n‖ ≤ 2/n.

If x
′

∈ Oi(x,n),n, then i(x, n) = i(x
′

, n) and so

‖g(x) − g(x
′

)‖ ≤ ‖g(x
′

) − yi(x,n),n‖ + ‖g(x) − yi(x,n),n‖ ≤ 4/n.

If x ∈ A, then for each n ≥ 1, x ∈ Ai(x,n),n and therefore

‖g(x) − f(x)‖ ≤ 4/n.

Hence g is an extension of f .
Now, for each n ∈ N, we define

fn =
∑

i∈In

yi,nχAi,n
.

Remark 2.4 implies that fn’s are in β◦

α(X,E). Also, notice that g is the uniform limit
of fn’s and therefore, g ∈ βα(X,E). Now, we prove that the range(g) is relatively
compact and therefore, g ∈ β◦

α(X,E). Let ε > 0 be given. There is an n0 such that
‖g − fn0

‖ < ε. Set L = {yi,n0
: i ∈ In0

} and suppose that BE is the open unit ball
of E. Therefore, L is finite and range(g) ⊆ L+ εBE. Consequently, the range of g
is totally bounded and therefore, it’s relatively compact.

As an application of Theorem 2.5, we obtain an approximation theorem for β◦

α(X,E)
and B◦

α(X,E). We define:

Σβα,E = {
n∑

i=1

eiχHi
: n ∈ N, ei ∈ E and Hi ∈ Aα for each i ≤ n}.

ΣBα,E = {
n∑

i=1

eiχHi
: n ∈ N, ei ∈ E and Hi ∈ Hα for each i ≤ n}.
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Corollary 2.6. For a Banach space E, the uniform closure of Σβα,E is β◦

α(X,E)
and the uniform closure of ΣBα,E is B◦

α(X,E).

Jayne [15] obtained a necessary and sufficient condition for the equality between
Baire and Borel functions in the real case. As a consequence of Corollary 2.6, we
deduce a vector-valued version of this result.

Theorem 2.7. Let X be a completely regular space and E be a Banach space. Then
β◦

α(X,E) = B◦

α(X,E) for finite ordinal numbers(resp. β◦

α(X,E) = B◦

α+1(X,E) for
infinite ordinal numbers) if and only if β◦

α(X) = B◦

α(X) for finite ordinal num-
bers(resp. β◦

α(X) = B◦

α+1(X) for infinite ordinal numbers) if and only if Aα(X) =
Hα(X) for finite ordinal numbers (resp. Aα(X) = Hα+1(X) for infinite ordinal
numbers ).

In the following result we obtain a Banach-Stone type theorem between spaces of
bounded Baire functions defined on completely regular Hausdorff spaces.

Theorem 2.8. Let X and Y be two completely regular spaces with the property that
each singleton is in Zα(X) and Zα(Y ), respectively. If ϕ : β◦

α(Y ) → β◦

α(X) is a sur-
jective isometric linear isomorphism, then there exists a Baire α-homeomorphism,
τ : X → Y , and a unimodular Baire-α function h ∈ β◦

α(X) such that

ϕ(f)(x) = h(x) (f ◦ τ)(x) for each f ∈ β◦

α(Y ).

Proof. Kadison’s theorem implies that there is a unimodular Baire-α function
h ∈ β◦

α and a Banach algebra isometry ψ such that ϕ(f) = h ψ(f). Now by the
same argument as that of Theorem 2.1 in [29], there exists a Baire-α homeomor-
phism τ such that ψ(f) = f ◦ τ . Therefore, the proof is complete.

Remark 2.9 Let X and Y be two completely regular spaces with the property that
each singleton is in Pα(X) and Pα(Y ), respectively. By the same argument as that of
Theorem 2.1 in [29], we can show that if ϕ : B◦

α(Y ) → B◦

α(X) is a surjective isometric
linear isomorphism, then there exists a Borel α-homeomorphism τ : X → Y and a
unimodular Borel-α function h ∈ B◦

α(X) such that, we have

ϕ(f)(x) = h(x) (f ◦ τ)(x), for each f in B◦

α(Y ).

Choban [6] investigated some properties of the following compactification for
a completely regular space X denoted by bαX. Let PX be the set X with the
topology generated by the Gδ(X) sets for a completely regular Hausdorff space X.
The topology of the space PX is called the Baire topology of the space X. If
β1(X) ⊆ K ⊆ βΩ(X), where Ω is the first uncountable ordinal number, then PX =
(X, τK), where τK is the weakest topology on X generated by K. We define

bαX = The compactification of (X, τβα(X)).

The compact space bαX is called the maximal ideal space of the α-th Baire class
βα(X). We say that the Banach space E has the Banach-Stone property if for each
(locally) compact Hausdorff spaces X1 and X2, C(X1, E) and C(X2, E) are linearly
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isometric, then X1 and X2 are topologically homeomorphic. Jerison [17] proved that
if E is a real strictly convex Banach space, then E has the Banach-Stone property.
Behrends proved that every Banach space E such that Z(E) (the centralizer of E)
is one dimensional has the Banach-Stone property ([2], Theorem 8.11).
Now, we obtain the following vector version of a result of Choban [6] for completely
regular spaces.

Theorem 2.10. Let X and Y be two completely regular spaces such that each
singleton is in Zα(X) and Zα(Y ) respectively (resp. Pα(X) and Pα(Y )) and E be
a Banach space with the Banach-Stone property. If β◦

α(X,E)(resp. B◦

α(X,E)) and
β◦

α(Y,E)(resp. B◦

α(X,E)) are isometric, then the compact spaces bαX and bαY are
homeomorphic.

Proof. The proof is similar to that of the Theorem 3.2 in [29].

We establish now a Banach-Stone type theorem for the spaces of bounded con-
tinuous functions defined on completely regular Hausdorff spaces. Eilenberg [11]
proved that for completely regular first countable Hausdorff topological spaces X
and Y such that each singleton is Gδ(X) and Gδ(Y ) respectively, if C◦(X) and C◦(Y )
are linear isometric isomorphic, then X and Y are homeomorphic. We obtained the
following similar result. Here βX denotes the Stone-Čech compactification of X.

Theorem 2.11. Let X and Y be two completely regular topological spaces such
that every singleton is in Z1(X) and Z1(Y ) respectively. If T is a linear isometry
from C◦(X) onto C◦(Y ), then there is a homeomorphism imbedding ϕ from Y into
βX and a continuous unimodular function h on Y such that

Tf(y) = h(y)f(ϕ(y)), y ∈ Y, f ∈ C◦(X).

Proof. By a result of McWilliams, w∗

1(C
◦(X)) = β◦

1(βX) (see [6]). Hence, the
restriction of the linear isometry T ∗∗ to w∗

1(C
◦(X)) = β◦

1(βX) induces the linear
isometry T β from β◦

1(βX) onto β◦

1(βY ). Therefore, by Theorem 2.8, T β(f) = h (f ◦
τ), where τ : βY → βX is a Baire-1 homeomorphism and h is a unimodular element
of β◦

1(βY ). Note that the map T ∗∗ is w∗ − w∗ continuous thus, its restriction T β to
C(βX) is the bijection linear isometry ∆:

∆ : C(βX) → C(βY ) defined as ∆(f) = h (f ◦ τ).

Obviously, h = ∆(1βX) is continuous on βY and therefore it is continuous on Y .
Note that the restriction of ∆ to C◦(X) is T . Moreover, for each f ∈ C(βX),
f ◦ τ = h∆(f) is continuous on βY . We claim that τ is continuous. If τ is not
continuous, there exists a zero set Z(f) ∈ Z(βX) such that τ−1(Z(f)) is not closed
in βY . But the set (f ◦ τ)−1(0) = τ−1(Z(f)) must be closed in βY because f ◦ τ
is continuous and this is a contradiction. As τ : βY → βX is continuous, therefore
φ = τ |Y is an embedding of Y in βX.
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