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Abstract

We characterize the surjective convolution operators Tµ on the space (P∗∗)
′

of Fourier ultra-hyperfunctions by means of a slowly decreasing condition for
the Fourier transform µ̂ and then study the existence of continuous linear
right inverses for Tµ.

1 Introduction

The subject of this paper are convolution operators on the space (P∗∗)
′ of Fourier

ultra-hyperfunctions defined as the dual space of the space

P∗∗ := P∗∗(C
d) := {f ∈ H(Cd) | ∀k : ‖f‖k := sup

|ℑ(z)|≤k
|f(z)|ek|z| < ∞}

of entire test functions (see [12]). Notice the analogy to the definition of standard
Fourier hyperfunctions (see [4, 5]) and of Schwartz’ tempered distributions. (P∗∗)

′

is a space of entire rather than of real analytic functionals which has some inter-
esting features that suggest to study convolution operators in this space (e.g., the
exponentials fλ(z) := exp(

∑
λjzj) are contained in (P∗∗)

′ for any λ ∈ Cd, hence
the kernels of an ordinary differential equation coincide in C∞(Rd) and in (P∗∗)

′,
which is not true for the standard Fourier hyperfunctions, see [8]). Though some of
the proofs in the present paper are based on similar ideas as in the case of Fourier
hyperfunctions (see [7]), the results are rather different and sometimes more natural
for Fourier ultra-hyperfunctions.

References to the huge literature on division problems in various spaces are given
in more detail in [7].
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The paper is organized as follows: In the next section we show that µ ∈ (P∗∗)
′

defines a convolution operator Tµ on (P∗∗)
′ iff the Fourier transform µ̂ is defined by

an entire function F such that for any k there is K such that

|F (z)| ≤ C1e
K|z| if |ℑ(z)| ≤ k.

For these µ we then show that Tµ is surjective on (P∗∗)
′ iff Tµ admits an elementary

solution ν ∈ (P∗∗)
′ iff there is C > 0 such that for any t ∈ Rd with |t| ≥ C there is

ζ ∈ Cd such that
|ζ − t| ≤ C and |µ̂(ζ)| ≥ e−C|ζ|.

We do not need here a specific condition on the connected components of µ̂−1(0)
unlike to the case of standard Fourier hyperfunctions (see [7]).

In section 3 we show that a surjective convolution operator Tµ on P∗∗(C)′ admits
a continuous linear right inverse in P∗∗(C)′b iff there is k0 such that

µ̂(z) 6= 0 if |ℑ(z)| > k0.

We also show that Tµ admits a continuous linear right inverse in P∗∗(C
d)′b if µ̂

satisfies a condition of hyperbolic type or of hypoelliptic type (see 3.1 and 3.3).
Some examples are discussed at the end of sections 2 and 3.

2 Convolution operators

For f ∈ P∗∗ and µ ∈ (P∗∗)
′ we define the Fourier transformation by

f̂(z) :=
∫

f(x)e−i〈x,z〉 dx and 〈µ̂, g〉 := 〈µ, ĝ〉 if g ∈ P∗∗,

where 〈w, z〉 :=
∑d

j=1 wjzj for z, w ∈ Cd.
The Fourier transform is a topological isomorphism in P∗∗ and in (P∗∗)

′
b (see [6,

3.6 and 5.5]).
To define a convolution operator on (P∗∗)

′ we start with the usual convolution
of functions: since

f̂ ∗ g = f̂ ĝ and f̂ g = (2π)−df̂ ∗ ĝ for f, g ∈ P∗∗ ⊂ S (2.1)

we see that f ∗ g ∈ P∗∗ if f, g ∈ P∗∗ and that the mapping

f∗ : P∗∗ → P∗∗, g → f ∗ g, is continuous.

Therefore, we can define the convolution Sµ(f) ∈ (P∗∗)
′ of a fixed µ ∈ (P∗∗)

′ and
f ∈ P∗∗ by the usual formula

〈Sµ(f), g〉 := 〈µ, f̌ ∗ g〉 if g ∈ P∗∗, (2.2)

where f̌ := f(− · ) for f ∈ P∗∗.
Let ν•f denote the product of ν ∈ (P∗∗)

′ and a testfunction f ∈ P∗∗. Via Fourier
transformation, Sµ(f) is the product of µ̂ and f̂ since

〈µ̂ • f̂ , g〉 = 〈µ,
̂̂
fg〉 = 〈µ, f̌ ∗ ĝ〉 = 〈

(
Sµ(f)

)
̂ , g〉 if g ∈ P∗∗ (2.3)
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by (2.1) and Fourier inversion formula. We say that ν ∈ (P∗∗)
′ is defined by an

exponentially bounded measurable function F on Rd iff

〈ν, g〉 =
∫

Rd
F (x)g(x) dx if g ∈ P∗∗.

If Sµ(f) is defined by a function fµ ∈ P∗∗ and if Sµ defines a continuous linear
operator in P∗∗ in this way, the convolution operator Tµ on (P∗∗)

′ is defined by
duality, i.e.

Tµ := (Sµ̌)t : (P∗∗)
′ → (P∗∗)

′.

We now have the following characterization:

Proposition 2.1. The following are equivalent for µ ∈ (P∗∗)
′:

a) For any f ∈ P∗∗, Sµ(f) is defined by some fµ ∈ P∗∗.

b) Sµ : P∗∗ → P∗∗ is defined and continuous.

c) µ̂ is defined by F ∈ H(Cd) such that for any k there is K such that

|F (z)| ≤ C1e
K|z| on Wk := {z ∈ Cd | |ℑ(z)| < k}. (2.4)

We then have Sµ(f)(z) = (2π)−d ̂(F f̂ )(−z) for any f ∈ P∗∗.

Proof. ”a) ⇒ c)” By (2.3), the Fourier inversion formula and a), S(f) :=

µ̂ • f = (2π)−d
(
Sµ

(̂̌
f

))̂ is defined by some fµ ∈ P∗∗ for any f ∈ P∗∗. Since

P∗∗ is continuously embedded in (P∗∗)
′, S is a continuous operator in P∗∗ by the

closed graph theorem, that is, for any k there is K such that we have for the norms
on P∗∗

‖µ̂ • f‖k ≤ Ck‖f‖K if f ∈ P∗∗. (2.5)

For t ≥ 1 let gt := µ̂ • ft for ft(z) := e−〈z,z〉/t. gt ∈ P∗∗ by a) since ft ∈ P∗∗. By
the definition of • we see that g4 = gtf4/ft for any t ≥ 1. For the entire function
F := g4/f4 this implies by (2.5)

|F (z)| = |gt(z)/ft(z)| ≤ Ck‖ft‖K/|ft(z)| ≤ Cke
2K2

etK2/4+|z|2/t

if t ≥ 1 and z ∈ Wk. Taking the infimum with respect to t ≥ 1 we get (2.4).
Let hj denote the Hermite polynomials. Then the Hermite functions are defined by
Hj := cjhjf2 and we thus get by the definition of •

∫

Rd
F (x)Hj(x)dx = cj

∫

Rd
(µ̂ • f4)(x)(f4hj)(x)dx = cj〈µ̂ • f4, hjf4〉

= cj〈µ̂, hjf2〉 = 〈µ̂, Hj〉 for any j ∈ Nd
0.

Since the Hermite functions are a basis in P∗∗ by [6, 5.5], c) is proved.

”c) ⇒ b)” By (2.3) and c) we know that Sµ(f) = (2π)−d ̂(F f̂ )̌ for any f ∈ P∗∗.
This shows b) since the Fourier transformation and the multiplication with F are
continuous operators in P∗∗ by (2.4).
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Notice that (2.4) is not always satisfied: Easy counterexamples are provided by
µ ∈ (P∗∗)

′ such that µ̂ is a hyperfunction with compact support. In the simplest
case we can take µ ≡ 1, i.e. µ̂ = 2πδ. Also, elementary solutions ν ∈ (P∗∗)

′ of
surjective convolution operators Tµ on (P∗∗)

′ do not satisfy (2.4) if there is z0 ∈ Cd

such µ̂(z0) = 0 since the first assumption would imply that the kernel of Tµ is trivial
contradicting the second assumption.

From now on we will always assume that µ satisfies (2.4). Therefore,

Sµ : P∗∗ → P∗∗ and Tµ := (Sµ̌)t : (P∗∗)
′
b → (P∗∗)

′
b

are defined, linear and continuous, and µ̂ is an entire function.
Recall that ν ∈ (P∗∗)

′ is an elementary solution for Tµ if Tµ(ν) = δ. Surjective
convolution operators on (P∗∗)

′ can now be characterized as follows:

Theorem 2.2. Let µ ∈ (P∗∗)
′ satisfy (2.4). The following are equivalent:

a) The convolution operator Tµ : (P∗∗)
′ → (P∗∗)

′ is surjective.
b) Tµ admits an elementary solution ν ∈ (P∗∗)

′.
c) There is C > 0 such that for any t ∈ Rd with |t| ≥ C there is ζ ∈ Cd such

that
|ζ − t| ≤ C and |µ̂(ζ)| ≥ e−C|ζ|. (2.6)

Proof. ”b) ⇒ c)” Let ν ∈ (P∗∗)
′ be an elementary solution for Tµ. Then ̂̌ν ∈ (P∗∗)

′

and thus there are j and C1 such that

|〈̂̌ν, h〉| ≤ C1‖h‖j if h ∈ (P∗∗)
′. (2.7)

If (2.6) does not hold, for any l ∈ N there is tl ∈ Rd with |tl| ≥ 4l such that

|̂̌µ(ζ)| ≤ e−l|ζ| if |ζ − tl| ≤ l. (2.8)

Let fl(z) := exp
(
i〈z, tl〉 − 〈z, z〉/(2cl)

)
for cl := |tl|/l. Then fl ∈ P∗∗ and

f̂l(z) := (2πcl)
d/2 exp

(
−〈z − tl, z − tl〉cl/2

)
=: gl(z)

1 = fl(0) = |〈Tµ(ν), fl〉| = (2π)−d|〈̂̌ν, ̂̌µf̂l〉| ≤ C1‖̂̌µgl‖j (2.9)

by 2.1 and (2.7). We will show that the right hand side of (2.9) tends to 0, a
contradiction: let |z − tl| ≤ l. Since |tl| ≥ 4l, we get by (2.8)

|̂̌µ(z)gl(z)| ≤ C2c
d/2
l exp

(
−l|z| − |ℜ(z − tl)|

2cl/2 + |ℑ(z)|2cl/2
)

≤ C2c
d/2
l e−l(|z|−|tl|/2) ≤ C3e

−l(|z|+|tl|)/8. (2.10)

Choose J ≥ j2 for j by (2.4). If |z − tl| ≥ l and z ∈ Wj we then get

|̂̌µ(z)gl(z)| ≤ C4c
d/2
l eJ |z|+(2|ℑ(z)|2−|z−tl|

2)cl/2 ≤ e−j|z|−|tl| (2.11)

if l is large, since

|tl| + (j + J)|z| + (2j2 − |z − tl|
2)cl/2 ≤ 2J |z − tl| − |z − tl|

2cl/2 + 3J |tl|
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≤ 2Jl − l|tl|/2 + 3J |tl| ≤ −|tl| for large l.

The above claim follows from (2.10) and (2.11).
”c) ⇒ a)” P∗∗ is a (FS)−space, hence reflexive. By Fourier transformation,

Proposition 2.1 and the closed range theorem [11, 26.3] we thus get: Tµ is surjective
in (P∗∗)

′ iff Sµ is injective with closed range in P∗∗ iff µ̂P∗∗ is closed in P∗∗ iff for any
k ∈ N there are j ≥ k and C1 ≥ 1 such that

‖f‖k ≤ C1‖µ̂f‖j if f ∈ P∗∗. (2.12)

We now recall the following fact (see [1, 3.1]): Let F, G and F/G be holomorphic
on {z ∈ Cd | |z| < R}.

|(F/G)(z)| ≤ sup
|η|<R

|F (η)|
(

sup
|η|<R

|G(η)|
) 2|z|

R−|z| |G(0)|
−R−|z|
R−|z| if |z| < R. (2.13)

Fix k ∈ N and let w := t + iy ∈ Wk. Choose ζ ∈ Cd for t by (2.6) and apply
(2.13) to F (z) := µ̂(ζ + z)f(ζ + z), f ∈ P∗∗, G(z) := µ̂(ζ + z), R := 2(C + k) and
|z| ≤ R/2. Since |w − ζ | ≤ R/2 we get

|f(w)|ek|w| ≤ C1 sup
|η|<R

|µ̂(ζ + η)f(ζ + η)| sup
|η|<R

e2J |ζ+η|e3C|ζ|+k|w| ≤ C2‖µ̂f‖j

for j := 2J + k + 3C, if J is chosen for WC+R by (2.4). This proves (2.12).

Tµ is obviously defined for any µ ∈ H(Cd)′b, however Tµ need not be surjective
(see [7, 3.2]). A simple example of a non surjective operator Tµ is provided by
µ(x) := e−x2/2, x ∈ R, since µ̂(z) = (2π)1/2e−x2/2 does not satisfy (2.6). On the
other hand, if µ(x) := eix2/2, x ∈ R, then µ̂(z) = π1/2(1 + i)e−iz2/2 (see [3, 7.6.1])
and Tµ is defined and surjective (and in fact bijective) since |µ̂(z)| = (2π)1/2eℜ(z)ℑ(z)

satisfies (2.4) and (2.6).
Differential-delay equations are always surjective in (P∗∗)

′. In fact, we then have
µ ∈ span{∂αδw | α ∈ Nd

0, w ∈ Cd} and µ̂ ∈ span{zα exp(〈z, w〉) | α ∈ Nd
0, w ∈

Cd}. Thus, let µ̂ :=
∑k

j=1 pje
〈 · ,wj〉 with distinct wj ∈ Cd and polynomials pj. Let

deg pj := mj ≤ m and maxj≤k |ℜ(wj)| := r. Then

gt(z) := µ̂(t + z) =
k∑

j=1

m∑

l=0

p
(l)
j (t)e〈t,wj〉

l!
zle〈 z,wj〉 ∈ spanj≤k,|l|≤m{z

le〈z,wj〉}.

Since all norms on this space are equivalent, (2.6) follows:

sup
|z|≤1

|µ̂(t + z)| ≥ C1 sup
j≤k,|l|≤m

|p
(l)
j (t)e〈t,wj〉|/l! ≥ C2e

−r|t|.
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3 Right inverses

As a first class of convolution operators admitting a continuous linear right inverse
we consider a condition of hyperbolic type:

Theorem 3.1. Let µ ∈ (P∗∗)
′ satisfy (2.4) and (2.6). Tµ admits a continuous linear

right inverse in (P∗∗)
′ if there is N ∈ Rd such that for any k there is k0 such that

µ̂(z + iτN) 6= 0 if z ∈ Wk and |τ | ≥ k0. (3.1)

Proof. Let |N | = 1 (w.l.o.g.) and Mµ̂(f) := ̂̌µf for f ∈ P∗∗. By Fourier trans-
formation, it is sufficient to show that Mµ̂ has a continuous linear left inverse in
P∗∗.

a) For any k there is k1 such that any j ≥ k1 there are A, C0 > 0 such that

|µ̂(w + iτN)| ≥ C0e
−A|w| if w ∈ Wk and j ≥ |τ | ≥ k1. (3.2)

When proving (3.2) we need the following minimum modulus theorem (see e.g. [9,
1.11]): Let 0 6= g be holomorphic near |z| ≤ ̺, z ∈ C. For any 0 < r < ̺/4 there
are H = H(r/̺) > 0 and r < δ < ̺/4 such that

|g(ξ)| ≥ |g(0)|1+H/ sup
|η|=ρ

|g(η)|H if |ξ| = δ. (3.3)

Fix k and choose k1 for 2C +3k by (3.1) with C from (2.6). Let k1 ≤ τ ≤ j (w.l.o.g.)
and let w ∈ Wk. We first choose ζ ∈ Cd for t := ℜ(w) by (2.6) and then apply (3.3)
to g(z) := µ̂(ζ + zN), r := τ and ρ := 4(1 + k/j)τ . Using also (2.4) we thus obtain
C1, A1 > 0 (independent of w and τ) and τ < δ < (1 + k/j)τ ≤ τ + k such that

|µ̂(ζ + iδN)| ≥ C1e
−A1|w|.

(2.13) is now applied to F ≡ 1, G(z) := µ̂(ζ + iδN +z), R := C +3k and |z| ≤ C+2k
(notice, that G(z) 6= 0 for |z| ≤ R by (3.1) and the choice of k1 since ζ+z ∈ W2C+3k).
Since |w + iτN − ζ − iδN | ≤ C + 2k we get by (2.4)

|µ̂(w + iτN)| ≥ C2e
−A2|w|

for some constants A2, C2 > 0.
b) We may assume that N = ed := (0, . . . , 1) and write z = (z′, zd) ∈ Cd−1 × C.

The left inverse for Mµ̂ can now be given by means of an explicit formula which is

a Cd−variant of [7, (4.5)]: For f ∈ P∗∗ let

L(f)(z) :=
1

2πi

∫

|ℑ(τ)|=k1

f(z′, τ)e−(τ−zd)2

µ̂(−z′,−τ)(τ − zd)
dτ if z ∈ Wk (3.4)

where k1 > k is the constant from (3.2).
Indeed, for f ∈ P∗∗, L(f)(z) is defined for any z by (3.2). L(f) is welldefined

by Cauchy’s theorem and (3.2) again. It is also clear that L(f) is an entire function
and that L(Mµ̂f) = f by Cauchy’s integral formula. Finally, L(f) ∈ P∗∗ by an easy
estimate and L : P∗∗ → P∗∗ is continuous.
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Hyperbolic polynomials P satisfy (3.1). To see this, let Pm denote the principal
part of P and let Q̃(x, t) := (

∑
α |Q

(α)(x, t)|2t2|α|)1/2 for a polynomial Q. By [3,
12.4.6(iii)] we know that

lim
t→∞

sup
x∈Rd

(P (α)
m )̃ (x, t)

P̃m(x, t)
= 0 if α 6= 0 and lim

t→∞
sup
x∈Rd

(P − Pm)̃ (x, t)

P̃m(x, t)
= 0 (3.5)

if P is hyperbolic w.r.t. N . For z = x + iy ∈ Wk and t ≥ k we thus get by Taylor
expansion, [10, 3.3] and (3.5)

|P (z + itN)|

≥ |Pm(x + itN)| −
∑

α6=0

|P (α)
m (x + itN)||yα| −

∑

α

|(P − Pm)(α)(x)||(y + itN)α|

≥ C1P̃m(x, t) − C2

(∑

α6=0

|P (α)
m (x + itN)| + (P − Pm)̃ (x, k + t)

)

≥ C1P̃m(x, t) − C3

(∑

α6=0

(P (α)
m )̃ (x, t)| + (P − Pm)̃ (x, t)

)
≥ C1P̃m(x, t)/2 6= 0

if t is large.

The condition (DN) of Vogt is fundamental for the existence of continuous linear
right inverses. It is defined as follows (see e.g. [11, p. 359]): Let E be a Frechet
space with fundamental system (‖ ‖k)k∈N of seminorms. E has (DN) iff there is p
such that for each k there are n and C such that

‖x‖2
k ≤ C‖x‖p‖x‖n for all x ∈ E.

If Tµ is surjective on (P∗∗)
′, the sequence

0 → ker(Tµ) → (P∗∗)
′ Tµ
−→ (P∗∗)

′ → 0

is exact. By Fourier transformation it is split iff the dual sequence

0 → P∗∗

M
µ̂

−→ P∗∗ → P∗∗/(̂̌µP∗∗) → 0

splits (again, Mµ̂(f) := ̂̌µf for f ∈ P∗∗). Since P∗∗ is isomorphic to a power series
space of infinite type by [6], the splitting theorem of Vogt (see [11, 30.1 and 29.2])
implies that

Tµ has a right inverse in (P∗∗)
′
b iff (ker(Tµ))

′
b ≃ P∗∗/(̂̌µP∗∗) ∈ (DN). (3.6)

For operators Tµ in one variable we thus get

Theorem 3.2. Let d = 1 and let µ ∈ (P∗∗)
′ satisfy (2.4) and (2.6). Then Tµ admits

a continuous linear right inverse in P∗∗(C)′b iff there is k1 such that

µ̂(z) 6= 0 if |ℑ(z)| ≥ k1. (3.7)
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Proof. (3.7) is sufficient by 3.1. If Tµ admits a continuous linear right inverse in
P∗∗(C)′b, P∗∗/(̂̌µP∗∗) has (DN) by (3.6), hence P∗∗/(̂̌µP∗∗) has a continuous norm,

that is, a quotient seminorm ‖ ‖̃k is a norm. Let µ̂(−w) = 0. Then g(z) :=
µ̂(−z) exp(−〈z − w, z − w〉)/(z − w) ∈ P∗∗ and [g] 6= 0 in P∗∗/(̂̌µP∗∗).

We now notice that for any k there is k2 such that

P∗∗ is dense in Hk2
:= {f ∈ H(Wk2

) | ‖f‖k2
< ∞} w.r.t. ‖ ‖k+K (3.8)

where K is chosen for k by (2.4). Indeed, the proof of [6, 3.4] shows that there is k2

such that the Hermite expansion of f ∈ Hk2
converges to f with respect to ‖ ‖k+K .

If |ℑ(w)| > k2 then h(z) := exp(−〈z − w, z − w〉)/(z − w) ∈ Hk2
and we may

choose hn ∈ P∗∗ by (3.8) such that ‖h − hn‖k+K → 0, and therefore

0 6= ‖[g]‖̃k = ‖[̂̌µ(h − hn)]‖̃k ≤ ‖̂̌µ(h − hn)‖k ≤ C1‖h − hn‖k+K → 0,

a contradiction.

A right inverse also exists for operators of hypoelliptic type (see 3.3 below). This
is based on the following observation: Let F be an entire function such that there
is N ∈ Cd such that for any k there is K such that

|〈z, N〉| ≤ K if F (z) = 0 and |Π(z)| ≤ k, (3.9)

where Π is the orthogonal projection onto N⊥. Then

H(Cd)/(FH(Cd)) has (DN). (3.10)

Indeed, we may assume that N = ed := (0, . . . , 1). A left inverse for the multiplica-
tion operator MF on H(Cd) is then provided by

L(f)(z) :=
1

2πi

∫

|τ |=K+1

f(z′, τ)

F (z′, τ)(τ − zd)
dτ if |z| ≤ k

for K ≥ k from (3.9). Hence, FH(Cd) is a complemented (closed) subspace of H(Cd)
and the sequence

0 → H(Cd)
MF−→ H(Cd) → H(Cd)/(FH(Cd)) → 0

is split. Hence, H(Cd)/(FH(Cd)) is isomorphic to a subspace of H(Cd), and (3.10)
follows from [11, 29.2] since H(Cd) has (DN).

(3.9) is satisfied for N = ed if F (z) :=
∑k

j=0 Fj(z
′)zj

d and Fj ∈ H(Cd−1).

Theorem 3.3. Let µ̂ satisfy (2.4), (2.6) and (3.9). Tµ admits a continuous linear
right inverse in (P∗∗)

′
b if

|ℑ(z)| → ∞ if µ̂(z) = 0 and |ℜ(z)| → ∞. (3.11)

Proof. By (3.6) and (3.10), it is sufficient to show that the canonical mapping

S : P∗∗/(̂̌µP∗∗) → H(Cd)/(̂̌µH(Cd))
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is a topological isomorphism. To prove this we first notice that S is clearly wellde-
fined. S is injective by the proof of ”c) ⇒ a)” in 2.2 (use (2.6) and (2.13)). Let

Vµ̂ := {z ∈ Cd | µ̂(−z) = 0}.

The surjectivity of S is seen as follows: choose ϕ ∈ C∞(Cd) such that ϕ(z) = 1 if
dist(z, Vµ̂) ≤ 1 and ϕ(z) = 0 if dist(z, Vµ̂) ≥ 2 and such that |ϕ| and ‖gradϕ‖ are

bounded on Cd. We must show that for any f ∈ H(Cd) there are f1 ∈ P∗∗ and
f2 ∈ H(Cd) such that f = f1 + ̂̌µf2. For this, we will find

g ∈ L := {g ∈ L2
loc(C

d) | ∀k : |f |2k :=
∫

Wk

|f(z)|2e2k|z|dz < ∞}

solving
∂g = ∂(ϕf/̂̌µ). (3.12)

Then f1 := ϕf− ̂̌µg and f2 := (1−ϕ)f/̂̌µ+g will prove the claim (use the arguments
from below). To solve (3.12) we notice that

Fk(z) := ∂
(
f(z)ϕ(z)e〈z,z〉/µ(−z)

)
, z ∈ Wk

is bounded and has bounded support by (3.11). Hence Fk ∈ L2(Wk) and by [2, 4.4.2]
there is Gk such that ∂Gk = Fk on Wk and Gk/(1 + | · |2) ∈ L2(Wk). Therefore,
gk := Gk exp(−〈z, z〉) satisfies (3.12) on Wk and |gk|k is finite. For j ≥ k, gjk :=
(gj − gk) |Wk

is holomorphic on Wk and gjk ∈ Lk. We therefore can switch from
L2−norms to sup−norms for gjk, that is, gjk |Wk−1

∈ Hk−1. By (3.8), for any k
there is k2 such that L ∩ ker(∂) = P∗∗ is dense in Hk2

w.r.t. ‖ ‖k. The classical
Mittag-Leffler argument therefore shows that (3.12) can be solved with g ∈ L.

Any hypoelliptic partial differential operator with constant coefficients admits a
continuous linear right inverse on (P∗∗)

′ by 3.3.
An interesting example for 3.2 is given by µ := (δi − δ−i)/2 ∈ P∗∗(C)′. Then

Tµ = (τi − τ−i)/2, where τ±i is the shift by ±i. µ̂(z) = sinh(z) satisfies (2.6), but
not (3.7). Tµ is surjective but does not admit a right inverse in P∗∗(C)′b. The kernel
of Tµ (i.e. the 2i−periodic elements in P∗∗(C)′) is span{ejπz | j ∈ Z} ≃ ϕ, where ϕ
is the space of all finite sequences (see [8]).

On the other hand, if µ := (δ−1 − δ1)/(2i), then Tµ = (τ−1 − τ1)/(2i) and
µ̂(z) = sin(z) satisfies (2.6) and (3.7). Tµ admits a right inverse, that is, the space
of 2−periodic elements is complemented in P∗∗(C)′b (see [8] for more details).
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