Division problems

 for Fourier ultra-hyperfunctionsMichael Langenbruch

Dedicated to Professor J. Schmets on the occasion of his 65th birthday

Abstract

We characterize the surjective convolution operators T_{μ} on the space $\left(P_{* *}\right)^{\prime}$ of Fourier ultra-hyperfunctions by means of a slowly decreasing condition for the Fourier transform $\widehat{\mu}$ and then study the existence of continuous linear right inverses for T_{μ}.

1 Introduction

The subject of this paper are convolution operators on the space $\left(P_{* *}\right)^{\prime}$ of Fourier ultra-hyperfunctions defined as the dual space of the space

$$
P_{* *}:=P_{* *}\left(\mathbb{C}^{d}\right):=\left\{f \in \mathcal{H}\left(\mathbb{C}^{d}\right)\left|\forall k:\|f\|_{k}:=\sup _{|\Im(z)| \leq k}\right| f(z) \mid e^{k|z|}<\infty\right\}
$$

of entire test functions (see [12]). Notice the analogy to the definition of standard Fourier hyperfunctions (see $[4,5]$) and of Schwartz' tempered distributions. $\left(P_{* *}\right)^{\prime}$ is a space of entire rather than of real analytic functionals which has some interesting features that suggest to study convolution operators in this space (e.g., the exponentials $f_{\lambda}(z):=\exp \left(\sum \lambda_{j} z_{j}\right)$ are contained in $\left(P_{* *}\right)^{\prime}$ for any $\lambda \in \mathbb{C}^{d}$, hence the kernels of an ordinary differential equation coincide in $C^{\infty}\left(\mathbb{R}^{d}\right)$ and in $\left(P_{* *}\right)^{\prime}$, which is not true for the standard Fourier hyperfunctions, see [8]). Though some of the proofs in the present paper are based on similar ideas as in the case of Fourier hyperfunctions (see [7]), the results are rather different and sometimes more natural for Fourier ultra-hyperfunctions.

References to the huge literature on division problems in various spaces are given in more detail in [7].

The paper is organized as follows: In the next section we show that $\mu \in\left(P_{* *}\right)^{\prime}$ defines a convolution operator T_{μ} on $\left(P_{* *}\right)^{\prime}$ iff the Fourier transform $\widehat{\mu}$ is defined by an entire function F such that for any k there is K such that

$$
|F(z)| \leq C_{1} e^{K|z|} \text { if }|\Im(z)| \leq k
$$

For these μ we then show that T_{μ} is surjective on $\left(P_{* *}\right)^{\prime}$ iff T_{μ} admits an elementary solution $\nu \in\left(P_{* *}\right)^{\prime}$ iff there is $C>0$ such that for any $t \in \mathbb{R}^{d}$ with $|t| \geq C$ there is $\zeta \in \mathbb{C}^{d}$ such that

$$
|\zeta-t| \leq C \text { and }|\widehat{\mu}(\zeta)| \geq e^{-C|\zeta|}
$$

We do not need here a specific condition on the connected components of $\widehat{\mu}^{-1}(0)$ unlike to the case of standard Fourier hyperfunctions (see [7]).

In section 3 we show that a surjective convolution operator T_{μ} on $P_{* *}(\mathbb{C})^{\prime}$ admits a continuous linear right inverse in $P_{* *}(\mathbb{C})_{b}^{\prime}$ iff there is k_{0} such that

$$
\widehat{\mu}(z) \neq 0 \text { if }|\Im(z)|>k_{0} .
$$

We also show that T_{μ} admits a continuous linear right inverse in $P_{* *}\left(\mathbb{C}^{d}\right)_{b}^{\prime}$ if $\widehat{\mu}$ satisfies a condition of hyperbolic type or of hypoelliptic type (see 3.1 and 3.3). Some examples are discussed at the end of sections 2 and 3.

2 Convolution operators

For $f \in P_{* *}$ and $\mu \in\left(P_{* *}\right)^{\prime}$ we define the Fourier transformation by

$$
\widehat{f}(z):=\int f(x) e^{-i\langle x, z\rangle} d x \text { and }\langle\widehat{\mu}, g\rangle:=\langle\mu, \widehat{g}\rangle \text { if } g \in P_{* *},
$$

where $\langle w, z\rangle:=\sum_{j=1}^{d} w_{j} z_{j}$ for $z, w \in \mathbb{C}^{d}$.
The Fourier transform is a topological isomorphism in $P_{* *}$ and in $\left(P_{* *}\right)_{b}^{\prime}$ (see [6, 3.6 and 5.5]).

To define a convolution operator on $\left(P_{* *}\right)^{\prime}$ we start with the usual convolution of functions: since

$$
\begin{equation*}
\widehat{f * g}=\widehat{f} \widehat{g} \text { and } \widehat{f g}=(2 \pi)^{-d} \widehat{f} * \widehat{g} \text { for } f, g \in P_{* *} \subset \mathcal{S} \tag{2.1}
\end{equation*}
$$

we see that $f * g \in P_{* *}$ if $f, g \in P_{* *}$ and that the mapping

$$
f *: P_{* *} \rightarrow P_{* *}, g \rightarrow f * g, \text { is continuous. }
$$

Therefore, we can define the convolution $S_{\mu}(f) \in\left(P_{* *}\right)^{\prime}$ of a fixed $\mu \in\left(P_{* *}\right)^{\prime}$ and $f \in P_{* *}$ by the usual formula

$$
\begin{equation*}
\left\langle S_{\mu}(f), g\right\rangle:=\langle\mu, \check{f} * g\rangle \text { if } g \in P_{* *}, \tag{2.2}
\end{equation*}
$$

where $\check{f}:=f(-\cdot)$ for $f \in P_{* *}$.
Let $\nu \bullet f$ denote the product of $\nu \in\left(P_{* *}\right)^{\prime}$ and a testfunction $f \in P_{* *}$. Via Fourier transformation, $S_{\mu}(f)$ is the product of $\widehat{\mu}$ and \widehat{f} since

$$
\begin{equation*}
\langle\widehat{\mu} \bullet \widehat{f}, g\rangle=\langle\mu, \widehat{\hat{f}} g\rangle=\langle\mu, \check{f} * \widehat{g}\rangle=\left\langle\left(S_{\mu}(f)\right)^{-}, g\right\rangle \text { if } g \in P_{* *} \tag{2.3}
\end{equation*}
$$

by (2.1) and Fourier inversion formula. We say that $\nu \in\left(P_{* *}\right)^{\prime}$ is defined by an exponentially bounded measurable function F on \mathbb{R}^{d} iff

$$
\langle\nu, g\rangle=\int_{\mathbb{R}^{d}} F(x) g(x) d x \text { if } g \in P_{* *} .
$$

If $S_{\mu}(f)$ is defined by a function $f_{\mu} \in P_{* *}$ and if S_{μ} defines a continuous linear operator in $P_{* *}$ in this way, the convolution operator T_{μ} on $\left(P_{* *}\right)^{\prime}$ is defined by duality, i.e.

$$
T_{\mu}:=\left(S_{\check{\mu}}\right)^{t}:\left(P_{* *}\right)^{\prime} \rightarrow\left(P_{* *}\right)^{\prime} .
$$

We now have the following characterization:
Proposition 2.1. The following are equivalent for $\mu \in\left(P_{* *}\right)^{\prime}$:
a) For any $f \in P_{* *}, S_{\mu}(f)$ is defined by some $f_{\mu} \in P_{* *}$.
b) $S_{\mu}: P_{* *} \rightarrow P_{* *}$ is defined and continuous.
c) $\widehat{\mu}$ is defined by $F \in \mathcal{H}\left(\mathbb{C}^{d}\right)$ such that for any k there is K such that

$$
\begin{equation*}
|F(z)| \leq C_{1} e^{K|z|} \text { on } W_{k}:=\left\{z \in \mathbb{C}^{d}| | \Im(z) \mid<k\right\} . \tag{2.4}
\end{equation*}
$$

We then have $S_{\mu}(f)(z)=(2 \pi)^{-d} \widehat{(F \hat{f})}(-z)$ for any $f \in P_{* *}$.
Proof. "a) $\Rightarrow c)$ " By (2.3), the Fourier inversion formula and a), $S(f):=$ $\widehat{\mu} \bullet f=(2 \pi)^{-d}\left(S_{\mu}(\widehat{\tilde{f}})\right)^{\wedge}$ is defined by some $f_{\mu} \in P_{* *}$ for any $f \in P_{* *}$. Since $P_{* *}$ is continuously embedded in $\left(P_{* *}\right)^{\prime}, S$ is a continuous operator in $P_{* *}$ by the closed graph theorem, that is, for any k there is K such that we have for the norms on $P_{* *}$

$$
\begin{equation*}
\|\widehat{\mu} \bullet f\|_{k} \leq C_{k}\|f\|_{K} \text { if } f \in P_{* *} . \tag{2.5}
\end{equation*}
$$

For $t \geq 1$ let $g_{t}:=\widehat{\mu} \bullet f_{t}$ for $f_{t}(z):=e^{-\langle z, z\rangle / t} . g_{t} \in P_{* *}$ by a) since $f_{t} \in P_{* *}$. By the definition of \bullet we see that $g_{4}=g_{t} f_{4} / f_{t}$ for any $t \geq 1$. For the entire function $F:=g_{4} / f_{4}$ this implies by (2.5)

$$
|F(z)|=\left|g_{t}(z) / f_{t}(z)\right| \leq C_{k}\left\|f_{t}\right\|_{K} /\left|f_{t}(z)\right| \leq C_{k} e^{2 K^{2}} e^{t K^{2} / 4+|z|^{2} / t}
$$

if $t \geq 1$ and $z \in W_{k}$. Taking the infimum with respect to $t \geq 1$ we get (2.4). Let h_{j} denote the Hermite polynomials. Then the Hermite functions are defined by $H_{j}:=c_{j} h_{j} f_{2}$ and we thus get by the definition of \bullet

$$
\begin{gathered}
\int_{\mathbb{R}^{d}} F(x) H_{j}(x) d x=c_{j} \int_{\mathbb{R}^{d}}\left(\widehat{\mu} \bullet f_{4}\right)(x)\left(f_{4} h_{j}\right)(x) d x=c_{j}\left\langle\widehat{\mu} \bullet f_{4}, h_{j} f_{4}\right\rangle \\
=c_{j}\left\langle\widehat{\mu}, h_{j} f_{2}\right\rangle=\left\langle\widehat{\mu}, H_{j}\right\rangle \text { for any } j \in \mathbb{N}_{0}^{d} .
\end{gathered}
$$

Since the Hermite functions are a basis in $P_{* *}$ by $[6,5.5]$, c) is proved.
$" c) \Rightarrow b)$ " By (2.3) and c) we know that $S_{\mu}(f)=(2 \pi)^{-d} \widehat{(F \widehat{f})^{2}}$ for any $f \in P_{* *}$. This shows b) since the Fourier transformation and the multiplication with F are continuous operators in $P_{* *}$ by (2.4).

Notice that (2.4) is not always satisfied: Easy counterexamples are provided by $\mu \in\left(P_{* *}\right)^{\prime}$ such that $\hat{\mu}$ is a hyperfunction with compact support. In the simplest case we can take $\mu \equiv 1$, i.e. $\widehat{\mu}=2 \pi \delta$. Also, elementary solutions $\nu \in\left(P_{* *}\right)^{\prime}$ of surjective convolution operators T_{μ} on $\left(P_{* *}\right)^{\prime}$ do not satisfy (2.4) if there is $z_{0} \in \mathbb{C}^{d}$ such $\widehat{\mu}\left(z_{0}\right)=0$ since the first assumption would imply that the kernel of T_{μ} is trivial contradicting the second assumption.

From now on we will always assume that μ satisfies (2.4). Therefore,

$$
S_{\mu}: P_{* *} \rightarrow P_{* *} \text { and } T_{\mu}:=\left(S_{\breve{\mu}}\right)^{t}:\left(P_{* *}\right)_{b}^{\prime} \rightarrow\left(P_{* *}\right)_{b}^{\prime}
$$

are defined, linear and continuous, and $\widehat{\mu}$ is an entire function.
Recall that $\nu \in\left(P_{* *}\right)^{\prime}$ is an elementary solution for T_{μ} if $T_{\mu}(\nu)=\delta$. Surjective convolution operators on $\left(P_{* *}\right)^{\prime}$ can now be characterized as follows:

Theorem 2.2. Let $\mu \in\left(P_{* *}\right)^{\prime}$ satisfy (2.4). The following are equivalent:
a) The convolution operator $T_{\mu}:\left(P_{* *}\right)^{\prime} \rightarrow\left(P_{* *}\right)^{\prime}$ is surjective.
b) T_{μ} admits an elementary solution $\nu \in\left(P_{* *}\right)^{\prime}$.
c) There is $C>0$ such that for any $t \in \mathbb{R}^{d}$ with $|t| \geq C$ there is $\zeta \in \mathbb{C}^{d}$ such that

$$
\begin{equation*}
|\zeta-t| \leq C \text { and }|\widehat{\mu}(\zeta)| \geq e^{-C|\zeta|} \tag{2.6}
\end{equation*}
$$

Proof. "b) $\Rightarrow c)^{\prime \prime}$ Let $\nu \in\left(P_{* *}\right)^{\prime}$ be an elementary solution for T_{μ}. Then $\widehat{\tilde{\nu}} \in\left(P_{* *}\right)^{\prime}$ and thus there are j and C_{1} such that

$$
\begin{equation*}
|\langle\widehat{\tilde{\nu}}, h\rangle| \leq C_{1}\|h\|_{j} \text { if } h \in\left(P_{* *}\right)^{\prime} . \tag{2.7}
\end{equation*}
$$

If (2.6) does not hold, for any $l \in \mathbb{N}$ there is $t_{l} \in \mathbb{R}^{d}$ with $\left|t_{l}\right| \geq 4 l$ such that

$$
\begin{equation*}
|\widehat{\widetilde{\mu}}(\zeta)| \leq e^{-l|\zeta|} \text { if }\left|\zeta-t_{l}\right| \leq l \tag{2.8}
\end{equation*}
$$

Let $f_{l}(z):=\exp \left(i\left\langle z, t_{l}\right\rangle-\langle z, z\rangle /\left(2 c_{l}\right)\right)$ for $c_{l}:=\left|t_{l}\right| / l$. Then $f_{l} \in P_{* *}$ and

$$
\begin{gather*}
\widehat{f}_{l}(z):=\left(2 \pi c_{l}\right)^{d / 2} \exp \left(-\left\langle z-t_{l}, z-t_{l}\right\rangle c_{l} / 2\right)=: g_{l}(z) \\
1=f_{l}(0)=\left|\left\langle T_{\mu}(\nu), f_{l}\right\rangle\right|=(2 \pi)^{-d}\left|\left\langle\hat{\nu}, \widehat{\mu} \widehat{f}_{l}\right\rangle\right| \leq C_{1}\left\|\hat{\tilde{\mu}} g_{l}\right\|_{j} \tag{2.9}
\end{gather*}
$$

by 2.1 and (2.7). We will show that the right hand side of (2.9) tends to 0 , a contradiction: let $\left|z-t_{l}\right| \leq l$. Since $\left|t_{l}\right| \geq 4 l$, we get by (2.8)

$$
\begin{align*}
\left|\widehat{\tilde{\mu}}(z) g_{l}(z)\right| \leq & C_{2} c_{l}^{d / 2} \exp \left(-l|z|-\left|\Re\left(z-t_{l}\right)\right|^{2} c_{l} / 2+|\Im(z)|^{2} c_{l} / 2\right) \\
& \leq C_{2} c_{l}^{d / 2} e^{-l\left(|z|-\left|t_{l}\right| / 2\right)} \leq C_{3} e^{-l\left(|z|+\left|t_{l}\right|\right) / 8} \tag{2.10}
\end{align*}
$$

Choose $J \geq j^{2}$ for j by (2.4). If $\left|z-t_{l}\right| \geq l$ and $z \in W_{j}$ we then get

$$
\begin{equation*}
\left|\widehat{\tilde{\mu}}(z) g_{l}(z)\right| \leq C_{4} c_{l}^{d / 2} e^{J|z|+\left(2|\Im(z)|^{2}-\left|z-t_{l}\right|^{2}\right) c_{l} / 2} \leq e^{-j|z|-\left|t_{l}\right|} \tag{2.11}
\end{equation*}
$$

if l is large, since

$$
\left|t_{l}\right|+(j+J)|z|+\left(2 j^{2}-\left|z-t_{l}\right|^{2}\right) c_{l} / 2 \leq 2 J\left|z-t_{l}\right|-\left|z-t_{l}\right|^{2} c_{l} / 2+3 J\left|t_{l}\right|
$$

$$
\leq 2 J l-l\left|t_{l}\right| / 2+3 J\left|t_{l}\right| \leq-\left|t_{l}\right| \text { for large } l \text {. }
$$

The above claim follows from (2.10) and (2.11).
$" c) \Rightarrow a) " P_{* *}$ is a $(F S)$-space, hence reflexive. By Fourier transformation, Proposition 2.1 and the closed range theorem [11, 26.3] we thus get: T_{μ} is surjective in $\left(P_{* *}\right)^{\prime}$ iff S_{μ} is injective with closed range in $P_{* *}$ iff $\widehat{\mu} P_{* *}$ is closed in $P_{* *}$ iff for any $k \in \mathbb{N}$ there are $j \geq k$ and $C_{1} \geq 1$ such that

$$
\begin{equation*}
\|f\|_{k} \leq C_{1}\|\widehat{\mu} f\|_{j} \text { if } f \in P_{* *} \tag{2.12}
\end{equation*}
$$

We now recall the following fact (see $[1,3.1])$: Let F, G and F / G be holomorphic on $\left\{z \in \mathbb{C}^{d}| | z \mid<R\right\}$.

Fix $k \in \mathbb{N}$ and let $w:=t+i y \in W_{k}$. Choose $\zeta \in \mathbb{C}^{d}$ for t by (2.6) and apply (2.13) to $F(z):=\widehat{\mu}(\zeta+z) f(\zeta+z), f \in P_{* *}, G(z):=\widehat{\mu}(\zeta+z), R:=2(C+k)$ and $|z| \leq R / 2$. Since $|w-\zeta| \leq R / 2$ we get

$$
|f(w)| e^{k|w|} \leq C_{1} \sup _{|\eta|<R}|\widehat{\mu}(\zeta+\eta) f(\zeta+\eta)| \sup _{|\eta|<R} e^{2 J|\zeta+\eta|} e^{3 C|\zeta|+k|w|} \leq C_{2}\|\widehat{\mu} f\|_{j}
$$

for $j:=2 J+k+3 C$, if J is chosen for W_{C+R} by (2.4). This proves (2.12).
T_{μ} is obviously defined for any $\mu \in \mathcal{H}\left(\mathbb{C}^{d}\right)_{b}^{\prime}$, however T_{μ} need not be surjective (see [7, 3.2]). A simple example of a non surjective operator T_{μ} is provided by $\mu(x):=e^{-x^{2} / 2}, x \in \mathbb{R}$, since $\widehat{\mu}(z)=(2 \pi)^{1 / 2} e^{-x^{2} / 2}$ does not satisfy (2.6). On the other hand, if $\mu(x):=e^{i x^{2} / 2}, x \in \mathbb{R}$, then $\widehat{\mu}(z)=\pi^{1 / 2}(1+i) e^{-i z^{2} / 2}$ (see [3, 7.6.1]) and T_{μ} is defined and surjective (and in fact bijective) since $|\widehat{\mu}(z)|=(2 \pi)^{1 / 2} e^{\Re(z) \Im(z)}$ satisfies (2.4) and (2.6).

Differential-delay equations are always surjective in $\left(P_{* *}\right)^{\prime}$. In fact, we then have $\mu \in \operatorname{span}\left\{\partial^{\alpha} \delta_{w} \mid \alpha \in \mathbb{N}_{0}^{d}, w \in \mathbb{C}^{d}\right\}$ and $\widehat{\mu} \in \operatorname{span}\left\{z^{\alpha} \exp (\langle z, w\rangle) \mid \alpha \in \mathbb{N}_{0}^{d}, w \in\right.$ $\left.\mathbb{C}^{d}\right\}$. Thus, let $\widehat{\mu}:=\sum_{j=1}^{k} p_{j} e^{\left\langle\cdot, w_{j}\right\rangle}$ with distinct $w_{j} \in \mathbb{C}^{d}$ and polynomials p_{j}. Let $\operatorname{deg} p_{j}:=m_{j} \leq m$ and $\max _{j \leq k}\left|\Re\left(w_{j}\right)\right|:=r$. Then

$$
g_{t}(z):=\widehat{\mu}(t+z)=\sum_{j=1}^{k} \sum_{l=0}^{m} \frac{p_{j}^{(l)}(t) e^{\left\langle t, w_{j}\right\rangle}}{l!} z^{l} e^{\left\langle z, w_{j}\right\rangle} \in \operatorname{span}_{j \leq k,|l| \leq m}\left\{z^{l} e^{\left\langle z, w_{j}\right\rangle}\right\}
$$

Since all norms on this space are equivalent, (2.6) follows:

$$
\sup _{|z| \leq 1}|\widehat{\mu}(t+z)| \geq C_{1} \sup _{j \leq k,|l| \leq m}\left|p_{j}^{(l)}(t) e^{\left\langle t, w_{j}\right\rangle}\right| / l!\geq C_{2} e^{-r|t|}
$$

3 Right inverses

As a first class of convolution operators admitting a continuous linear right inverse we consider a condition of hyperbolic type:

Theorem 3.1. Let $\mu \in\left(P_{* *}\right)^{\prime}$ satisfy (2.4) and (2.6). T_{μ} admits a continuous linear right inverse in $\left(P_{* *}\right)^{\prime}$ if there is $N \in \mathbb{R}^{d}$ such that for any k there is k_{0} such that

$$
\begin{equation*}
\widehat{\mu}(z+i \tau N) \neq 0 \text { if } z \in W_{k} \text { and }|\tau| \geq k_{0} . \tag{3.1}
\end{equation*}
$$

Proof. Let $|N|=1$ (w.l.o.g.) and $M_{\widehat{\mu}}(f):=\widehat{\mu} f$ for $f \in P_{* *}$. By Fourier transformation, it is sufficient to show that $M_{\widehat{\mu}}$ has a continuous linear left inverse in $P_{* *}$.
a) For any k there is k_{1} such that any $j \geq k_{1}$ there are $A, C_{0}>0$ such that

$$
\begin{equation*}
|\widehat{\mu}(w+i \tau N)| \geq C_{0} e^{-A|w|} \text { if } w \in W_{k} \text { and } j \geq|\tau| \geq k_{1} . \tag{3.2}
\end{equation*}
$$

When proving (3.2) we need the following minimum modulus theorem (see e.g. [9, 1.11]): Let $0 \neq g$ be holomorphic near $|z| \leq \varrho, z \in \mathbb{C}$. For any $0<r<\varrho / 4$ there are $H=H(r / \varrho)>0$ and $r<\delta<\varrho / 4$ such that

$$
\begin{equation*}
|g(\xi)| \geq|g(0)|^{1+H} / \sup _{|\eta|=\rho}|g(\eta)|^{H} \text { if }|\xi|=\delta . \tag{3.3}
\end{equation*}
$$

Fix k and choose k_{1} for $2 C+3 k$ by (3.1) with C from (2.6). Let $k_{1} \leq \tau \leq j$ (w.l.o.g.) and let $w \in W_{k}$. We first choose $\zeta \in \mathbb{C}^{d}$ for $t:=\Re(w)$ by (2.6) and then apply (3.3) to $g(z):=\widehat{\mu}(\zeta+z N), r:=\tau$ and $\rho:=4(1+k / j) \tau$. Using also (2.4) we thus obtain $C_{1}, A_{1}>0$ (independent of w and $\left.\tau\right)$ and $\tau<\delta<(1+k / j) \tau \leq \tau+k$ such that

$$
|\widehat{\mu}(\zeta+i \delta N)| \geq C_{1} e^{-A_{1}|w|} .
$$

(2.13) is now applied to $F \equiv 1, G(z):=\widehat{\mu}(\zeta+i \delta N+z), R:=C+3 k$ and $|z| \leq C+2 k$ (notice, that $G(z) \neq 0$ for $|z| \leq R$ by (3.1) and the choice of k_{1} since $\zeta+z \in W_{2 C+3 k}$). Since $|w+i \tau N-\zeta-i \delta N| \leq C+2 k$ we get by (2.4)

$$
|\widehat{\mu}(w+i \tau N)| \geq C_{2} e^{-A_{2}|w|}
$$

for some constants $A_{2}, C_{2}>0$.
b) We may assume that $N=e_{d}:=(0, \ldots, 1)$ and write $z=\left(z^{\prime}, z_{d}\right) \in \mathbb{C}^{d-1} \times \mathbb{C}$. The left inverse for $M_{\widehat{\mu}}$ can now be given by means of an explicit formula which is a \mathbb{C}^{d}-variant of $[7,(4.5)]$: For $f \in P_{* *}$ let

$$
\begin{equation*}
L(f)(z):=\frac{1}{2 \pi i} \int_{|\Im(\tau)|=k_{1}} \frac{f\left(z^{\prime}, \tau\right) e^{-\left(\tau-z_{d}\right)^{2}}}{\widehat{\mu}\left(-z^{\prime},-\tau\right)\left(\tau-z_{d}\right)} d \tau \text { if } z \in W_{k} \tag{3.4}
\end{equation*}
$$

where $k_{1}>k$ is the constant from (3.2).
Indeed, for $f \in P_{* *}, L(f)(z)$ is defined for any z by (3.2). $L(f)$ is welldefined by Cauchy's theorem and (3.2) again. It is also clear that $L(f)$ is an entire function and that $L\left(M_{\widehat{\mu}} f\right)=f$ by Cauchy's integral formula. Finally, $L(f) \in P_{* *}$ by an easy estimate and $L: P_{* *} \rightarrow P_{* *}$ is continuous.

Hyperbolic polynomials P satisfy (3.1). To see this, let P_{m} denote the principal part of P and let $\widetilde{Q}(x, t):=\left(\sum_{\alpha}\left|Q^{(\alpha)}(x, t)\right|^{2} t^{2|\alpha|}\right)^{1 / 2}$ for a polynomial Q. By $[3$, 12.4.6(iii)] we know that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup _{x \in \mathbb{R}^{d}} \frac{\left(P_{m}^{(\alpha)}\right) ケ(x, t)}{\widehat{P_{m}}(x, t)}=0 \text { if } \alpha \neq 0 \text { and } \lim _{t \rightarrow \infty} \sup _{x \in \mathbb{R}^{d}} \frac{\left(P-P_{m}\right)(x, t)}{\widehat{P_{m}}(x, t)}=0 \tag{3.5}
\end{equation*}
$$

if P is hyperbolic w.r.t. N. For $z=x+i y \in W_{k}$ and $t \geq k$ we thus get by Taylor expansion, $[10,3.3]$ and (3.5)

$$
\begin{gathered}
|P(z+i t N)| \\
\geq\left|P_{m}(x+i t N)\right|-\sum_{\alpha \neq 0}\left|P_{m}^{(\alpha)}(x+i t N)\right|\left|y^{\alpha}\right|-\sum_{\alpha}\left|\left(P-P_{m}\right)^{(\alpha)}(x)\right|\left|(y+i t N)^{\alpha}\right| \\
\geq C_{1} \widetilde{P_{m}}(x, t)-C_{2}\left(\sum_{\alpha \neq 0}\left|P_{m}^{(\alpha)}(x+i t N)\right|+\left(P-P_{m}\right)(x, k+t)\right) \\
\geq C_{1} \widetilde{P_{m}}(x, t)-C_{3}\left(\sum_{\alpha \neq 0}\left(P_{m}^{(\alpha)}\right)(x, t) \mid+\left(P-P_{m}\right)(x, t)\right) \geq C_{1} \widetilde{P_{m}}(x, t) / 2 \neq 0
\end{gathered}
$$

if t is large.
The condition $(D N)$ of Vogt is fundamental for the existence of continuous linear right inverses. It is defined as follows (see e.g. [11, p. 359]): Let E be a Frechet space with fundamental system $\left(\left\|\|_{k}\right)_{k \in \mathbb{N}}\right.$ of seminorms. E has $(D N)$ iff there is p such that for each k there are n and C such that

$$
\|x\|_{k}^{2} \leq C\|x\|_{p}\|x\|_{n} \text { for all } x \in E
$$

If T_{μ} is surjective on $\left(P_{* *}\right)^{\prime}$, the sequence

$$
0 \rightarrow \operatorname{ker}\left(T_{\mu}\right) \rightarrow\left(P_{* *}\right)^{\prime} \xrightarrow{T_{\mu}}\left(P_{* *}\right)^{\prime} \rightarrow 0
$$

is exact. By Fourier transformation it is split iff the dual sequence

$$
0 \rightarrow P_{* *} \xrightarrow{M_{\widehat{\mu}}} P_{* *} \rightarrow P_{* *} /\left(\widehat{\mu} P_{* *}\right) \rightarrow 0
$$

splits (again, $M_{\widehat{\mu}}(f):=\widehat{\mu} f$ for $f \in P_{* *}$). Since $P_{* *}$ is isomorphic to a power series space of infinite type by [6], the splitting theorem of Vogt (see [11, 30.1 and 29.2]) implies that

$$
\begin{equation*}
T_{\mu} \text { has a right inverse in }\left(P_{* *}\right)_{b}^{\prime} \text { iff }\left(\operatorname{ker}\left(T_{\mu}\right)\right)_{b}^{\prime} \simeq P_{* *} /\left(\widehat{\tilde{\mu}} P_{* *}\right) \in(D N) \tag{3.6}
\end{equation*}
$$

For operators T_{μ} in one variable we thus get
Theorem 3.2. Let $d=1$ and let $\mu \in\left(P_{* *}\right)^{\prime}$ satisfy (2.4) and (2.6). Then T_{μ} admits a continuous linear right inverse in $P_{* *}(\mathbb{C})_{b}^{\prime}$ iff there is k_{1} such that

$$
\begin{equation*}
\widehat{\mu}(z) \neq 0 \text { if }|\Im(z)| \geq k_{1} . \tag{3.7}
\end{equation*}
$$

Proof. (3.7) is sufficient by 3.1. If T_{μ} admits a continuous linear right inverse in $P_{* *}(\mathbb{C})_{b}^{\prime}, P_{* *} /\left(\widehat{\tilde{\mu}} P_{* *}\right)$ has $(D N)$ by (3.6), hence $P_{* *} /\left(\widehat{\tilde{\mu}} P_{* *}\right)$ has a continuous norm, that is, a quotient seminorm $\| \widetilde{\Pi}_{k}$ is a norm. Let $\widehat{\mu}(-w)=0$. Then $g(z):=$ $\widehat{\mu}(-z) \exp (-\langle z-w, z-w\rangle) /(z-w) \in P_{* *}$ and $[g] \neq 0$ in $P_{* *} /\left(\widehat{\hat{\mu}} P_{* *}\right)$.

We now notice that for any k there is k_{2} such that

$$
\begin{equation*}
P_{* *} \text { is dense in } \mathcal{H}_{k_{2}}:=\left\{f \in \mathcal{H}\left(W_{k_{2}}\right) \mid\|f\|_{k_{2}}<\infty\right\} \text { w.r.t. }\left\|\|_{k+K}\right. \tag{3.8}
\end{equation*}
$$

where K is chosen for k by (2.4). Indeed, the proof of [6, 3.4] shows that there is k_{2} such that the Hermite expansion of $f \in \mathcal{H}_{k_{2}}$ converges to f with respect to $\left\|\|_{k+K}\right.$.

If $|\Im(w)|>k_{2}$ then $h(z):=\exp (-\langle z-w, z-w\rangle) /(z-w) \in \mathcal{H}_{k_{2}}$ and we may choose $h_{n} \in P_{* *}$ by (3.8) such that $\left\|h-h_{n}\right\|_{k+K} \rightarrow 0$, and therefore

$$
0 \neq\|[g]\|_{k}=\left\|\left[\widehat{\mu}\left(h-h_{n}\right)\right]\right\|_{k} \leq\left\|\widehat{\tilde{\mu}}\left(h-h_{n}\right)\right\|_{k} \leq C_{1}\left\|h-h_{n}\right\|_{k+K} \rightarrow 0
$$

a contradiction.
A right inverse also exists for operators of hypoelliptic type (see 3.3 below). This is based on the following observation: Let F be an entire function such that there is $N \in \mathbb{C}^{d}$ such that for any k there is K such that

$$
\begin{equation*}
|\langle z, \bar{N}\rangle| \leq K \text { if } F(z)=0 \text { and }|\Pi(z)| \leq k, \tag{3.9}
\end{equation*}
$$

where Π is the orthogonal projection onto N^{\perp}. Then

$$
\begin{equation*}
\mathcal{H}\left(\mathbb{C}^{d}\right) /\left(F \mathcal{H}\left(\mathbb{C}^{d}\right)\right) \text { has }(D N) \tag{3.10}
\end{equation*}
$$

Indeed, we may assume that $N=e_{d}:=(0, \ldots, 1)$. A left inverse for the multiplication operator M_{F} on $\mathcal{H}\left(\mathbb{C}^{d}\right)$ is then provided by

$$
L(f)(z):=\frac{1}{2 \pi i} \int_{|\tau|=K+1} \frac{f\left(z^{\prime}, \tau\right)}{F\left(z^{\prime}, \tau\right)\left(\tau-z_{d}\right)} d \tau \text { if }|z| \leq k
$$

for $K \geq k$ from (3.9). Hence, $F \mathcal{H}\left(\mathbb{C}^{d}\right)$ is a complemented (closed) subspace of $\mathcal{H}\left(\mathbb{C}^{d}\right)$ and the sequence

$$
0 \rightarrow \mathcal{H}\left(\mathbb{C}^{d}\right) \xrightarrow{M_{F}} \mathcal{H}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{H}\left(\mathbb{C}^{d}\right) /\left(F \mathcal{H}\left(\mathbb{C}^{d}\right)\right) \rightarrow 0
$$

is split. Hence, $\mathcal{H}\left(\mathbb{C}^{d}\right) /\left(F \mathcal{H}\left(\mathbb{C}^{d}\right)\right)$ is isomorphic to a subspace of $\mathcal{H}\left(\mathbb{C}^{d}\right)$, and (3.10) follows from [11, 29.2] since $\mathcal{H}\left(\mathbb{C}^{d}\right)$ has $(D N)$.
(3.9) is satisfied for $N=e_{d}$ if $F(z):=\sum_{j=0}^{k} F_{j}\left(z^{\prime}\right) z_{d}^{j}$ and $F_{j} \in \mathcal{H}\left(\mathbb{C}^{d-1}\right)$.

Theorem 3.3. Let $\widehat{\mu}$ satisfy (2.4), (2.6) and (3.9). T_{μ} admits a continuous linear right inverse in $\left(P_{* *}\right)_{b}^{\prime}$ if

$$
\begin{equation*}
|\Im(z)| \rightarrow \infty \text { if } \widehat{\mu}(z)=0 \text { and }|\Re(z)| \rightarrow \infty . \tag{3.11}
\end{equation*}
$$

Proof. By (3.6) and (3.10), it is sufficient to show that the canonical mapping

$$
S: P_{* *} /\left(\hat{\tilde{\mu}} P_{* *}\right) \rightarrow \mathcal{H}\left(\mathbb{C}^{d}\right) /\left(\widehat{\tilde{\mu}} \mathcal{H}\left(\mathbb{C}^{d}\right)\right)
$$

is a topological isomorphism. To prove this we first notice that S is clearly welldefined. S is injective by the proof of " $c) \Rightarrow a$)" in 2.2 (use (2.6) and (2.13)). Let

$$
V_{\widehat{\mu}}:=\left\{z \in \mathbb{C}^{d} \mid \widehat{\mu}(-z)=0\right\}
$$

The surjectivity of S is seen as follows: choose $\varphi \in C^{\infty}\left(\mathbb{C}^{d}\right)$ such that $\varphi(z)=1$ if $\operatorname{dist}\left(z, V_{\widehat{\mu}}\right) \leq 1$ and $\varphi(z)=0$ if $\operatorname{dist}\left(z, V_{\widehat{\mu}}\right) \geq 2$ and such that $|\varphi|$ and $\|\operatorname{grad} \varphi\|$ are bounded on \mathbb{C}^{d}. We must show that for any $f \in \mathcal{H}\left(\mathbb{C}^{d}\right)$ there are $f_{1} \in P_{* *}$ and $f_{2} \in \mathcal{H}\left(\mathbb{C}^{d}\right)$ such that $f=f_{1}+\widehat{\mu} f_{2}$. For this, we will find

$$
g \in \mathcal{L}:=\left\{\left.g \in L_{l o c}^{2}\left(\mathbb{C}^{d}\right)\left|\forall k:|f|_{k}^{2}:=\int_{W_{k}}\right| f(z)\right|^{2} e^{2 k|z|} d z<\infty\right\}
$$

solving

$$
\begin{equation*}
\bar{\partial} g=\bar{\partial}(\varphi f / \widehat{\tilde{\mu}}) \tag{3.12}
\end{equation*}
$$

Then $f_{1}:=\varphi f-\widehat{\tilde{\mu}} g$ and $f_{2}:=(1-\varphi) f / \widehat{\hat{\mu}}+g$ will prove the claim (use the arguments from below). To solve (3.12) we notice that

$$
F_{k}(z):=\bar{\partial}\left(f(z) \varphi(z) e^{\langle z, z\rangle} / \mu(-z)\right), z \in W_{k}
$$

is bounded and has bounded support by (3.11). Hence $F_{k} \in L^{2}\left(W_{k}\right)$ and by [2, 4.4.2] there is G_{k} such that $\bar{\partial} G_{k}=F_{k}$ on W_{k} and $G_{k} /\left(1+|\cdot|^{2}\right) \in L^{2}\left(W_{k}\right)$. Therefore, $g_{k}:=G_{k} \exp (-\langle z, z\rangle)$ satisfies (3.12) on W_{k} and $\left|g_{k}\right|_{k}$ is finite. For $j \geq k, g_{j k}:=$ $\left.\left(g_{j}-g_{k}\right)\right|_{W_{k}}$ is holomorphic on W_{k} and $g_{j k} \in \mathcal{L}_{k}$. We therefore can switch from L^{2}-norms to sup -norms for $g_{j k}$, that is, $\left.g_{j k}\right|_{W_{k-1}} \in \mathcal{H}_{k-1}$. By (3.8), for any k there is k_{2} such that $\mathcal{L} \cap \operatorname{ker}(\bar{\partial})=P_{* *}$ is dense in $\mathcal{H}_{k_{2}}$ w.r.t. $\left\|\|_{k}\right.$. The classical Mittag-Leffler argument therefore shows that (3.12) can be solved with $g \in \mathcal{L}$.

Any hypoelliptic partial differential operator with constant coefficients admits a continuous linear right inverse on $\left(P_{* *}\right)^{\prime}$ by 3.3 .

An interesting example for 3.2 is given by $\mu:=\left(\delta_{i}-\delta_{-i}\right) / 2 \in P_{* *}(\mathbb{C})^{\prime}$. Then $T_{\mu}=\left(\tau_{i}-\tau_{-i}\right) / 2$, where $\tau_{ \pm i}$ is the shift by $\pm i . \widehat{\mu}(z)=\sinh (z)$ satisfies (2.6), but not (3.7). T_{μ} is surjective but does not admit a right inverse in $P_{* *}(\mathbb{C})_{b}^{\prime}$. The kernel of T_{μ} (i.e. the $2 i$-periodic elements in $\left.P_{* *}(\mathbb{C})^{\prime}\right)$ is $\operatorname{span}\left\{e^{j \pi z} \mid j \in \mathbb{Z}\right\} \simeq \varphi$, where φ is the space of all finite sequences (see [8]).

On the other hand, if $\mu:=\left(\delta_{-1}-\delta_{1}\right) /(2 i)$, then $T_{\mu}=\left(\tau_{-1}-\tau_{1}\right) /(2 i)$ and $\widehat{\mu}(z)=\sin (z)$ satisfies (2.6) and (3.7). T_{μ} admits a right inverse, that is, the space of 2-periodic elements is complemented in $P_{* *}(\mathbb{C})_{b}^{\prime}$ (see [8] for more details).

References

[1] L. Hörmander, On the range of convolution operators, Ann. of Math. 76 (1962) 148-170.
[2] L. Hörmander, An introduction to complex analysis in several variables, NorthHolland, Berlin/Heidelberg/New York/Tokyo, 1983.
[3] L. Hörmander, The analysis of linear partial differential operators I+II, Springer, Amsterdam/New York/Oxford/Tokyo, 1990.
[4] A. Kaneko, Introduction to hyperfunctions, Kluwer, Dordrecht/Boston/London, 1988.
[5] T. Kawai, On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo, Sec. IA 17 (1970) 467-517.
[6] M. Langenbruch, Hermite functions and weighted spaces of generalized functions, Manuscr. Math. 119 (2006) 269-285.
[7] M. Langenbruch, Convolution operators on Fourier hyperfunctions, preprint.
[8] M. Langenbruch, Generalized Fourier expansion in kernels of convolution operators on Fourier hyperfunctions, Analysis, to appear.
[9] M. Langenbruch and S. Momm, Complemented submodules in weighted spaces of analytic functions, Math. Nachr. 157 (1992) 263-276.
[10] R. Meise, B.A. Taylor and D. Vogt, ω-hyperbolicity of linear partial differential operators with constant coefficients, in: Complex analysis, harmonic analysis and applications, R. Deville (ed.) et al., Pitman Res. Notes Math. Ser. 347 (1996) 157-182.
[11] R. Meise and D. Vogt, Introduction to functional analysis, Clarendon Press, Oxford, 1997.
[12] Y.S. Park and M. Morimoto, Fourier ultra-hyperfunctions in the euclidean nspace, J. Fac. Sci. Univ. Tokyo, Sec. IA 20 (1973) 121-127.

Department of Mathematics, University of Oldenburg, D-26111 Oldenburg, GERMANY
E-mail: langenbruch@mathematik.uni-oldenburg.de

