Division problems for Fourier ultra-hyperfunctions

Michael Langenbruch

Dedicated to Professor J. Schmets on the occasion of his 65th birthday

Abstract

We characterize the surjective convolution operators T_{μ} on the space $(P_{**})'$ of Fourier ultra-hyperfunctions by means of a slowly decreasing condition for the Fourier transform $\hat{\mu}$ and then study the existence of continuous linear right inverses for T_{μ} .

1 Introduction

The subject of this paper are convolution operators on the space $(P_{**})'$ of Fourier ultra-hyperfunctions defined as the dual space of the space

$$P_{**} := P_{**}(\mathbb{C}^d) := \{ f \in \mathcal{H}(\mathbb{C}^d) \mid \forall k : \|f\|_k := \sup_{|\Im(z)| \le k} |f(z)| e^{k|z|} < \infty \}$$

of entire test functions (see [12]). Notice the analogy to the definition of standard Fourier hyperfunctions (see [4, 5]) and of Schwartz' tempered distributions. $(P_{**})'$ is a space of entire rather than of real analytic functionals which has some interesting features that suggest to study convolution operators in this space (e.g., the exponentials $f_{\lambda}(z) := \exp(\sum \lambda_j z_j)$ are contained in $(P_{**})'$ for any $\lambda \in \mathbb{C}^d$, hence the kernels of an ordinary differential equation coincide in $C^{\infty}(\mathbb{R}^d)$ and in $(P_{**})'$, which is not true for the standard Fourier hyperfunctions, see [8]). Though some of the proofs in the present paper are based on similar ideas as in the case of Fourier hyperfunctions (see [7]), the results are rather different and sometimes more natural for Fourier ultra-hyperfunctions.

References to the huge literature on division problems in various spaces are given in more detail in [7].

Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 521-530

The paper is organized as follows: In the next section we show that $\mu \in (P_{**})'$ defines a convolution operator T_{μ} on $(P_{**})'$ iff the Fourier transform $\hat{\mu}$ is defined by an entire function F such that for any k there is K such that

$$|F(z)| \le C_1 e^{K|z|} \text{ if } |\Im(z)| \le k.$$

For these μ we then show that T_{μ} is surjective on $(P_{**})'$ iff T_{μ} admits an elementary solution $\nu \in (P_{**})'$ iff there is C > 0 such that for any $t \in \mathbb{R}^d$ with $|t| \ge C$ there is $\zeta \in \mathbb{C}^d$ such that

$$|\zeta - t| \leq C$$
 and $|\widehat{\mu}(\zeta)| \geq e^{-C|\zeta|}$.

We do not need here a specific condition on the connected components of $\hat{\mu}^{-1}(0)$ unlike to the case of standard Fourier hyperfunctions (see [7]).

In section 3 we show that a surjective convolution operator T_{μ} on $P_{**}(\mathbb{C})'$ admits a continuous linear right inverse in $P_{**}(\mathbb{C})'_b$ iff there is k_0 such that

$$\widehat{\mu}(z) \neq 0$$
 if $|\Im(z)| > k_0$.

We also show that T_{μ} admits a continuous linear right inverse in $P_{**}(\mathbb{C}^d)'_b$ if $\hat{\mu}$ satisfies a condition of hyperbolic type or of hypoelliptic type (see 3.1 and 3.3). Some examples are discussed at the end of sections 2 and 3.

2 Convolution operators

For $f \in P_{**}$ and $\mu \in (P_{**})'$ we define the Fourier transformation by

$$\widehat{f}(z) := \int f(x) e^{-i\langle x, z \rangle} dx$$
 and $\langle \widehat{\mu}, g \rangle := \langle \mu, \widehat{g} \rangle$ if $g \in P_{**}$,

where $\langle w, z \rangle := \sum_{j=1}^d w_j z_j$ for $z, w \in \mathbb{C}^d$.

The Fourier transform is a topological isomorphism in P_{**} and in $(P_{**})'_b$ (see [6, 3.6 and 5.5]).

To define a convolution operator on $(P_{**})'$ we start with the usual convolution of functions: since

$$\widehat{f * g} = \widehat{f}\widehat{g} \text{ and } \widehat{fg} = (2\pi)^{-d}\widehat{f} * \widehat{g} \text{ for } f, g \in P_{**} \subset \mathcal{S}$$
 (2.1)

we see that $f * g \in P_{**}$ if $f, g \in P_{**}$ and that the mapping

$$f^*: P_{**} \to P_{**}, g \to f * g$$
, is continuous.

Therefore, we can define the convolution $S_{\mu}(f) \in (P_{**})'$ of a fixed $\mu \in (P_{**})'$ and $f \in P_{**}$ by the usual formula

$$\langle S_{\mu}(f), g \rangle := \langle \mu, \dot{f} * g \rangle \text{ if } g \in P_{**}, \tag{2.2}$$

where $\check{f} := f(-\cdot)$ for $f \in P_{**}$.

Let $\nu \bullet f$ denote the product of $\nu \in (P_{**})'$ and a test function $f \in P_{**}$. Via Fourier transformation, $S_{\mu}(f)$ is the product of $\hat{\mu}$ and \hat{f} since

$$\langle \widehat{\mu} \bullet \widehat{f}, g \rangle = \langle \mu, \widehat{fg} \rangle = \langle \mu, \check{f} \ast \widehat{g} \rangle = \langle \left(S_{\mu}(f) \right)^{\widehat{}}, g \rangle \text{ if } g \in P_{\ast\ast}$$
(2.3)

by (2.1) and Fourier inversion formula. We say that $\nu \in (P_{**})'$ is defined by an exponentially bounded measurable function F on \mathbb{R}^d iff

$$\langle \nu, g \rangle = \int_{\mathbb{R}^d} F(x)g(x) \, dx \text{ if } g \in P_{**}.$$

If $S_{\mu}(f)$ is defined by a function $f_{\mu} \in P_{**}$ and if S_{μ} defines a continuous linear operator in P_{**} in this way, the convolution operator T_{μ} on $(P_{**})'$ is defined by duality, i.e.

 $T_{\mu} := (S_{\check{\mu}})^t : (P_{**})' \to (P_{**})'.$

We now have the following characterization:

Proposition 2.1. The following are equivalent for $\mu \in (P_{**})'$:

- a) For any $f \in P_{**}$, $S_{\mu}(f)$ is defined by some $f_{\mu} \in P_{**}$.
- b) $S_{\mu}: P_{**} \to P_{**}$ is defined and continuous.

c) $\hat{\mu}$ is defined by $F \in \mathcal{H}(\mathbb{C}^d)$ such that for any k there is K such that

$$|F(z)| \le C_1 e^{K|z|} \text{ on } W_k := \{ z \in \mathbb{C}^d \mid |\Im(z)| < k \}.$$
(2.4)

We then have $S_{\mu}(f)(z) = (2\pi)^{-d}(\widehat{Ff})(-z)$ for any $f \in P_{**}$.

Proof. "a) \Rightarrow c)" By (2.3), the Fourier inversion formula and a), $S(f) := \hat{\mu} \bullet f = (2\pi)^{-d} \left(S_{\mu}(\hat{f}) \right)^{\widehat{}}$ is defined by some $f_{\mu} \in P_{**}$ for any $f \in P_{**}$. Since P_{**} is continuously embedded in $(P_{**})'$, S is a continuous operator in P_{**} by the closed graph theorem, that is, for any k there is K such that we have for the norms on P_{**}

$$\|\hat{\mu} \bullet f\|_k \le C_k \|f\|_K \text{ if } f \in P_{**}.$$
 (2.5)

For $t \ge 1$ let $g_t := \hat{\mu} \bullet f_t$ for $f_t(z) := e^{-\langle z, z \rangle/t}$. $g_t \in P_{**}$ by a) since $f_t \in P_{**}$. By the definition of \bullet we see that $g_4 = g_t f_4/f_t$ for any $t \ge 1$. For the entire function $F := g_4/f_4$ this implies by (2.5)

$$|F(z)| = |g_t(z)/f_t(z)| \le C_k ||f_t||_K / |f_t(z)| \le C_k e^{2K^2} e^{tK^2/4 + |z|^2/t}$$

if $t \ge 1$ and $z \in W_k$. Taking the infimum with respect to $t \ge 1$ we get (2.4). Let h_j denote the Hermite polynomials. Then the Hermite functions are defined by $H_j := c_j h_j f_2$ and we thus get by the definition of \bullet

$$\int_{\mathbb{R}^d} F(x)H_j(x)dx = c_j \int_{\mathbb{R}^d} (\widehat{\mu} \bullet f_4)(x)(f_4h_j)(x)dx = c_j \langle \widehat{\mu} \bullet f_4, h_j f_4 \rangle$$
$$= c_j \langle \widehat{\mu}, h_j f_2 \rangle = \langle \widehat{\mu}, H_j \rangle \text{ for any } j \in \mathbb{N}_0^d.$$

Since the Hermite functions are a basis in P_{**} by [6, 5.5], c) is proved.

"c) ⇒ b)" By (2.3) and c) we know that $S_{\mu}(f) = (2\pi)^{-d} (F\hat{f})^{\check{}}$ for any $f \in P_{**}$. This shows b) since the Fourier transformation and the multiplication with F are continuous operators in P_{**} by (2.4). Notice that (2.4) is not always satisfied: Easy counterexamples are provided by $\mu \in (P_{**})'$ such that $\hat{\mu}$ is a hyperfunction with compact support. In the simplest case we can take $\mu \equiv 1$, i.e. $\hat{\mu} = 2\pi\delta$. Also, elementary solutions $\nu \in (P_{**})'$ of surjective convolution operators T_{μ} on $(P_{**})'$ do not satisfy (2.4) if there is $z_0 \in \mathbb{C}^d$ such $\hat{\mu}(z_0) = 0$ since the first assumption would imply that the kernel of T_{μ} is trivial contradicting the second assumption.

From now on we will always assume that μ satisfies (2.4). Therefore,

$$S_{\mu}: P_{**} \to P_{**} \text{ and } T_{\mu} := (S_{\check{\mu}})^t : (P_{**})'_b \to (P_{**})'_b$$

are defined, linear and continuous, and $\hat{\mu}$ is an entire function.

Recall that $\nu \in (P_{**})'$ is an elementary solution for T_{μ} if $T_{\mu}(\nu) = \delta$. Surjective convolution operators on $(P_{**})'$ can now be characterized as follows:

Theorem 2.2. Let $\mu \in (P_{**})'$ satisfy (2.4). The following are equivalent:

a) The convolution operator $T_{\mu}: (P_{**})' \to (P_{**})'$ is surjective.

b) T_{μ} admits an elementary solution $\nu \in (P_{**})'$.

c) There is C > 0 such that for any $t \in \mathbb{R}^d$ with $|t| \ge C$ there is $\zeta \in \mathbb{C}^d$ such that

$$|\zeta - t| \le C \text{ and } |\widehat{\mu}(\zeta)| \ge e^{-C|\zeta|}.$$
(2.6)

Proof. "b) \Rightarrow c)" Let $\nu \in (P_{**})'$ be an elementary solution for T_{μ} . Then $\tilde{\nu} \in (P_{**})'$ and thus there are j and C_1 such that

$$|\langle \hat{\nu}, h \rangle| \le C_1 ||h||_j \text{ if } h \in (P_{**})'.$$
 (2.7)

If (2.6) does not hold, for any $l \in \mathbb{N}$ there is $t_l \in \mathbb{R}^d$ with $|t_l| \ge 4l$ such that

$$|\tilde{\check{\mu}}(\zeta)| \le e^{-l|\zeta|} \text{ if } |\zeta - t_l| \le l.$$

$$(2.8)$$

Let $f_l(z) := \exp(i\langle z, t_l \rangle - \langle z, z \rangle / (2c_l))$ for $c_l := |t_l|/l$. Then $f_l \in P_{**}$ and

$$\hat{f}_{l}(z) := (2\pi c_{l})^{d/2} \exp\left(-\langle z - t_{l}, z - t_{l}\rangle c_{l}/2\right) =: g_{l}(z)$$

$$1 = f_{l}(0) = |\langle T_{\mu}(\nu), f_{l}\rangle| = (2\pi)^{-d} |\langle \hat{\nu}, \hat{\mu}\hat{f}_{l}\rangle| \le C_{1} \|\hat{\mu}g_{l}\|_{j}$$
(2.9)

by 2.1 and (2.7). We will show that the right hand side of (2.9) tends to 0, a contradiction: let $|z - t_l| \le l$. Since $|t_l| \ge 4l$, we get by (2.8)

$$|\hat{\mu}(z)g_{l}(z)| \leq C_{2}c_{l}^{d/2}\exp\left(-l|z| - |\Re(z-t_{l})|^{2}c_{l}/2 + |\Im(z)|^{2}c_{l}/2\right)$$
$$\leq C_{2}c_{l}^{d/2}e^{-l(|z|-|t_{l}|/2)} \leq C_{3}e^{-l(|z|+|t_{l}|)/8}.$$
(2.10)

Choose $J \ge j^2$ for j by (2.4). If $|z - t_l| \ge l$ and $z \in W_j$ we then get

$$|\hat{\mu}(z)g_l(z)| \le C_4 c_l^{d/2} e^{J|z| + (2|\Im(z)|^2 - |z - t_l|^2)c_l/2} \le e^{-j|z| - |t_l|}$$
(2.11)

if l is large, since

$$|t_l| + (j+J)|z| + (2j^2 - |z-t_l|^2)c_l/2 \le 2J|z-t_l| - |z-t_l|^2c_l/2 + 3J|t_l|$$

$$\leq 2Jl - l|t_l|/2 + 3J|t_l| \leq -|t_l|$$
 for large l .

The above claim follows from (2.10) and (2.11).

"c) $\Rightarrow a$)" P_{**} is a (FS)-space, hence reflexive. By Fourier transformation, Proposition 2.1 and the closed range theorem [11, 26.3] we thus get: T_{μ} is surjective in $(P_{**})'$ iff S_{μ} is injective with closed range in P_{**} iff $\hat{\mu}P_{**}$ is closed in P_{**} iff for any $k \in \mathbb{N}$ there are $j \geq k$ and $C_1 \geq 1$ such that

$$||f||_k \le C_1 ||\hat{\mu}f||_j \text{ if } f \in P_{**}.$$
(2.12)

We now recall the following fact (see [1, 3.1]): Let F, G and F/G be holomorphic on $\{z \in \mathbb{C}^d \mid |z| < R\}$.

$$|(F/G)(z)| \le \sup_{|\eta| < R} |F(\eta)| \Big(\sup_{|\eta| < R} |G(\eta)| \Big)^{\frac{2|z|}{R - |z|}} |G(0)|^{\frac{-R - |z|}{R - |z|}} \text{ if } |z| < R.$$
(2.13)

Fix $k \in \mathbb{N}$ and let $w := t + iy \in W_k$. Choose $\zeta \in \mathbb{C}^d$ for t by (2.6) and apply (2.13) to $F(z) := \hat{\mu}(\zeta + z)f(\zeta + z), f \in P_{**}, G(z) := \hat{\mu}(\zeta + z), R := 2(C + k)$ and $|z| \leq R/2$. Since $|w - \zeta| \leq R/2$ we get

$$|f(w)|e^{k|w|} \le C_1 \sup_{|\eta| < R} |\widehat{\mu}(\zeta + \eta)f(\zeta + \eta)| \sup_{|\eta| < R} e^{2J|\zeta + \eta|} e^{3C|\zeta| + k|w|} \le C_2 \|\widehat{\mu}f\|_j$$

for j := 2J + k + 3C, if J is chosen for W_{C+R} by (2.4). This proves (2.12).

 T_{μ} is obviously defined for any $\mu \in \mathcal{H}(\mathbb{C}^d)'_b$, however T_{μ} need not be surjective (see [7, 3.2]). A simple example of a non surjective operator T_{μ} is provided by $\mu(x) := e^{-x^2/2}, x \in \mathbb{R}$, since $\hat{\mu}(z) = (2\pi)^{1/2} e^{-x^2/2}$ does not satisfy (2.6). On the other hand, if $\mu(x) := e^{ix^2/2}, x \in \mathbb{R}$, then $\hat{\mu}(z) = \pi^{1/2}(1+i)e^{-iz^2/2}$ (see [3, 7.6.1]) and T_{μ} is defined and surjective (and in fact bijective) since $|\hat{\mu}(z)| = (2\pi)^{1/2} e^{\Re(z)\Im(z)}$ satisfies (2.4) and (2.6).

Differential-delay equations are always surjective in $(P_{**})'$. In fact, we then have $\mu \in \operatorname{span}\{\partial^{\alpha}\delta_{w} \mid \alpha \in \mathbb{N}_{0}^{d}, w \in \mathbb{C}^{d}\}$ and $\hat{\mu} \in \operatorname{span}\{z^{\alpha}\exp(\langle z, w \rangle) \mid \alpha \in \mathbb{N}_{0}^{d}, w \in \mathbb{C}^{d}\}$. Thus, let $\hat{\mu} := \sum_{j=1}^{k} p_{j} e^{\langle \cdot, w_{j} \rangle}$ with distinct $w_{j} \in \mathbb{C}^{d}$ and polynomials p_{j} . Let $\deg p_{j} := m_{j} \leq m$ and $\max_{j \leq k} |\Re(w_{j})| := r$. Then

$$g_t(z) := \widehat{\mu}(t+z) = \sum_{j=1}^k \sum_{l=0}^m \frac{p_j^{(l)}(t)e^{\langle t, w_j \rangle}}{l!} z^l e^{\langle z, w_j \rangle} \in \operatorname{span}_{j \le k, |l| \le m} \{ z^l e^{\langle z, w_j \rangle} \}.$$

Since all norms on this space are equivalent, (2.6) follows:

$$\sup_{|z| \le 1} |\widehat{\mu}(t+z)| \ge C_1 \sup_{j \le k, |l| \le m} |p_j^{(l)}(t)e^{\langle t, w_j \rangle}| / l! \ge C_2 e^{-r|t|}$$

3 Right inverses

As a first class of convolution operators admitting a continuous linear right inverse we consider a condition of hyperbolic type:

Theorem 3.1. Let $\mu \in (P_{**})'$ satisfy (2.4) and (2.6). T_{μ} admits a continuous linear right inverse in $(P_{**})'$ if there is $N \in \mathbb{R}^d$ such that for any k there is k_0 such that

$$\widehat{\mu}(z+i\tau N) \neq 0 \text{ if } z \in W_k \text{ and } |\tau| \ge k_0.$$
(3.1)

Proof. Let |N| = 1 (w.l.o.g.) and $M_{\widehat{\mu}}(f) := \widehat{\mu}f$ for $f \in P_{**}$. By Fourier transformation, it is sufficient to show that $M_{\widehat{\mu}}$ has a continuous linear left inverse in P_{**} .

a) For any k there is k_1 such that any $j \ge k_1$ there are $A, C_0 > 0$ such that

$$|\widehat{\mu}(w+i\tau N)| \ge C_0 e^{-A|w|} \text{ if } w \in W_k \text{ and } j \ge |\tau| \ge k_1.$$
(3.2)

When proving (3.2) we need the following minimum modulus theorem (see e.g. [9, 1.11]): Let $0 \neq g$ be holomorphic near $|z| \leq \varrho, z \in \mathbb{C}$. For any $0 < r < \varrho/4$ there are $H = H(r/\varrho) > 0$ and $r < \delta < \varrho/4$ such that

$$|g(\xi)| \ge |g(0)|^{1+H} / \sup_{|\eta|=\rho} |g(\eta)|^H \text{ if } |\xi| = \delta.$$
(3.3)

Fix k and choose k_1 for 2C+3k by (3.1) with C from (2.6). Let $k_1 \leq \tau \leq j$ (w.l.o.g.) and let $w \in W_k$. We first choose $\zeta \in \mathbb{C}^d$ for $t := \Re(w)$ by (2.6) and then apply (3.3) to $g(z) := \widehat{\mu}(\zeta + zN), r := \tau$ and $\rho := 4(1 + k/j)\tau$. Using also (2.4) we thus obtain $C_1, A_1 > 0$ (independent of w and τ) and $\tau < \delta < (1 + k/j)\tau \leq \tau + k$ such that

$$|\widehat{\mu}(\zeta + i\delta N)| \ge C_1 e^{-A_1|w|}$$

(2.13) is now applied to $F \equiv 1, G(z) := \hat{\mu}(\zeta + i\delta N + z), R := C + 3k$ and $|z| \leq C + 2k$ (notice, that $G(z) \neq 0$ for $|z| \leq R$ by (3.1) and the choice of k_1 since $\zeta + z \in W_{2C+3k}$). Since $|w + i\tau N - \zeta - i\delta N| \leq C + 2k$ we get by (2.4)

$$|\widehat{\mu}(w + i\tau N)| \ge C_2 e^{-A_2|w}$$

for some constants $A_2, C_2 > 0$.

b) We may assume that $N = e_d := (0, ..., 1)$ and write $z = (z', z_d) \in \mathbb{C}^{d-1} \times \mathbb{C}$. The left inverse for $M_{\hat{\mu}}$ can now be given by means of an explicit formula which is a \mathbb{C}^d -variant of [7, (4.5)]: For $f \in P_{**}$ let

$$L(f)(z) := \frac{1}{2\pi i} \int_{|\Im(\tau)| = k_1} \frac{f(z', \tau) e^{-(\tau - z_d)^2}}{\hat{\mu}(-z', -\tau)(\tau - z_d)} d\tau \text{ if } z \in W_k$$
(3.4)

where $k_1 > k$ is the constant from (3.2).

Indeed, for $f \in P_{**}$, L(f)(z) is defined for any z by (3.2). L(f) is welldefined by Cauchy's theorem and (3.2) again. It is also clear that L(f) is an entire function and that $L(M_{\hat{\mu}}f) = f$ by Cauchy's integral formula. Finally, $L(f) \in P_{**}$ by an easy estimate and $L: P_{**} \to P_{**}$ is continuous. Hyperbolic polynomials P satisfy (3.1). To see this, let P_m denote the principal part of P and let $\tilde{Q}(x,t) := (\sum_{\alpha} |Q^{(\alpha)}(x,t)|^2 t^{2|\alpha|})^{1/2}$ for a polynomial Q. By [3, 12.4.6(iii)] we know that

$$\lim_{t \to \infty} \sup_{x \in \mathbb{R}^d} \frac{(P_m^{(\alpha)}) \tilde{}(x,t)}{\widetilde{P_m}(x,t)} = 0 \text{ if } \alpha \neq 0 \text{ and } \lim_{t \to \infty} \sup_{x \in \mathbb{R}^d} \frac{(P - P_m) \tilde{}(x,t)}{\widetilde{P_m}(x,t)} = 0$$
(3.5)

if P is hyperbolic w.r.t. N. For $z = x + iy \in W_k$ and $t \ge k$ we thus get by Taylor expansion, [10, 3.3] and (3.5)

|P(z+itN)|

$$\geq |P_m(x+itN)| - \sum_{\alpha \neq 0} |P_m^{(\alpha)}(x+itN)| |y^{\alpha}| - \sum_{\alpha} |(P-P_m)^{(\alpha)}(x)| |(y+itN)^{\alpha}|$$

$$\geq C_1 \widetilde{P_m}(x,t) - C_2 \Big(\sum_{\alpha \neq 0} |P_m^{(\alpha)}(x+itN)| + (P-P_m)^{(\alpha)}(x,k+t)\Big)$$

$$\geq C_1 \widetilde{P_m}(x,t) - C_3 \Big(\sum_{\alpha \neq 0} (P_m^{(\alpha)})^{(\alpha)}(x,t)| + (P-P_m)^{(\alpha)}(x,t)\Big) \geq C_1 \widetilde{P_m}(x,t)/2 \neq 0$$

if t is large.

The condition (DN) of Vogt is fundamental for the existence of continuous linear right inverses. It is defined as follows (see e.g. [11, p. 359]): Let E be a Frechet space with fundamental system $(|| ||_k)_{k \in \mathbb{N}}$ of seminorms. E has (DN) iff there is psuch that for each k there are n and C such that

$$||x||_k^2 \le C ||x||_p ||x||_n$$
 for all $x \in E$.

If T_{μ} is surjective on $(P_{**})'$, the sequence

$$0 \to \ker(T_{\mu}) \to (P_{**})' \xrightarrow{T_{\mu}} (P_{**})' \to 0$$

is exact. By Fourier transformation it is split iff the dual sequence

$$0 \to P_{**} \xrightarrow{M_{\widehat{\mu}}} P_{**} \to P_{**}/(\widehat{\check{\mu}}P_{**}) \to 0$$

splits (again, $M_{\hat{\mu}}(f) := \hat{\mu} f$ for $f \in P_{**}$). Since P_{**} is isomorphic to a power series space of infinite type by [6], the splitting theorem of Vogt (see [11, 30.1 and 29.2]) implies that

 T_{μ} has a right inverse in $(P_{**})'_b$ iff $(\ker(T_{\mu}))'_b \simeq P_{**}/(\tilde{\mu}P_{**}) \in (DN).$ (3.6)

For operators T_{μ} in one variable we thus get

Theorem 3.2. Let d = 1 and let $\mu \in (P_{**})'$ satisfy (2.4) and (2.6). Then T_{μ} admits a continuous linear right inverse in $P_{**}(\mathbb{C})'_b$ iff there is k_1 such that

$$\widehat{\mu}(z) \neq 0 \quad if |\Im(z)| \ge k_1. \tag{3.7}$$

Proof. (3.7) is sufficient by 3.1. If T_{μ} admits a continuous linear right inverse in $P_{**}(\mathbb{C})'_b, P_{**}/(\tilde{\mu}P_{**})$ has (DN) by (3.6), hence $P_{**}/(\tilde{\mu}P_{**})$ has a continuous norm, that is, a quotient seminorm $\|\|_k$ is a norm. Let $\hat{\mu}(-w) = 0$. Then $g(z) := \hat{\mu}(-z) \exp(-\langle z - w, z - w \rangle)/(z - w) \in P_{**}$ and $[g] \neq 0$ in $P_{**}/(\hat{\mu}P_{**})$.

We now notice that for any k there is k_2 such that

$$P_{**}$$
 is dense in $\mathcal{H}_{k_2} := \{ f \in \mathcal{H}(W_{k_2}) \mid ||f||_{k_2} < \infty \}$ w.r.t. $|| ||_{k+K}$ (3.8)

where K is chosen for k by (2.4). Indeed, the proof of [6, 3.4] shows that there is k_2 such that the Hermite expansion of $f \in \mathcal{H}_{k_2}$ converges to f with respect to $|| ||_{k+K}$.

If $|\Im(w)| > k_2$ then $h(z) := \exp(-\langle z - w, z - w \rangle)/(z - w) \in \mathcal{H}_{k_2}$ and we may choose $h_n \in P_{**}$ by (3.8) such that $||h - h_n||_{k+K} \to 0$, and therefore

$$0 \neq \|[g]\|_{k}^{\sim} = \|[\hat{\mu}(h-h_{n})]\|_{k}^{\sim} \leq \|\hat{\mu}(h-h_{n})\|_{k} \leq C_{1}\|h-h_{n}\|_{k+K} \to 0,$$

a contradiction.

A right inverse also exists for operators of hypoelliptic type (see 3.3 below). This is based on the following observation: Let F be an entire function such that there is $N \in \mathbb{C}^d$ such that for any k there is K such that

$$|\langle z, \overline{N} \rangle| \le K \text{ if } F(z) = 0 \text{ and } |\Pi(z)| \le k, \tag{3.9}$$

where Π is the orthogonal projection onto N^{\perp} . Then

$$\mathcal{H}(\mathbb{C}^d)/(F\mathcal{H}(\mathbb{C}^d))$$
 has $(DN).$ (3.10)

Indeed, we may assume that $N = e_d := (0, ..., 1)$. A left inverse for the multiplication operator M_F on $\mathcal{H}(\mathbb{C}^d)$ is then provided by

$$L(f)(z) := \frac{1}{2\pi i} \int_{|\tau|=K+1} \frac{f(z',\tau)}{F(z',\tau)(\tau-z_d)} d\tau \text{ if } |z| \le k$$

for $K \geq k$ from (3.9). Hence, $F\mathcal{H}(\mathbb{C}^d)$ is a complemented (closed) subspace of $\mathcal{H}(\mathbb{C}^d)$ and the sequence

$$0 \to \mathcal{H}(\mathbb{C}^d) \xrightarrow{M_F} \mathcal{H}(\mathbb{C}^d) \to \mathcal{H}(\mathbb{C}^d)/(F\mathcal{H}(\mathbb{C}^d)) \to 0$$

is split. Hence, $\mathcal{H}(\mathbb{C}^d)/(F\mathcal{H}(\mathbb{C}^d))$ is isomorphic to a subspace of $\mathcal{H}(\mathbb{C}^d)$, and (3.10) follows from [11, 29.2] since $\mathcal{H}(\mathbb{C}^d)$ has (DN).

(3.9) is satisfied for $N = e_d$ if $F(z) := \sum_{j=0}^k F_j(z') z_d^j$ and $F_j \in \mathcal{H}(\mathbb{C}^{d-1})$.

Theorem 3.3. Let $\hat{\mu}$ satisfy (2.4), (2.6) and (3.9). T_{μ} admits a continuous linear right inverse in $(P_{**})'_b$ if

$$|\Im(z)| \to \infty \text{ if } \widehat{\mu}(z) = 0 \text{ and } |\Re(z)| \to \infty.$$
(3.11)

Proof. By (3.6) and (3.10), it is sufficient to show that the canonical mapping

$$S: P_{**}/(\tilde{\mu}P_{**}) \to \mathcal{H}(\mathbb{C}^d)/(\tilde{\mu}\mathcal{H}(\mathbb{C}^d))$$

is a topological isomorphism. To prove this we first notice that S is clearly welldefined. S is injective by the proof of "c) $\Rightarrow a$)" in 2.2 (use (2.6) and (2.13)). Let

$$V_{\widehat{\mu}} := \{ z \in \mathbb{C}^d \mid \widehat{\mu}(-z) = 0 \}.$$

The surjectivity of S is seen as follows: choose $\varphi \in C^{\infty}(\mathbb{C}^d)$ such that $\varphi(z) = 1$ if $\operatorname{dist}(z, V_{\widehat{\mu}}) \leq 1$ and $\varphi(z) = 0$ if $\operatorname{dist}(z, V_{\widehat{\mu}}) \geq 2$ and such that $|\varphi|$ and $||\operatorname{grad}\varphi||$ are bounded on \mathbb{C}^d . We must show that for any $f \in \mathcal{H}(\mathbb{C}^d)$ there are $f_1 \in P_{**}$ and $f_2 \in \mathcal{H}(\mathbb{C}^d)$ such that $f = f_1 + \hat{\mu}f_2$. For this, we will find

$$g \in \mathcal{L} := \{ g \in L^2_{loc}(\mathbb{C}^d) \mid \forall k : |f|^2_k := \int_{W_k} |f(z)|^2 e^{2k|z|} dz < \infty \}$$

solving

$$\overline{\partial}g = \overline{\partial}(\varphi f/\hat{\check{\mu}}). \tag{3.12}$$

Then $f_1 := \varphi f - \hat{\mu} g$ and $f_2 := (1 - \varphi) f / \hat{\mu} + g$ will prove the claim (use the arguments from below). To solve (3.12) we notice that

$$F_k(z) := \overline{\partial} \Big(f(z)\varphi(z)e^{\langle z,z \rangle} / \mu(-z) \Big), z \in W_k$$

is bounded and has bounded support by (3.11). Hence $F_k \in L^2(W_k)$ and by [2, 4.4.2] there is G_k such that $\overline{\partial}G_k = F_k$ on W_k and $G_k/(1+|\cdot|^2) \in L^2(W_k)$. Therefore, $g_k := G_k \exp(-\langle z, z \rangle)$ satisfies (3.12) on W_k and $|g_k|_k$ is finite. For $j \ge k$, $g_{jk} := (g_j - g_k)|_{W_k}$ is holomorphic on W_k and $g_{jk} \in \mathcal{L}_k$. We therefore can switch from L^2 -norms to sup-norms for g_{jk} , that is, $g_{jk}|_{W_{k-1}} \in \mathcal{H}_{k-1}$. By (3.8), for any kthere is k_2 such that $\mathcal{L} \cap \ker(\overline{\partial}) = P_{**}$ is dense in \mathcal{H}_{k_2} w.r.t. $|| ||_k$. The classical Mittag-Leffler argument therefore shows that (3.12) can be solved with $g \in \mathcal{L}$.

Any hypoelliptic partial differential operator with constant coefficients admits a continuous linear right inverse on $(P_{**})'$ by 3.3.

An interesting example for 3.2 is given by $\mu := (\delta_i - \delta_{-i})/2 \in P_{**}(\mathbb{C})'$. Then $T_{\mu} = (\tau_i - \tau_{-i})/2$, where $\tau_{\pm i}$ is the shift by $\pm i$. $\hat{\mu}(z) = \sinh(z)$ satisfies (2.6), but not (3.7). T_{μ} is surjective but does not admit a right inverse in $P_{**}(\mathbb{C})'_b$. The kernel of T_{μ} (i.e. the 2*i*-periodic elements in $P_{**}(\mathbb{C})'$) is span $\{e^{j\pi z} \mid j \in \mathbb{Z}\} \simeq \varphi$, where φ is the space of all finite sequences (see [8]).

On the other hand, if $\mu := (\delta_{-1} - \delta_1)/(2i)$, then $T_{\mu} = (\tau_{-1} - \tau_1)/(2i)$ and $\hat{\mu}(z) = \sin(z)$ satisfies (2.6) and (3.7). T_{μ} admits a right inverse, that is, the space of 2-periodic elements is complemented in $P_{**}(\mathbb{C})'_b$ (see [8] for more details).

References

- [1] L. Hörmander, On the range of convolution operators, Ann. of Math. **76** (1962) 148–170.
- [2] L. Hörmander, An introduction to complex analysis in several variables, North-Holland, Berlin/Heidelberg/New York/Tokyo, 1983.
- [3] L. Hörmander, The analysis of linear partial differential operators I+II, Springer, Amsterdam/New York/Oxford/Tokyo, 1990.

- [4] A. Kaneko, Introduction to hyperfunctions, Kluwer, Dordrecht/Boston/London, 1988.
- [5] T. Kawai, On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo, Sec. IA 17 (1970) 467–517.
- [6] M. Langenbruch, Hermite functions and weighted spaces of generalized functions, Manuscr. Math. 119 (2006) 269–285.
- [7] M. Langenbruch, Convolution operators on Fourier hyperfunctions, preprint.
- [8] *M. Langenbruch*, Generalized Fourier expansion in kernels of convolution operators on Fourier hyperfunctions, Analysis, to appear.
- [9] *M. Langenbruch and S. Momm*, Complemented submodules in weighted spaces of analytic functions, Math. Nachr. **157** (1992) 263–276.
- [10] R. Meise, B.A. Taylor and D. Vogt, ω -hyperbolicity of linear partial differential operators with constant coefficients, in: Complex analysis, harmonic analysis and applications, R. Deville (ed.) et al., Pitman Res. Notes Math. Ser. **347** (1996) 157–182.
- [11] R. Meise and D. Vogt, Introduction to functional analysis, Clarendon Press, Oxford, 1997.
- [12] Y.S. Park and M. Morimoto, Fourier ultra-hyperfunctions in the euclidean nspace, J. Fac. Sci. Univ. Tokyo, Sec. IA 20 (1973) 121–127.

Department of Mathematics, University of Oldenburg, D-26111 Oldenburg, GERMANY E-mail: langenbruch@mathematik.uni-oldenburg.de