On conjugate harmonic pairs $\left(U_{r}, V_{r-1}\right)$ of multi-vector valued functions

Richard Delanghe

Dedicated to my dear friend Professor Jean Schmets on the occasion of his 65-th birthday

Abstract

Let $\mathbb{R}_{0, m}$ be the real Clifford algebra constructed over the real quadratic space $\mathbb{R}^{0, m}$ with signature $(0, m)$ and let U_{r} be an $\mathbb{R}_{0, m}^{+}$-valued harmonic function in an appropriate open domain Ω of $\mathbb{R}^{m+1}(0<r \leq m ; m \geq 2)$. Then a necessary and sufficient condition is given upon U_{r} for the existence of an $\mathbb{R}_{0, m}^{r-1}$-valued harmonic function in Ω which is conjugate to U_{r}.

1 Introduction

Clifford analysis, a function theory for the Dirac operator ∂_{x} in Euclidean space $\mathbb{R}^{m+1}(m \geq 2)$, generalizes classical complex analysis in the plane to higher dimensional space and refines the theory of harmonic functions.
If $\mathbb{R}^{0, m+1}$ denotes the space \mathbb{R}^{m+1} provided with a real quadratic form of signature $(0, m+1)$ and $e=\left(e_{0}, e_{1}, \ldots, e_{m}\right)$ is an orthogonal basis for $\mathbb{R}^{0, m+1}$, then ∂_{x} is given by

$$
\partial_{x}=\sum_{i=0}^{m} e_{i} \partial_{x_{i}} .
$$

Taking into account the basic multiplication rules

$$
\begin{aligned}
e_{i}^{2}=-1 & , \quad i=0,1, \ldots, m \\
e_{i} e_{j}+e_{j} e_{i}=0 & , \quad i \neq j, 0 \leq i, j \leq m
\end{aligned}
$$

1991 Mathematics Subject Classification : 30G35.
Key words and phrases : Clifford analysis, multi-vector valued functions, conjugate harmonic pairs.
in the Clifford algebra $\mathbb{R}_{0, m+1}$ constructed over $\mathbb{R}^{0, m+1}$, then for an $\mathbb{R}^{0, m+1}$-valued \mathcal{C}_{1}-function $F=\sum_{i=0}^{m} F_{i} e_{i}$ in $\Omega \subset \mathbb{R}^{m+1}$ open, are equivalent:

$$
\partial_{x} F=0 \Longleftrightarrow\left\{\begin{array}{r}
\sum_{i=0}^{m} \frac{\partial F_{i}}{\partial_{i}}=0 \\
\frac{\partial F_{i}}{\partial_{x_{j}}}-\frac{\partial F_{j}}{\partial_{x_{i}}}=0
\end{array}\right.
$$

As is well known, the latter system of equations is called the Riesz system. It clearly generalizes the classical Cauchy-Riemann system for the plane. In [3] E. Stein and G. Weiss called an $(m+1)$-tuple $\left(u_{0}, u_{1}, \ldots, u_{m}\right)$ of \mathbb{R}-valued harmonic functions in Ω conjugate harmonic in Ω if it satisfies the Riesz system.

More generally, using the decomposition $\mathbb{R}_{0, m+1}=\mathbb{R}_{0, m} \oplus \bar{e}_{0} \mathbb{R}_{0, m}$ where $\bar{e}_{0}=-e_{0}$ and where $\mathbb{R}_{0, m}$ is the Clifford algebra constructed over $\mathbb{R}^{0, m}$ with orthogonal basis $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$, a pair (U, V) of $\mathbb{R}_{0, m}$-valued harmonic functions in Ω is called conjugate harmonic in Ω if $F=U+\bar{e}_{0} V$ satisfies $\partial_{x} F=0$ in Ω (see [1]).

Now let $0<r \leq m$ be fixed and consider the subspace $\mathbb{R}_{0, m+1}^{r}$ of $\mathbb{R}_{0, m+1}$ consisting of so-called r-vectors, i.e. $\mathbb{R}_{0, m+1}^{r}=\operatorname{span}_{\mathbb{R}}\left(e_{A}:|A|=r\right)$, where for $A=\left\{i_{1}, i_{2}, \ldots, i_{r}\right\} \subset$ $\{0, \ldots, m\}$ with $0 \leq i_{1}<i_{2}<\ldots<i_{r} \leq m, e_{A}=e_{i_{1}} \ldots e_{i_{r}}$.

In section 3 of this paper, we give an answer to the following problem: Given U_{r}, a harmonic and $\mathbb{R}_{0, m}^{r}$-valued function in Ω, under which conditions upon U_{r} does there exist $V_{r-1}, \mathbb{R}_{0, m}^{r-1}$-valued and harmonic in Ω, such that the pair $\left(U_{r}, V_{r-1}\right)$ is conjugate harmonic in Ω, i.e. the $\mathbb{R}_{0, m+1}^{r}$-valued function $F_{r}=U_{r}+\bar{e}_{0} V_{r-1}$ satisfies $\partial_{x} F_{r}=0$ in Ω. Such functions F_{r} are also called monogenic r-vector valued functions in Ω.
For convenience of the reader, in section 2 we briefly recall some notions and results concerning monogenic r-vector valued functions.

2 Monogenic r-vector valued functions

Let again $\mathbb{R}^{0, m+1}(m \geq 2)$ be the space \mathbb{R}^{m+1} provided with a quadratic form of signature $(0, m+1)$ and let $\mathbb{R}_{0, m+1}$ be the universal real Clifford algebra constructed over $\mathbb{R}^{0, m+1}$. If $e=\left(e_{0}, e_{1}, \ldots, e_{m}\right)$ is an orthogonal basis for $\mathbb{R}^{0, m+1}$, then the basic multiplication rules in $\mathbb{R}_{0, m+1}$ are governed by

$$
\left\{\begin{array}{rl}
e_{i}^{2}=-1 & , \quad i=0,1, \ldots, m \\
e_{i} e_{j}+e_{j} e_{i}=0 & , \quad i \neq j, 0 \leq i, j \leq m
\end{array} .\right.
$$

A basis for $\mathbb{R}_{0, m+1}$ is given by the set of elements $e_{A}=e_{i_{1}} e_{i_{2}} \ldots e_{i_{r}}$ where for $A=$ $\left\{i_{1}, \ldots, i_{r}\right\} \subset\{0,1, \ldots, m\}, 0 \leq i_{1}<i_{2}<\ldots<i_{r} \leq m$ and where $e_{\phi}=1$, the identity element in $\mathbb{R}_{0, m+1}$.
Putting for $r \in\{0,1, \ldots, m+1\}$ fixed, $\mathbb{R}_{0, m+1}^{r}=\operatorname{span}_{\mathbb{R}}\left(e_{A}:|A|=r\right)$, it is clear that

$$
\mathbb{R}_{0, m+1}=\sum_{r=0}^{m+1} \bigoplus \mathbb{R}_{0, m+1}^{r}
$$

The space $\mathbb{R}_{0, m+1}^{r}$ is called the space of r-vectors and the projection operator from $\mathbb{R}_{0, m+1}^{r}$ is denoted by [$]_{r}$.

Notice that \mathbb{R} and \mathbb{R}^{m+1} may thus be identified with $\mathbb{R} \cong \mathbb{R}_{0, m+1}^{0}$ and $\mathbb{R}^{m+1} \cong$ $\mathbb{R}^{0, m+1} \cong \mathbb{R}_{0, m+1}^{1}$.
The product of a 1 -vector u and an r-vector $v_{r}(r \geq 1)$ splits into the sum of an $(r-1)$-vector $u \bullet v_{r}$ and an $(r+1)$-vector $u \wedge v_{r}$, i.e.

$$
u v_{r}=u \bullet v_{r}+u \wedge v_{r}
$$

where

$$
u \bullet v_{r}=\left[u v_{r}\right]_{r-1}=\frac{1}{2}\left(u v_{r}-(-1)^{r} v_{r} u\right)
$$

and

$$
u \wedge v_{r}=\left[u v_{r}\right]_{r+1}=\frac{1}{2}\left(u v_{r}+(-1)^{r} v_{r} u\right)
$$

Now decompose \mathbb{R}^{m+1} into $\mathbb{R}^{m+1}=\mathbb{R} \times \mathbb{R}^{m}$; denote an arbitrary element $x=$ $\left(x_{0}, x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m+1}$ as $x=\left(x_{0}, \underline{x}\right)$; identify \mathbb{R}^{m+1} and \mathbb{R}^{m} with the subspaces $\operatorname{span}_{\mathbb{R}}\left(e_{0}, e_{1}, \ldots, e_{m}\right)$ and $\operatorname{span}_{\mathbb{R}}\left(e_{1}, \ldots, e_{m}\right)$ in $\mathbb{R}_{0, m+1}$ and put $x=\sum_{i=0}^{m} x_{i} e_{i}$ and $\underline{x}=\sum_{j=1}^{m} x_{j} e_{j}$. Then inside $\mathbb{R}_{0, m+1}$, the Clifford algebra $\mathbb{R}_{0, m}$ is generated by $\underline{e}=\left(e_{1}, \ldots, e_{m}\right)$ and obviously

$$
\mathbb{R}_{0, m+1}=\mathbb{R}_{0, m} \bigoplus \bar{e}_{0} \mathbb{R}_{0, m}
$$

Clearly, for $0<r \leq m$ fixed,

$$
\begin{equation*}
\mathbb{R}_{0, m+1}^{r}=\mathbb{R}_{0, m}^{r} \bigoplus \bar{e}_{0} \mathbb{R}_{0, m}^{r-1} \tag{2.2}
\end{equation*}
$$

The Dirac operators ∂_{x} and $\partial_{\underline{x}}$ in \mathbb{R}^{m} are defined by

$$
\partial_{x}=\sum_{i=0}^{m} e_{i} \partial_{x_{i}}
$$

and

$$
\partial_{\underline{x}}=\sum_{j=1}^{m} e_{j} \partial_{x_{j}}
$$

whence

$$
\partial_{x}=e_{0} \partial_{x_{0}}+\partial_{\underline{x}} .
$$

The Cauchy-Riemann operator D_{x} in \mathbb{R}^{m+1} is determined by

$$
D_{x}=\bar{e}_{0} \partial_{x}=\partial_{x_{0}}+\bar{e}_{0} \partial_{\underline{x}} .
$$

Now let $\Omega \subset \mathbb{R}^{m+1}$ be open, let $\tilde{\Omega}$ be its orthogonal projection onto \mathbb{R}^{m} and let $0<r \leq m$ be fixed. Then the space of C_{∞}-functions from Ω into $\mathbb{R}_{0, m+1}^{r}$, respectively from $\tilde{\Omega}$ into $\mathbb{R}_{0, m}^{r}$, is denoted by $\mathcal{E}_{r}(\Omega)$, respectively $\mathcal{E}_{r}(\tilde{\Omega})$.

An element $F_{r} \in \mathcal{E}_{r}(\Omega)$ is said to be left monogenic in Ω if $\partial_{x} F_{r}=0$ in Ω. Taking into account the relations (2.1) we thus have that the action of ∂_{x} on F_{r} splits into

$$
\begin{align*}
\partial_{x} F_{r} & =\left[\partial_{x} F_{r}\right]_{r-1}+\left[\partial_{x} F_{r}\right]_{r+1} \tag{2.3}\\
& =\partial_{x} \bullet F_{r}+\partial_{x} \wedge F_{r}
\end{align*}
$$

We put $\partial_{x}^{+} F_{r}=\partial_{x} \wedge F_{r}$ and $\partial_{x}^{-} F_{r}=\partial_{x} \bullet F_{r}$. Clearly, on $\mathcal{E}_{r}(\Omega)$,

$$
\partial_{x}=\partial_{x}^{+}+\partial_{x}^{-}
$$

Moreover,

$$
\begin{equation*}
\partial_{x}^{2}=-\triangle_{x} ; \partial_{x}^{+^{2}}=0 ; \partial_{x}^{-{ }^{2}}=0, \tag{2.4}
\end{equation*}
$$

\triangle_{x} being the Laplacian in \mathbb{R}^{m+1}.
Consequently, on $\mathcal{E}_{r}(\Omega)$,

$$
\begin{equation*}
\triangle_{x}=-\left(\partial_{x}^{+} \partial_{x}^{-}+\partial_{x}^{-} \partial_{x}^{+}\right) \tag{2.5}
\end{equation*}
$$

Notice also that, as

$$
\left[\partial_{x} F_{r}\right]_{r-1}=(-1)^{r+1}\left[F_{r} \partial_{x}\right]_{r-1}
$$

and

$$
\begin{gathered}
{\left[\partial_{x} F_{r}\right]_{r+1}=(-1)^{r}\left[F_{r} \partial_{x}\right]_{r+1},} \\
\partial_{x} F_{r}=0 \Longleftrightarrow F_{r} \partial_{x}=0,
\end{gathered}
$$

i.e. for $F_{r} \in \mathcal{E}_{r}(\Omega)$, the notions of left and right monogenicity coincide. Applying the decomposition (2.2) to $F_{r} \in \mathcal{E}_{r}(\Omega)$, we may write F_{r} as

$$
F_{r}=U_{r}+\bar{e}_{0} V_{r-1}
$$

where U_{r} and V_{r-1} are $\mathbb{R}_{0, m}$-valued r - and $(r-1)$-vector functions in Ω.
In what follows, for $0<s \leq m$ fixed, $\mathcal{E}_{s}\left(\Omega ; \mathbb{R}_{0, m}\right)$ denotes the space of $\mathbb{R}_{0, m}^{s}$-valued smooth functions in Ω.
Clearly, for $F_{r} \in \mathcal{E}_{r}(\Omega)$,

$$
\partial_{x} F_{r}=0 \Longleftrightarrow D_{x} F_{r}=0 \Longleftrightarrow\left\{\begin{array}{l}
\partial_{x_{0}} U_{r}+\partial_{\underline{x}} V_{r-1}=0 \tag{2.6}\\
\partial_{\underline{x}} U_{r}+\partial_{x_{0}} V_{r-1}=0
\end{array}\right.
$$

We put

$$
\begin{aligned}
\operatorname{ker}^{r} \partial_{x} & =\left\{F_{r} \in \mathcal{E}_{r}(\Omega): \partial_{x} F_{r}=0 \text { in } \Omega\right\} \\
\operatorname{ker}^{r} \partial_{x}^{+} & =\left\{F_{r} \in \mathcal{E}_{r}(\Omega): \partial_{x}^{+} F_{r}=0 \text { in } \Omega\right\}
\end{aligned}
$$

and

$$
\operatorname{ker}^{r} \partial_{x}^{-}=\left\{F_{r} \in \mathcal{E}_{r}(\Omega): \partial_{x}^{-} F_{r}=0 \text { in } \Omega\right\} .
$$

Let us recall that if Ω is contractible to a point, then

$$
\partial_{x}^{+} \partial_{x}^{-} \quad: \operatorname{ker}^{r} \partial_{x}^{+} \longrightarrow \operatorname{ker}^{r} \partial_{x}^{+}
$$

and

$$
\partial_{x}^{-} \partial_{x}^{+} \quad: \operatorname{ker}^{r} \partial_{x}^{-} \longrightarrow \operatorname{ker}^{r} \partial_{x}^{-}
$$

are surjective.
Of course, similar definitions may be given for the operator $\partial_{\underline{x}}$ acting on $\mathcal{E}_{r}(\tilde{\Omega})$ and relations analogous to $(2.3),(2.4),(2.5)$ and (2.7) may then be formulated.
Let us also point out the relationship between r-vector valued functions F_{r} and smooth differential forms ω^{r} in Ω.
Denoting by $\wedge^{r}(\Omega), 0 \leq r \leq m+1$, the algebra of smooth differential forms ω^{r} on Ω, then a natural isomorphism Θ between $\mathcal{E}_{r}(\Omega)$ and $\wedge^{r}(\Omega)$ considered as real vector spaces may be defined in the following way.
Let $\omega^{r}=\sum_{|A|=r} \omega_{A}^{r} d x^{A} \in \wedge^{r}(\Omega)$ and $F_{r}=\sum_{|A|=r} F_{A}^{r} e_{A} \in \mathcal{E}_{r}(\Omega)$ where for $A=$ $\left\{i_{1}, \ldots, i_{r}\right\} \subset\{0, \ldots, m\}, d x^{A}=d x^{i_{1}} \wedge d x^{i_{2}} \wedge \ldots \wedge d x^{i_{r}}$.
Then $\Theta F_{r}=\omega^{r}$ if and only if $\omega_{A}^{r}=F_{A}^{r}$ for all A.
Finally notice that through this isomorphism, $\partial_{x}^{+} \longleftrightarrow d$ and $\partial_{x}^{-} \longleftrightarrow d^{*}, d$ and d^{*} being the exterior derivative and co-derivative on $\wedge^{r}(\Omega)$. It thus follows that for $F_{r} \in \mathcal{E}_{r}(\Omega)$ and $\omega^{r}=\Theta F_{r} \in \wedge^{r}(\Omega)$ are equivalent $(0<r<m+1)$

$$
\partial_{x} F_{r}=0 \Longleftrightarrow\left\{\begin{array}{l}
d \omega^{r}=0 \\
d^{*} \omega^{r}=0
\end{array}\right.
$$

i.e. F_{r} monogenic in Ω is equivalent to saying that $\omega^{r}=\Theta F_{r}$ is a harmonic r-form in Ω.
For more details concerning the notions and results mentioned in this section, we refer the reader to [2].

3 Conjugate harmonic pairs $\left(U_{r}, V_{r-1}\right)$

In this section $\Omega \subset \mathbb{R}^{m+1}$ open is supposed to satisfy the following conditions:
(i) Ω is normal w.r.t. the e_{0}-direction, i.e. there exists $x_{0}^{*} \in \mathbb{R}$ such that for each $\underline{x} \in \tilde{\Omega}, \Omega \cap\left\{\underline{x}+t \bar{e}_{0}: t \in \mathbb{R}\right\}$ is connected and it contains the element $\left(x_{0}^{*}, \underline{x}\right)$
(ii) Ω is contractible to a point.

Condition (i) is sufficient for ensuring the existence of a conjugate harmonic function V to a given $U, \mathbb{R}_{0, m}$-valued and harmonic in Ω, while condition (ii) is sufficient to guarantee the validity of the properties (2.7).
We wish to solve the following
Problem: Let $U_{r} \in \mathcal{E}_{r}\left(\Omega ; \mathbb{R}_{0, m}\right)(0<r \leq m)$ be harmonic. Give necessary and sufficient condition(s) upon U_{r} such that there exists a $V_{r-1} \in \mathcal{E}_{r-1}\left(\Omega ; \mathbb{R}_{0, m}\right)$ which is conjugate harmonic to U_{r}, i.e.
(C1) $\triangle_{x} V_{r-1}=0$ in Ω
(C2) $F_{r}=U_{r}+\bar{e}_{0} V_{r-1}$ is monogenic in Ω.

If such V_{r-1} exists, then condition (C2) together with the second equation in (2.6) readily imply the following condition upon U_{r} to be satisfied in Ω :

$$
\begin{equation*}
\partial_{\underline{x}}^{+} U_{r}=0 \tag{3.1}
\end{equation*}
$$

We now claim that condition (3.1) is also sufficient.
To this end, let us first recall that the general form of a function V conjugate harmonic to U_{r} reads (see [1])

$$
V=-\partial_{\underline{x}} H
$$

where

$$
H\left(x_{0}, \underline{x}\right)=\int_{x_{0}^{*}}^{x_{0}} U_{r}(t, \underline{x}) d t-\tilde{h}(\underline{x})-h(\underline{x}) .
$$

Hereby
(i) $\triangle_{\underline{x}} \tilde{h}(\underline{x})=\partial_{x_{0}} U_{r}\left(x_{0}^{*}, \underline{x}\right)$ in $\tilde{\Omega}$ with $\tilde{h} \mathbb{R}_{0, m}$-valued in $\tilde{\Omega}$
(ii) $\triangle_{\underline{x}} h(\underline{x})=0$ in $\tilde{\Omega}$.

Let us also recall that for any $\mathbb{R}_{0, m}$-valued solution $\tilde{h}(\underline{x})$ to $\triangle_{\underline{x}} \tilde{h}(\underline{x})=\partial_{x_{0}} U_{r}\left(x_{0}^{*}, \underline{x}\right)$,

$$
\begin{equation*}
\tilde{H}\left(x_{0}, \underline{x}\right)=\int_{x_{0}^{*}}^{x_{0}} U_{r}(t, \underline{x}) d t-\tilde{h}(\underline{x}) \tag{3.2}
\end{equation*}
$$

is harmonic and $\mathbb{R}_{0, m}$-valued in Ω.
Now assume that $\partial_{\underline{x}}^{+} U_{r}=0$ in Ω. Then from

$$
\partial_{\underline{x}} H\left(x_{0}, \underline{x}\right)=\int_{x_{0}^{*}}^{x_{0}} \partial_{\underline{x}} U_{r}(t, \underline{x}) d t-\partial_{\underline{x}}(\tilde{h}(x)+h(\underline{x}))
$$

it follows that, as $\partial_{\underline{x}} U_{r}=\partial_{\underline{x}}^{+} U_{r}+\partial_{\underline{x}}^{-} U_{r}$,

$$
\int_{x_{0}^{*}}^{x_{0}} \partial_{\underline{x}} U_{r}(t, \underline{x}) d t=\int_{x_{0}^{*}}^{x_{0}} \partial_{\underline{x}}^{-} U_{r}(t, \underline{x}) d t \in \mathcal{E}_{r-1}\left(\Omega ; \mathbb{R}_{0, m}\right) .
$$

Moreover, as $\triangle_{\underline{x}}: \mathcal{E}_{r}(\tilde{\Omega}) \longrightarrow \mathcal{E}_{r}(\tilde{\Omega})$ is surjective, there exists $\tilde{h}_{r} \in \mathcal{E}_{r}(\tilde{\Omega})$ such that $\triangle_{\underline{x}} \tilde{h}_{r}(\underline{x})=\partial_{x_{0}} U_{r}\left(x_{0}^{*}, \underline{x}\right)$.
Take such \tilde{h}_{r} fixed. Then we claim that we can find $h_{r} \in \mathcal{E}_{r}(\tilde{\Omega})$ such that in $\tilde{\Omega}$

$$
\left\{\begin{align*}
\triangle_{\underline{x}} h_{r} & =0 \tag{3.3}\\
\partial_{\underline{x}}^{+}\left(\tilde{h}_{r}+h_{r}\right) & =0
\end{align*}\right.
$$

To this end first notice that, as by assumption $\partial_{\underline{x}}^{+} U_{r}\left(x_{0}, \underline{x}\right)=0$ in Ω, we also have that $\partial_{\underline{x}}^{+} \partial_{x_{0}} U_{r}\left(x_{0}, \underline{x}\right)=0$ in Ω, whence $\partial_{x}^{+} \partial_{x_{0}} U_{r}\left(x_{0}^{*}, \underline{x}\right)=0$ in $\tilde{\Omega}$.
It thus follows that $\partial_{x_{0}} U_{r}\left(x_{0}^{*}, \underline{x}\right) \in \operatorname{ker}^{r} \bar{\partial}_{\underline{x}}^{+}$.
Consequently, by virtue of (2.7), there ought to exist $W_{r} \in \operatorname{ker}^{r} \partial_{\underline{x}}^{+}$such that $\partial_{\underline{x}}^{+} \partial_{\underline{\underline{x}}}^{-} W_{r}=-\partial_{x_{0}} U_{r}\left(x_{0}^{*}, \underline{x}\right)$, i.e. W_{r} satisfies in $\tilde{\Omega}$ the equations

$$
\left\{\begin{align*}
\partial_{\underline{x}}^{+} W_{r} & =0 \tag{3.4}\\
\partial_{\underline{x}}^{+} \partial_{\underline{x}}^{-} W_{r} & =-\partial_{x_{0}} U_{r}\left(x_{0}^{*}, \underline{x}\right)
\end{align*}\right.
$$

Define $h_{r} \in \mathcal{E}_{r}(\tilde{\Omega})$ by

$$
h_{r}+\tilde{h}_{r}=W_{r}
$$

Then clearly $\partial_{\underline{x}}^{+}\left(\tilde{h}_{r}+h_{r}\right)=0$ in $\tilde{\Omega}$.
Moreover, as

$$
\triangle_{\underline{x}}\left(\tilde{h}_{r}+h_{r}\right)=\triangle_{\underline{x}} W_{r},
$$

we obtain on the one hand that

$$
\begin{aligned}
\triangle_{\underline{x}}\left(\tilde{h}_{r}+h_{r}\right) & =-\left(\partial_{\underline{x}}^{-} \partial^{+}+\partial_{\underline{x}}^{+} \partial_{\underline{x}}^{-}\right) W_{r} \\
& =-\partial_{x}^{+} \partial_{\underline{x}}^{-} W_{r} \\
& =\partial_{x_{0}} U_{r} \underline{\underline{x}}\left(x_{0}^{*}, \underline{x}\right)
\end{aligned}
$$

while on the other hand

$$
\begin{aligned}
\triangle_{\underline{x}}\left(\tilde{h}_{r}+h_{r}\right) & =\triangle_{\underline{x}} \tilde{h}_{r}+\triangle_{\underline{x}} h_{r} \\
& =\partial_{x_{0}} U_{r}\left(x_{0}^{*}, \underline{x}\right)+\triangle_{\underline{x}} h_{r} .
\end{aligned}
$$

Consequently $\triangle_{\underline{x}} h_{r}=0$ in $\tilde{\Omega}$.
We have thus proved the existence of $h_{r} \in \mathcal{E}_{r}(\tilde{\Omega})$ satisfying (3.3).
Putting

$$
H_{r}\left(x_{0}, \underline{x}\right)=\int_{x_{0}^{*}}^{x_{0}} U_{r}(t, \underline{x}) d t-\tilde{h}_{r}(\underline{x})-h_{r}(\underline{x}),
$$

we thus have that
(i) H_{r} is harmonic and $\mathbb{R}_{0, m}^{r}$-valued in Ω
(ii) $V_{r-1}=-\partial_{\underline{x}} H_{r}$ is harmonic and $\mathbb{R}_{0, m}^{r-1}$-valued in Ω
(iii) $F_{r}=\bar{D}_{x} H_{r}=U_{r}+\bar{e}_{0} V_{r-1} \in \operatorname{ker}^{r} \partial_{x}$,
where $\bar{D}_{x}=\partial_{x_{0}}-\bar{e}_{0} \partial_{\underline{x}}$.
Summarizing we get
Theorem 3.1. Let $U_{r} \in \mathcal{E}_{r}\left(\Omega ; \mathbb{R}_{0, m}\right)(0<r \leq m)$ be harmonic in Ω. Then U_{r} admits a conjugate harmonic function $V_{r-1} \in \mathcal{E}_{r-1}\left(\Omega ; \mathbb{R}_{0, m}\right)$ if and only if $\partial_{\underline{x}}^{+} U_{r}=0$ in Ω.

Now let $V_{r-1}^{*} \in \mathcal{E}_{r-1}\left(\Omega ; \mathbb{R}_{0, m}\right)$ also be conjugate harmonic to U_{r}, or equivalently, let $F_{r}^{*}=U_{r}+\bar{e}_{0} V_{r-1}^{*}$ be monogenic in Ω. Then clearly $F_{r}^{*}-F_{r}=\bar{e}_{0}\left(V_{r-1}^{*}-V_{r-1}\right)$ is monogenic in Ω, which implies that $V_{r-1}^{*}-V_{r-1}$ is independent of x_{0} and satisfies $\partial_{\underline{x}}\left(V_{r-1}^{*}-V_{r-1}\right)=0$ in $\tilde{\Omega}$.
Putting

$$
V_{r-1}^{*}=V_{r-1}+W_{r-1}
$$

we have that

$$
F_{r}^{*}=U_{r}+\bar{e}_{0}\left(V_{r-1}+W_{r-1}\right)
$$

We so obtain

Theorem 3.2. Let $U_{r} \in \mathcal{E}_{r}\left(\Omega ; \mathbb{R}_{0, m}\right)(0<r \leq m)$ be harmonic in Ω such that $\partial_{\underline{x}}^{+} U_{r}=0$ in Ω. Then the most general harmonic function $V_{r-1}^{*} \in \mathcal{E}_{r-1}\left(\Omega ; \mathbb{R}_{0, m}\right)$ conjugate to U_{r} in Ω has the form

$$
V_{r-1}^{*}=-\partial_{\underline{x}} H_{r}+W_{r-1}
$$

Hereby
(i) $H_{r}\left(x_{0}, \underline{x}\right)=\int_{x_{0}^{0}}^{x_{0}} U_{r}(t, \underline{x}) d t-\tilde{h}_{r}(\underline{x})-h_{r}(\underline{x})$
where
(i.1) $\tilde{h}_{r} \in \mathcal{E}_{r}(\tilde{\Omega})$ satisfies $\triangle_{\underline{x}} \tilde{h}_{r}(\underline{x})=\partial_{x_{0}} U_{r}\left(x_{0}^{*}, \underline{x}\right)$ in $\tilde{\Omega}$
(i.2) $h_{r} \in \mathcal{E}_{r}(\tilde{\Omega})$ is harmonic in $\tilde{\Omega}$ such that $\partial_{\underline{x}}^{+}\left(\tilde{h}_{r}+h_{r}\right)=0$ in $\tilde{\Omega}$
(ii) $W_{r-1} \in \mathcal{E}_{r-1}(\tilde{\Omega})$ satisfies $\partial_{\underline{x}} W_{r-1}=0$ in $\tilde{\Omega}$

Remark 3.1. As Dr. D. Eelbode pointed out to us, $F_{r} \in \operatorname{ker}^{r} \partial_{x}$ is equivalent to saying that $F_{M}^{r}=F_{r} e_{M} \in \operatorname{ker}^{m+1-r} \partial_{x}$. Hereby e_{M} is the pseudo-scalar in $\mathbb{R}_{0, m+1}$, i.e. $e_{M}=e_{0} e_{1} \ldots e_{m}$.

It thus follows that a pair $\left(U_{r}, V_{r-1}\right)$ with $U_{r} \in \mathcal{E}_{r}\left(\Omega ; \mathbb{R}_{0, m}\right)$ and $V_{r-1} \in \mathcal{E}_{r-1}\left(\Omega ; \mathbb{R}_{0, m}\right)$ is conjugate harmonic in Ω if and only if the pair $\left(V_{r-1} \stackrel{\circ}{e}_{M}, U_{r} \stackrel{\circ}{e}_{M}\right)$ is conjugate harmonic in Ω. Hereby ${ }^{\circ}{ }_{M}=\bar{e}_{0} e_{M}=e_{1} e_{2} \ldots e_{m}$, the pseudoscalar in $\mathbb{R}_{0, m}$.
Notice that $F_{M}^{r}=(-1)^{r-1}\left[V_{r-1} \stackrel{\circ}{e}_{M}+\bar{e}_{0} U_{r} \stackrel{\circ}{e}_{M}\right]$.
In the case $m=1$, this remark expresses the well known property stating that a pair (u, v) of \mathbb{R}-valued harmonic functions in $\Omega \subset \mathbb{C}$ open is conjugate harmonic if and only if $(-v, u)$ is conjugate harmonic in Ω.

Example. The case $r=1$
Let $U_{1}=\sum_{j=1}^{m} e_{j} U_{1}^{j} \in \mathcal{E}_{1}\left(\Omega ; \mathbb{R}_{0, m}\right)$ be harmonic in Ω and suppose U_{1} satisfies condition (3.1) in Ω, or equivalently

$$
\partial_{x_{i}} U_{1}^{j}-\partial_{x_{j}} U_{1}^{i}=0 \text { in } \Omega, i \neq j, i, j=1, \ldots, m
$$

Define the harmonic potential field H_{1} by

$$
H_{1}\left(x_{0}, \underline{x}\right)=\int_{x_{0}^{*}}^{x_{0}} U_{1}(t, \underline{x}) d t-\tilde{h}_{1}(\underline{x})-h_{1}(\underline{x})
$$

with
(i) $\tilde{h}_{1} \mathbb{R}_{0, m}^{1}$-valued in $\tilde{\Omega}$ such that $\triangle_{\underline{x}} \tilde{h}_{1}(\underline{x})=\partial_{x_{0}} U_{1}\left(x_{0}^{*}, \underline{x}\right)$.
(ii) $h_{1} \mathbb{R}_{0, m}^{1}$-valued and harmonic in $\tilde{\Omega}$ such that $\partial_{\underline{x}}^{+}\left(\tilde{h}_{1}+h_{1}\right)=0$ in $\tilde{\Omega}$.

Then $H_{1} \in \mathcal{E}_{1}\left(\Omega ; \mathbb{R}_{0, m}\right)$ satisfies $\triangle_{x} H_{1}=0$ in Ω and $F=\bar{D}_{x} H_{1}=U_{1}+\bar{e}_{0} V_{0} \in$ $\operatorname{ker}^{1} \partial_{x}$, where $V_{0}=-\partial_{\underline{x}} H_{1}$ is \mathbb{R}-valued.

References

[1] F. Brackx, R. Delanghe and F. Sommen. On conjugate harmonic functions in Euclidean space. Math. Meth. Appl. Sci. 2002; 25: 1553-1562.
[2] F. Brackx, R. Delanghe and F. Sommen. Differential Forms and/or Multi-vector Functions. CUBO 2005; 7: 139-169.
[3] E. Stein and G. Weiss. On the theory of harmonic functions of several variables, I: The theory of H^{p}-spaces. Acta Mathematica 1960; 103: 25-62.

Department of Mathematical Analysis, Ghent University, Galglaan 2,
B-9000 Gent, Belgium

