Short proof of a metrization theorem*

S. Moll L.M. Sánchez Ruiz

Abstract

In this note we provide a new insight into trans-separable spaces, *i.e.* those which are separable by seminorms. This approach enables getting an easy proof of the fact that in a wide class of uniform spaces, containing (DF) and (LM)-spaces, precompact subsets are metrizable.

1 Introduction

A uniform space X is trans-separable [3] if every uniform cover [10, p. 210] of X admits a countable subcover. This general notion had already been used by Garnir, de Wilde and Schmets [5] as separable seminormed space and had proven to be useful while studying concrete uniform spaces problems including locally convex spaces (lcs), and more recently has been used by Robertson [8] in order to study the metrizability of (pre)compact sets in uniform spaces. His goal was an attempt to clarify the first of the following two fundamental questions which arise in a natural way concerning compactness in any lcs E:

Question 1. When are the compact sets in E metrizable?

Question 2. When is E weakly angelic?

Partial answers were known since Pfister [6] proved that every precompact set in a (DF)-space is metrizable by using the fact that a lcs E is *trans-separable* if and only if each equicontinuous subset of the dual space E' of E is $\sigma(E', E)$ -metrizable.

Received by the editors May 2006.

Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 317-320

^{*}Supported by projects MTM2005-01182 and DPI2005-08732-C02-01 of the Spanish Ministry of Education and Science, co-financed by the European Community (FEDER projects).

Communicated by Y. Félix.

¹⁹⁹¹ Mathematics Subject Classification : 46E40.

Key words and phrases : Trans-separable space, metrizable subset.

Pfister's result was extended by Valdivia [9, p. 68 (28)] in dual metric spaces by using *quasi-Souslin* spaces.

Later on Cascales and Orihuela [2] studied the aforementioned two problems in a large class of lcs, called \mathfrak{G} which will be conveniently recalled hereafter, and include (LF)- and (DF)-spaces. Their approach provided a general result [2, Theorem 1] stating that all precompact sets in a lcs in class \mathfrak{G} are metrizable and every space in class \mathfrak{G} is weakly angelic. They also showed that if E is a lcs in class \mathfrak{G} and K is a weakly compact set in E contained in a separable subspace of E, then K is metrizable [2, 1.14] by using K-analytic structures connected with ordered families of compact sets in uniform spaces. Cascales, Kąkol and Saxon [1, Theorem 3.1] provided some alternative proofs for (LM)-spaces and dual metric spaces.

A different form of Cascales-Orihuela's theorem was presented by Robertson [8] who proved that a uniform space is trans-separable whenever it is covered by an adequately ordered family of precompact sets, applying this result to show that precompact sets in a lcs E are metrizable if its topological dual E', endowed with the topology \mathfrak{T}_{pr} of uniform convergence on precompact subsets of E, is covered by an ordered family of \mathfrak{T}_{pr} precompact subsets.

The aim of this note is to apply Robertson's result in order to provide a new and simple proof of the following result of Cascales and Orihuela [2] whose original proof was based on some results of K-analytic spaces, angelic spaces and lower semi-continuous maps.

Theorem 1. Let (X, \mathcal{U}) be a uniform space such that the uniformity \mathcal{U} has got a base $B = \{N_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ verifying: (*) for every $\alpha, \beta \in \mathbb{N}^{\mathbb{N}}$, with $\alpha \leq \beta$ (that is with $\alpha(n) \leq \beta(n)$ for each n) it holds $N_{\beta} \subset N_{\alpha}$. Then the precompact subsets of (X, \mathcal{U}) are metrizable in the induced uniformity.

Let us recall that a lcs belongs to class \mathfrak{G} if there is a family $\mathfrak{A} = \{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of subsets of E', called its \mathfrak{G} -representation, such that:

- 1. \mathfrak{A} covers E';
- 2. the A_{α} satisfy condition (*) above;
- 3. sequences in each A_{α} are equicontinuous.

Class \mathfrak{G} enjoys good stability properties and includes many important lcs classes such as dual metric spaces (hence (DF)-spaces), (LM)-spaces (hence (LF)-spaces), the space of distributions $D'(\Omega)$ and real analytic $A(\Omega)$ -spaces for open $\Omega \subset \mathbb{R}^{\mathbb{N}}$, [1, 2]. Condition (c) implies that each A_{α} is countably $\sigma(E', E)$ -relatively compact, hence \mathfrak{T}_{pr} -precompact.

Finally note that trans-separability for a lcs E means exactly that E is separable with respect to every continuous seminorm on E, or equivalently, for every neighbourhood of the origin U in E there exists a countable subset N in E such that E = N + U, [6]. Pfister also noted the easy and useful following observation.

Lemma 2. Let E be a lcs. Then the space E is trans-separable iff every equicontinuous set in E' is metrizable in the weak topology $\sigma(E', E)$.

2 Proof of Theorem

Let $C_{pr}^{buc}(X)$ be the lcs of bounded real-valued uniformly continuous functions defined on X with the topology of uniform convergence on precompact subsets of X, and for each $\alpha = (m, \alpha_1, \alpha_2, ..., \alpha_n, ...) \in \mathbb{N} \times (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}}$ let us denote by A_{α} the set formed by those $f \in C_p^{buc}(X)$ such that

$$||f||_{\infty} \le m, |f(s) - f(t)| \le 1/n \text{ for } (s,t) \in (X \times X) \cap N_{\alpha_n}, n \in \mathbb{N}.$$

Clearly $A_{\alpha} \subset A_{\beta}$ whenever $\alpha \leq \beta$ and $C_{pr}^{buc}(X) = \bigcup \{A_{\alpha} : \alpha \in \mathbb{N} \times (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \}$. Note that each A_{α} is pointwise compact and, by equicontinuity, the pointwise

topology and the induced topology by $C_{pr}^{buc}(X)$ coincide on each A_{α} , therefore each A_{α} is a compact subset of $C_{pr}^{buc}(X)$. By the aforementioned Robertson's result [8] it follows that $C_{pr}^{buc}(X)$ is trans-separable. Hence by Lemma 2 each equicontinuous subset of the dual $C_{pr}^{buc}(X)'$ is $\sigma\left(C_{pr}^{buc}(X)', C_{pr}^{buc}(X)\right)$ –metrizable. Finally let K be a precompact subset of X and let us consider

$$W := \{ f \in C_{pr}^{buc}(X) : \sup_{x \in K} |f(x)| \le 1 \}.$$

Let φ be the evaluation map from X into $C_{pr}^{buc}(X)'$, which is an isomorphism onto $\varphi(X)$ provided with the topology induced by the weak*-topology by the construction given in [4, Section 6.8]. From the equality $\varphi(K) = W^{\circ} \cap \varphi(X)$, it follows that K is metrizable.

Remark 1. Cascales and Orihuela approach to Question 1 [2, Theorem 2] uses Theorem 1 applied to the topology τ' of uniform convergence on the sets A_{α} . It turns out that for quasi-barrelled spaces in class \mathfrak{G} the argument is even easier since then τ' is coarser than τ and, both topologies coinciding on any τ -precompact subset, the proven theorem may be applied.

References

- [1] Cascales, B., Kakol, J. and Saxon, S.A., Weight of precompact sets and tightness. J. Math. Anal. Appl. **269** (2002), 500–518.
- [2] Cascales, B. and Orihuela, J., On Compactness in Locally Convex Spaces. Math. Z. **195** (1987), 365–381.
- [3] Drewnowski, L., Another note on Kalton's theorem. Studia Math. 52 (1975), 233 - 237.
- [4] Köthe, G., Topological Vector Spaces I. Springer Verlag, Berlin Heidelberg 1969.
- [5] Garnir, H.G., de Wilde, M. and Schmets, J., Analyse Fonctionelle I. Basel, Birkhäuser Verlag 1968.
- [6] Pfister, H.H., Bemerkungen zum Satz über die Separabilität der Fréchet-Montel-*Räume*. Arch. Math. **27** (1976), 86–92.

- [7] Robertson, A.P. and Robertson, W., **Topological vector spaces.** Cambridge University Press 1964.
- [8] Robertson, N., The metrisability of precompact sets. Bull. Austral. Math. Soc. 43 (1991), 131–135.
- [9] Valdivia, M., Topics in Locally Convex Spaces. Math. Studies 67, North-Holland Amsterdam New York Oxford 1982.
- [10] Wilansky, A., **Topology for Analysis**. Robert E. Krieger Publ. Co. 1983.

ETSIA-Departamento de Matematica Aplicada, Universidad Politcnica de Valencia, E-46022 Valencia, Spain email: sanmollp@mat.upv.es

ETSID-Departamento de Matematica Aplicada, Universidad Politcnica de Valencia, E-46022 Valencia, Spain email: lmsr@mat.upv.es