On the angular distribution of mass by Besov functions

René Erlín Castillo Julio C. Ramos Fernández

Abstract

Let D be the open unit disk in the complex plane. For $\varepsilon > 0$ we consider the sector $\Sigma_{\varepsilon} = \{z : | \arg z | < \varepsilon\}$. We will prove that for certain classes of functions f in the Besov's space $B_p(\mathbb{D})$ such that $f(0) = 0$, the B_p norm is obtained by integration over $f^{-1}(\Sigma_{\varepsilon})$.

1 Introduction

Let D be the unit disk in the complex plane. For $p > 1$, we denote by $B_p = B_p(\mathbb{D})$ the Besov space of the holomorphic functions on $\mathbb D$ such that

$$
||f||_{B_p}^p = \int_{\mathbb{D}} \left(1 - |z|^2\right)^{p-2} |f'(z)|^p dA(z) < \infty,
$$

where $z = x + iy = re^{i\theta}$ and $dA(z) = \frac{1}{z}$ π $dxdy =$ 1 π $rdrd\theta$ is the two-dimensional Lebesgue measure on D. Each $f \in B_p$ induces a Borel measure μ_f on the plane defined by

$$
\mu_f(E) = \int_E (1 - |z|^2)^{p-2} |f'(z)|^p dA(z).
$$

Our problem concerns the angular distribution given by such a measure. We are interested in knowing if given $\varepsilon > 0$, we can find a constant $\delta > 0$, depending only on p and ε , such that

$$
\int_{f^{-1}(\Sigma_{\varepsilon})} \left(1-|z|^2\right)^{p-2} |f'(z)|^p dA(z) > \delta \|f\|_{B_p}^p,\tag{1.1}
$$

Received by the editors March 2006 - In revised form in August 2006. Communicated by F. Brackx.

Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 303–310

²⁰⁰⁰ Mathematics Subject Classification : 30C25, 30H05, 46E15.

Key words and phrases : Besov's spaces, conformal mappings.

for all functions $f \in B_p$ satisfying $f(0) = 0$, where

$$
\Sigma_{\varepsilon} = \{ w \in \mathbb{C} : |arg(w)| < \varepsilon \} \, .
$$

This question was suggested by an article of D. Marshall and W. Smith [1] where they analyze a problem of this type for functions in the classic Bergman's space (without weight) A^p . The principal result of [1, Theorem 1.1] ensures that for all $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$
\int_{f^{-1}(\Sigma_{\varepsilon})} |f(z)| dA(z) > \delta \int_{\mathbb{D}} |f(z)| dA(z),
$$

for any univalent function in $A¹$ fixing the origin. It is an open problem to show whether their result still holds if the hypothesis that f is univalent were omitted.

P \acute{e} rez-González and Ramos [2, 4] have extended the results of Marshall and Smith to the widest class of weighted Bergman space A^p_α . They proved the following theorem:

Theorem 1. If $\alpha > -1$ and $p \ge 1$ satisfy $\alpha > 2p-1$, then for all $\varepsilon > 0$, there exists a constant $\delta > 0$, depending only on p, α and ε , such that

$$
\int_{f^{-1}(\Sigma_{\varepsilon})} |f(z)|^p \left(1 - |z|^2\right)^{\alpha} dA(z) > \delta \int_{\mathbb{D}} |f(z)|^p \left(1 - |z|^2\right)^{\alpha} dA(z), \tag{1.2}
$$

for any univalent function $f \in A^p_\alpha$ with $f(0) = 0$.

Also, they gave an example where the above theorem does not hold for all $\varepsilon > 0$ when $\alpha < 2p - 2$. If $p = 1$ and $\alpha > 0$, then Theorem 1 is true (see [3]). The case when $2p - 2 \le \alpha \le 2p - 1$ needs to be explored. On the other hand, if we omit the condition that the function is univalent, does the result continue to be true?

In this article, we consider a similar problem, but in the spaces of Besov B_p with $p > 1$. We will prove the following result:

Main Theorem. Assume $p > 1$ and $\varepsilon > 0$. Then there exists a constant $K > 0$ depending only on p such that

$$
\int_{f^{-1}(\Sigma_{\varepsilon})} \left(1-|z|^2\right)^{p-2} |f'(z)|^p dA(z) \ge K(p)\varepsilon \frac{|f'(0)|^{p+4}}{\|f\|_{B_p}^4},\tag{1.3}
$$

for any nonnull function $f \in B_p$ with $f(0) = 0$.

The above theorem implies that the inequality (1.1) is true for certain class of functions in B_n . For instance, if we consider functions in the Besov's space that fix the origin and such that $|f'(0)| \geq k \|f\|_{B_p}$ for some constant $k > 0$, we obtain the following result:

Corollary 1. Suppose $\varepsilon > 0$, $p > 1$ and k a positive constant. Then there exists a constant $\beta > 0$, depending on p and k, such that

$$
\int_{f^{-1}(\Sigma_{\varepsilon})} \left(1 - |z|^2\right)^{p-2} |f'(z)|^p dA(z) \ge \beta(p, k) \varepsilon \|f\|_{B_p}^p, \tag{1.4}
$$

for any function $f \in B_p$ such that $f(0) = 0$ and $|f'(0)| \geq k ||f||_{B_p}$.

The third section of this paper is devoted to constructing an example using conformal mapping, that shows that the inequality (1.4) is not true, for all $\varepsilon > 0$, if we omit the hypothesis $|f'(0)| \geq k \|f\|_{B_p}$. However, in the last section of the paper we will prove the following result for conformal mapping:

Theorem 2. Suppose $\varepsilon > 0$ and let h be a conformal map on B_p , $p > 1$, with $h(0) = 0$. Then there exists a constant $K > 0$, depending on p such that

$$
\int_{h^{-1}(\Sigma_{\varepsilon})} \left(1-|z|^2\right)^{p-2} |h'(z)|^p dA(z) \ge K(p) |h'(0)|^p \varepsilon. \tag{1.5}
$$

2 Proof of the Main Theorem

The following well known result will play an important role in the proof of the main theorem. We will denote by $D(a, r)$ the Euclidean disk with center a and radius r.

Theorem 3. [1/4-Koebe] If $g(0) = 0$ and $g'(0) = 1$, then $D(0, \frac{1}{4})$ $(\frac{1}{4}) \subset \Omega$, where g is a conformal map from the unit disk D into a domain $Ω$.

We now give the proof of our main theorem. We can observe that inequality (1.3) is true if $f'(0) = 0$ therefore we can suppose that $f'(0) \neq 0$. First, suppose that $||f||_{B_p} = 1$. Since f is an analytic function on the disk $D\left(0, \frac{1}{2}\right)$ $(\frac{1}{2})$, we can apply the Cauchy integral formula to obtain

$$
|f'(z)| \le \frac{1}{2\pi} \int_0^{2\pi} \frac{\left|f'\left(re^{i\theta}\right)\right|}{|re^{i\theta}-z|} d\theta,
$$

where $|z| < \frac{1}{2}$ $\frac{1}{2}$. Multiplying both sides of the above inequality by r and integrating from $r=\frac{3}{4}$ $\frac{3}{4}$ to $r = \frac{7}{8}$ we can see that there exists a constant $K_1 > 0$ such that

$$
|f'(z)| \leq K_1 \int_{\{\frac{3}{4} < |s| < \frac{7}{8}\}} |f'(s)| \, dA(s),
$$

with $|z| < \frac{1}{2}$ $\frac{1}{2}$. By Hölder's inequality we have

$$
|f'(z)| \le K_2 \|f\|_{B_p} = K_2,
$$

for all z such that $|z| < \frac{1}{2}$ $\frac{1}{2}$. Here we have used the fact that if $s \in \{\frac{3}{4} < |s| < \frac{7}{8}$ $\frac{7}{8}$, then $(1-|s|^2)^{\frac{p-2}{p}} \ge \frac{15}{64}$. Next, we define $h(w) = \frac{1}{2k_2} \{f'(w) \}$ $\left(\frac{w}{2}\right) - f'(0)$, for $w \in \mathbb{D}$. It is not hard to see that:

(i)
$$
h \in H(\mathbb{D}),
$$

(ii) $h(0) = 0$,

(iii)
$$
|h(w)| \leq 1
$$
.

Invoking Schwarz's lemma, we obtain

$$
|h(w)| \le |w|,\tag{2.1}
$$

for all $w \in \mathbb{D}$. Taking $w = 2z$ from (2.1) we have

$$
|f'(z) - f'(0)| \le 4K_2|z|,
$$

for $|z| < \frac{1}{2}$ $\frac{1}{2}$.

Now, if we take

$$
R = \frac{1}{8K_2} |f'(0)|,
$$

then

$$
|f'(z) - f'(0)| < \frac{1}{2} |f'(0)| \,,
$$

with $|z| < R$. In particular, for $z_1, z_2 \in D(0, R)$ with $z_1 \neq z_2$, we have

$$
|f(z_2)-f(z_1)-f'(0)(z_2-z_1)|\leq \int_{z_1}^{z_2}|f'(z)-f'(0)|\,dz<\frac{1}{2}|z_2-z_1|\,|f'(0)|\,.
$$

Thus, $f(z_1) \neq f(z_2)$ and the function f is one to one on the disk $D(0, R)$. Thus, if we define the function

$$
g(z) = \frac{1}{Rf'(0)}f(Rz), \quad z \in \mathbb{D},
$$

we can see that $g(0) = 0$ and $g'(0) = 1$. Then by the 1/4-Koebe theorem, we have $D\left(0,\frac{1}{4}\right)$ $\frac{1}{4}$ \subset g(\mathbb{D}). This implies that $D(0, \sigma) \subset f(D(0, R))$, where

$$
\sigma = \frac{\left|f'(0)\right|^2}{32K_2}.
$$

Therefore

$$
\int_{f^{-1}(\Sigma_{\varepsilon})} (1 - |z|^2)^{p-2} |f'(z)|^p dA(z)
$$
\n
$$
\geq \int_{f^{-1}(\Sigma_{\varepsilon} \cap D(0,\sigma)) \cap D(0,R)} (1 - |z|^2)^{p-2} |f'(z)|^p dA(z)
$$
\n
$$
\geq K_3(p) |f'(0)|^p \int_{f^{-1}(\Sigma_{\varepsilon} \cap D(0,\sigma)) \cap D(0,R)} dA(z)
$$
\n
$$
\geq \frac{K_3(p)}{K_2^2} |f'(0)|^p \int_{f^{-1}(\Sigma_{\varepsilon} \cap D(0,\sigma)) \cap D(0,R)} |f'(z)|^2 dA(z)
$$
\n
$$
= K_4(p) \varepsilon |f'(0)|^{p+4},
$$

where in the second inequality we have used $|z| < R < \frac{1}{8}$, $|f'(z)| > \frac{1}{2}$ $\frac{1}{2}$ | $f'(0)$ |, and also, the fact that if f is 1-1 on the set E then

$$
\int_{E} |f'(z)|^2 dA(z) = area(f(E)).
$$

This concludes the proof of the Theorem.

3 An example

In this section we give an example where we show that the inequality (1.1) is not true, for all $\varepsilon > 0$, if we omitted the condition $|f'(0)| \geq k \|f\|_{B_p}$.

For each $n \in \mathbb{N}$ with $n \geq 2$, consider the Riemann map $f_n : \mathbb{D} \to D(1-n, n)$ given by

$$
f_n(z) = \frac{1 - 2n}{(1 - n)z + n}z.
$$

It is not hard to see that $f_n(0) = 0$ and $f'_n(0) < 0$. Furthermore, since f_n is analytic in a neighborhood of the closed disk \overline{D} is clear that $f_n \in B_p$ for all $n \geq 2$. Also, there exist positive constants C_1 and C_2 such that

$$
\frac{C_1}{\left(1 - \left|\frac{n-1}{n}\right|^2\right)^p} \le \int_{\mathbb{D}} \frac{\left(1 - |z|^2\right)^{p-2}}{\left|1 - \frac{n-1}{n}z\right|^{2p}} dA(z) \le \frac{C_2}{\left(1 - \left|\frac{n-1}{n}\right|^2\right)^p}
$$

for *n* large enough (see [6], Lemma 4.2.2). Hence $\lim_{n\to\infty} ||f_n||_{B_n} = \infty$.

In this example we observe that

$$
|f'_n(0)| = 2 - \frac{1}{n} \le 2
$$

therefore, there is no constant $k > 0$ such that

$$
|f'_n(0)| > k ||f_n||_{B_p}
$$
, for all $n \in \mathbb{N}$.

On the other hand, if we fix $\varepsilon < \frac{\pi}{2}$, then by elementary calculations from trigonometry we have $|f_n(z)| < K(\varepsilon) = \sec(\varepsilon)$ for all $n > 2$ and for any $z \in f_n^{-1}(T)$, where $T = \sum_{\varepsilon} \cap D(1-n, n)$. Also, since f_n is a linear fractional transformation, we can see that

$$
|f'_n(z)| \leq \left|\frac{2n-1}{n-1} - f_n(z)\right|^2.
$$

Thus, there exists a constant $K_1(\varepsilon) > 0$ such that

$$
|f_n'(z)| \le K_1(\varepsilon), \quad z \in f_n^{-1}(T).
$$

Therefore, for $n \in \mathbb{N}$ large enough we have

$$
\int_{f_n^{-1}(T)} \left(1 - |z|^2\right)^{p-2} |f'_n(z)|^p dA(z) \leq K_1^p(\varepsilon) \int_{f_n^{-1}(T)} \left(1 - |z|^2\right)^{p-2} dA(z)
$$
\n
$$
\leq \frac{K_1^p(\varepsilon)}{p-1}.
$$

Hence, there is no a constant $\delta > 0$ such that

$$
\int_{f_n^{-1}(\Sigma_{\varepsilon})} \left(1-|z|^2\right)^{p-2} |f_n'(z)|^p dA(z) > \delta \|f_n\|_{B_p}^p,
$$

for all $n \in \mathbb{N}$ and for any $\varepsilon < \frac{\pi}{2}$.

Remark 1. The referee has pointed out to us the failure of (1.1) is due to the Möbius invariance of the Besov norm. To see this we can note that

$$
||f||_{B_p} = ||f_a||_{B_p},
$$

where $f_a = f \circ \varphi_a - f(a)$ and $\varphi_a(z) = (a - z)/(1 - \overline{a}z)$ is the Möbius map of the disk D that interchanges 0 and $a \in \mathbb{D}$. So $f_a(0) = 0$ and a change of variables shows

$$
\int_{f_a^{-1}(\Sigma_{\varepsilon})} \left(1-|z|^2\right)^{p-2} |f'_a(z)|^p dA(z) = \int_{f^{-1}(\Sigma_{\varepsilon}+f(a))} \left(1-|z|^2\right)^{p-2} |f'(z)|^p dA(z).
$$

So if (1.1) held it would follow that

$$
\delta \|f\|_{B_p} = \delta \|f_a\|_{B_p} < \int_{f^{-1}(\Sigma_{\varepsilon} + f(a))} \left(1 - |z|^2\right)^{p-2} |f'(z)|^p \, dA(z),
$$

for all $a \in \mathbb{D}$ and $f \in B_p$, which is not possible.

4 The angular distribution of mass by conformal mappings

In this section, we show that an estimate like (1.3) is true when we consider conformal maps that fix the origin on B_p , with $p > 1$. Before the proof of theorem 2 we gather some results about conformal maps that we will need for our goal (see [5]).

We consider $z \in \mathbb{D}$, g a conformal map from the unit disk $\mathbb D$ into a domain Ω . We denote by $\delta_{\Omega}(g(z))$ the Euclidean distance from $g(z)$ to $\partial\Omega$ where $\partial\Omega$ denotes the boundary of Ω .

Theorem 4. [Distortion] If $q(0) = 0$, then

(i)
$$
|g'(0)| \frac{|z|}{(1+|z|)^2} \le |g(z)| \le |g'(0)| \frac{|z|}{(1-|z|)^2}
$$

(ii)
$$
|g'(0)| \frac{1-|z|}{(1+|z|)^3} \le |g'(z)| \le |g'(0)| \frac{1+|z|}{(1-|z|)^3}
$$

(iii)
$$
\frac{1}{4}(1-|z|^2)|g'(z)| \le \delta_{\Omega}(f(z)) \le (1-|z|^2)|g'(z)|
$$
,

for any $z \in \mathbb{D}$. The key to our results is the following lemma:

Lemma 1. Suppose $\varepsilon > 0$ and let h be a conformal map in B_p , $p > 1$, from the open unit disk $\mathbb D$ into a domain Ω_h with $h(0) = 0$. Then there exist a Euclidean ball $B_r \subset \Omega_h$ and a constant $K(p) > 0$ such that

$$
\int_{h^{-1}(\Sigma_{\varepsilon}\cap B_r)} \left(1-|z|^2\right)^{p-2} |h'(z)|^p dA(z) \ge K(p) |h'(0)|^p \varepsilon. \tag{4.1}
$$

Proof. We consider $r = \frac{1}{5}$ $\frac{1}{5}\delta_{\Omega_h}(0)$ and let $B_r = D(0,r)$ be the ball with center at the origin with radius r. By the distortion Theorem, if $w = h(z) \in B_r$ then

$$
|z| < \frac{1}{|h'(0)|} \left(1 + |z| \right)^2 |h(z)| \le \frac{4}{5}.\tag{4.2}
$$

Thus, there are positive constants $K_0(p)$ and $K_1(p)$ such that

$$
K_0(p) \le (1 - |z|^2)^{p-2} \le K_1(p), \quad z \in h^{-1}(B_r).
$$

On the other hand, applying the distortion theorem again and the estimate (4.2), we can see that there is a universal constant $K_2 > 0$ such that

$$
|h'(z)| \ge |h'(0)| \frac{1-|z|}{(1+|z|)^3} \ge K_2 |h'(0)|
$$
, $z \in h^{-1}(B_r)$.

Similarly, there is a universal constant $K_3 > 0$ such that

$$
|h'(z)| \le |h'(0)| \frac{1+|z|}{(1-|z|)^3} \le K_3 |h'(0)|, \quad z \in h^{-1}(B_r).
$$

Therefore,

$$
\int_{h^{-1}(\Sigma_{\varepsilon} \cap B_r)} \left(1 - |z|^2\right)^{p-2} |h'(z)|^p dA(z)
$$
\n
$$
\geq K_0(p) K_2^p |h'(0)|^p \int_{h^{-1}(\Sigma_{\varepsilon} \cap B_r)} dA(z)
$$
\n
$$
\geq \frac{K_0(p) K_2^p}{K_3^2} |h'(0)|^{p-2} \int_{h^{-1}(\Sigma_{\varepsilon} \cap B_r)} |h'(z)|^2 dA(z)
$$
\n
$$
\geq K_4(p) |h'(0)|^p \varepsilon.
$$

The proof of Lemma 1 is now complete. Now we can proceed to the proof of Theorem 2

Proof (of Theorem 2).

Theorem 2 follows from Lemma 1, because $\Sigma_{\varepsilon} \cap B_r \subset \Sigma_{\varepsilon}$, which completes the proof.

An application of the Theorem 2 is the following result on angular distribution of a conformal mapping in B_p fixing the origin.

Corollary 2. Suppose $\varepsilon > 0$ and $p > 1$. There exists a constant $K(p) > 0$ such that

$$
\int_{h^{-1}(\Sigma_{\varepsilon})} \left(1-|z|^2\right)^{p-2} |h'(z)|^p dA(z) \ge K(p) |h'(0)|^{2p} \varepsilon \|h\|_{B_p}^p,\tag{4.3}
$$

for any univalent function $h \in B_p$, with $h(0) = 0$ and $|h'(0)| \leq 1/||h||_{B_p}$.

Proof. The corollary follows from Theorem 2 because $1 \geq |h'(0)|^p ||h||_F^p$ B_p .

Remark. Since the inequality (1.1) is trivially true for all $\varepsilon > \pi$, we can ask if there exists an angle $\varepsilon_0 < \pi$ such that if $\varepsilon \geq \varepsilon_0$ then there is a constant $\delta > 0$ satisfying

$$
\int_{f^{-1}(\Sigma_{\varepsilon})} \left(1 - |z|^2\right)^{p-2} |f'(z)|^p dA_{\alpha}(z) > \delta \|f\|_{B_p}^p,\tag{4.4}
$$

for all functions $f \in B_p$ with $f(0) = 0$?

A similar estimation is indeed true if we consider the Bergman spaces A^1_α in [4] Pérez-González and Ramos proved the following theorem:

 \blacksquare

Theorem 5. [4] Given $\alpha > -1$, there exist an angle $\varepsilon_0 \in (0, \frac{\pi}{2})$ $(\frac{\pi}{2})$ and $\delta > 0$, depending only on α , such that

$$
\int_{\mathbb{D}} |f(z)| \left(1 - |z|^2\right)^{\alpha} dA(z) \le \delta \int_{f^{-1}\left(\Sigma_{\varepsilon_0}\right)} |f(z)| \left(1 - |z|^2\right)^{\alpha} dA(z)
$$

for any $f \in A^1_\alpha$ satisfying $f(0) = 0$.

Acknowledgments The authors would like to thank the referee by the useful comments and suggestions.

References

- [1] D. Marshall and W. Smith, The angular distribution of mass by Bergman functions, Rev. Matematica Iberoamerica, 15, (1999), 93-116.
- [2] F. Pérez-González y J. Ramos Fernández, Imágenes inversas de sectores de funciones en el espacio de Bergman con peso, Rev. Col. Mat. 38 (2004) 17-25.
- [3] F. Pérez-González y J. Ramos Fernández, The angular distribution of mass by weighted Bergman functions, Divulgaciones Mat. 11 (2004) 65-86.
- [4] F. Pérez-González and J. Ramos Fernández, On dominating sets for Bergman spaces, Contemp. Math. 404 (2006), 175-186.
- [5] C. Pommerenke, Boundary Behavior of Conformal Maps, Springel Verlag, 1992.
- [6] K. Zhu : Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.

René Erlín Castillo Department of Mathematics, Ohio University Athens, Ohio, 45701 E-mail address: rcastill@math.ohiou.edu

Julio César Ramos Fernández Departamento de Matemáticas, Universidad de Oriente 6101 Cumaná, Edo. Sucre, Venezuela E-mail address: jramos@sucre.udo.edu.ve