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Abstract

We prove that the index of every m-dimensional vector bundle over B is
equal to m if m ≥ 2 dim B. We also determine the smallest integer k for
which every m-dimensional vector bundle with m ≥ k is I-stable in the cases
B = FPn and B = Sn.

1 Introduction

Let α be a finite-dimensional real vector bundle over a CW complex B, and let S(α)
be its sphere bundle with respect to some metric on α. We regard S(α) as a Z/2
-space by the antipodal map on each fibre. The index of α, denoted ind α, is defined
to be the largest integer k for which there exists a Z/2 -map from Sk−1 to S(α)
[CF1, CF2, T1]. Here, Sk−1 also is regarded as a Z/2 -space by the antipodal map.
From the inclusion of the fibre, we clearly have ind α ≥ dim α. It is also clear that
ind α ≤ ind(α⊕ 1).

We describe α as I-stable if the equality ind(α ⊕ k) = ind α + k holds for any
positive integer k. Here, we abuse notation and denote the k-dimensional trivial
bundle simply by k. Our definition of the stability is slightly different from that in
[CF1] in the sense that we consider the fibrewise suspension. If α is trivial, then
ind α = dim α and α is I-stable. The tangent bundle τM of a closed manifold M
also has this property ; ind τM = dim τM and τM is I-stable (see [T2, Theorem 4.6]).
For the canonical line bundle ηF over the projective space FP n (F = R, C or H),
ηF ⊕dn has the above property but ηF ⊕ ` (0 ≤ ` < dn) does not, where d = dimR F
and ηF is considered as a real bundle (see [T2, Theorem 4.2, 4.4]).
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In this paper, we prove the following theorem.

Theorem 1.1. Let α be a vector bundle over a finite complex B with dim B = n.
If dim α ≥ 2n, then ind α = dim α and α is I-stable.

From this theorem, the following corollary follows immediately.

Corollary 1.2. For any vector bundle α over a finite complex B, there exists an
integer k such that ind(α ⊕ k) = dim(α ⊕ k) and α ⊕ k is I-stable. Moreover, such
k can be taken so that k ≤ 2 dim B − dim α.

The condition dim α ≥ 2n in Theorem 1.1 is best possible at least when B =
S1, S2, S4 and S8. Likewise, the condition k ≤ 2 dim B − dim α in Corollary 1.2 is
best possible as a general estimate.

If we define inds(α), the stable index of α, by

inds(α) = lim
k→∞

{ind(α⊕ k)− dim(α⊕ k)},

the above corollary can be restated as follows.

Corollary 1.3. For any vector bundle α over a finite complex, we have inds(α) = 0.

The stable co-index co-inds(α) is similarly defined using the co-index which is the
dual of the index. We note that the stable co-index satisfies 0 ≤ co-inds(α) ≤ dim B
in general and, in the case B = RP n, every integer k such that 0 ≤ k ≤ dim B can
be realized actually as the stable co-index of some vector bundle over B (see [T3,
Corollary 1.6]).

The condition dim α ≥ 2n in Theorem 1.1 can be made more strict for individual
spaces B. For B = FP n, we obtain the following result.

Theorem 1.4. Let α be a vector bundle over FP n. If dim α ≥ dim FP n + d, then
ind α = dim α and α is I-stable. This condition is best possible; there is a vector
bundle α over FP n with dim α = dim FP n + d− 1 such that ind α 6= dim α, nor is
α I-stable.

By this result, for B = FP n, the smallest integer k such that every m-dimensional
vector bundle with m ≥ k is I-stable is equal to dn + d. The smallest integer k such
that the equality ind α = dim α holds for every vector bundle α with dim α ≥ k is
also equal to dn + d.

For B = Sn, we obtain the following result.

Theorem 1.5. If n 6= 1, 2, 4, 8, then ind α = dim α and α is I-stable for any vector
bundle α over Sn. If n = 1, 2, 4 or 8, there is a vector bundle α over Sn with
dim α = 2n− 1 such that ind α 6= dim α, nor is α I-stable.

By this result and Theorem 1.1, the smallest integer k, for B = Sn, such that
every m-dimensional vector bundle with m ≥ k is I-stable, is equal to 2n if n =
1, 2, 4 or 8, and equal to 0 otherwise. The smallest integer k such that the equality
ind α = dim α holds for every vector bundle α with dim α ≥ k is the same as above.
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2 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We use the following result in [T1].

Proposition 2.1. [T1, Proposition 2.4] Let α be an m-dimensional real vector bun-
dle over B. If B satisfies Hom(H̃∗(B), H̃∗(RPm)) = 0, then ind α = m.

Here, the cohomology has coefficients Z/2 and Hom(· , ·) consists of all homo-
morphisms (of degree 0) as graded algebra over the Steenrod algebra mod 2.

Sketch proof of Proposition 2.1. The inequality ind α ≥ m is obvious by the
inclusion of the fibre. Assume ind α > m. Then there is a Z/2-map f : Sm −→ S(α)
and it induces f̃ : RPm −→ P (α). Here P (α) denotes the associated projective
bundle of α. Let e(∈ H1(P (α))) denote the Z/2-Euler class of the line bundle
α → P (α), and let t(∈ H1(RPm)) denote the Z/2-Euler class of the canonical
line bundle over RPm. Then we have f̃ ∗(em) = tm 6= 0 ∈ Hm(RPm). Let f̄ :
RPm −→ B be the composition of f̃ with the projection p : P (α) −→ B. Then f̄ ∗

is the zero homomorphism since Hom(H̃∗(B), H̃∗(RPm)) = 0. Using the relation
em =

∑m−1
i=0 wm−ie

i, where wi denotes the ith Stiefel-Whitney class of α, we have

f̃ ∗(em) = f̃ ∗(
∑m−1

i=0 wm−ie
i) =

∑m−1
i=0 f̄ ∗(wm−i)t

i = 0. This contradicts f̃ ∗(em) 6= 0. �

From the above proposition, we have the following theorem.

Theorem 2.2. Suppose that a finite complex B satisfies the condition

Hom(H̃∗(B), H̃∗(RP `)) = 0

for some integer ` with ` ≥ dim B. Then, for any real vector bundle α over B with
dim α ≥ `, ind α = dim α and α is I-stable.

Proof. Suppose that B satisfies Hom(H̃∗(B), H̃∗(RP `)) = 0 with ` ≥ dim B, and
let α be an m-dimensional vector bundle over B with m ≥ `. We prove that
ind(α⊕k) = dim(α⊕k) for all k ≥ 0. In view of Proposition 2.1, it suffices to prove
that Hom(H̃∗(B), H̃∗(RPm+k)) = 0. Consider the diagram

H̃∗(B)
ϕ−→ H̃∗(RPm+k)

i∗ ◦ ϕ ↘ ↓ i∗

H̃∗(RP `)

where i is the inclusion RP ` ↪→ RPm+k. Since dim B ≤ ` and i∗ is an isomorphism

for ∗ ≤ `, we have ϕ = 0 if i∗ ◦ ϕ = 0. Thus, Hom(H̃∗(B), H̃∗(RP `)) = 0 implies

Hom(H̃∗(B), H̃∗(RPm+k)) = 0. This proves the theorem. �

By the above theorem, Theorem 1.1 follows immediately from the following
Lemma.
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Lemma 2.3. Let B be a finite complex with dim B = n. Then, Hom(H̃∗(B),
H̃∗(RP 2n)) = 0.

Proof. Let ϕ : H̃∗(B) −→ H̃∗(RP 2n) be a homomorphism. For any x ∈ H̃ i(B)
(1 ≤ i ≤ n), we put ϕ(x) = εti, where t is the generator of H̃∗(RP 2n) and ε = 0 or 1.
Now, choose an integer j so that n < ij ≤ 2n. Then we have xj = 0 because of the
dimension reason, and so we have ϕ(xj) = 0. On the other hand, we have ϕ(xj) =
(ϕ(x))j = εtij. Hence, ε must be zero since tij is not zero. Therefore, ϕ(x) = 0 for
any x ∈ H̃ i(B) and we conclude that ϕ is the zero homomorphism. �

3 Proof of Theorem 1.4 and 1.5

In this section, we prove Theorem 1.4 and Theorem 1.5.

First, we consider the case B = FP n. Theorem 1.4 is actually proved in [T2], but
we reconsider it to emphasize that the first half of it follows as an immediate corollary
of Theorem 2.2. In fact, it is easy to see that Hom(H̃∗(FP n), H̃∗(RP d(n+1))) = 0.
Therefore, for any real vector bundle α over FP n with dim α ≥ d(n+1), we see that
ind α = dim α and α is I-stable from Theorem 2.2. For the latter half of Theorem
1.4, we recall that ind(mηF ⊕ `) = max{d(n + 1), dm + `} (see [T2, Theorem 4.2,
4.4]). This has been shown as follows. It is enough to consider the case where
dm + ` < d(n + 1). First, it is shown that ind(mηF ⊕ `) ≤ d(n + 1) by an analogous
argument as in the proof of Proposition 2.1 calculating f̃ ∗(edm+`) with the fact
Hom(H̃∗(FP n), H̃∗(RP d(n+1))) = 0. On the other hand, a Z/2 -map Sd(n+1)−1 −→
S(mηF ⊕ `) is given by the composition Sd(n+1)−1 ≡ S(ηF ) ↪→ S(mηF ⊕ `). Thus,
ind(mηF ⊕ `) = d(n + 1) when dm + ` < d(n + 1).

From this result, for such a bundle α over FP n with dim α = d(n + 1) − 1 as
ηF ⊕ (dn− 1) or nηF ⊕ (d− 1), we have ind α = ind(α⊕ 1) = dim(α⊕ 1) = d(n+1),
so that ind α 6= dim α and α is not I-stable either.

Next, we consider the case B = Sn. If we intend to utilize Theorem 2.2, we will
see that Hom(H̃∗(Sn), H̃∗(RP `)) = 0 if ` ≥ n + 2a (and of course if ` < n), where a
is the integer defined by n = 2a(2b + 1). In fact, let ϕ : H̃∗(Sn) −→ H̃∗(RP `) be a
homomorphism and put ϕ(x) = εtn for x ∈ Hn(Sn) just as in the proof of Lemma
2.3. Since Sq2a

x = 0 by the dimension reason, we have ϕ(Sq2a

x) = 0. On the other

hand, we have ϕ(Sq2a

x) = Sq2a

ϕ(x) = ε Sq2a

(tn) = ε
(

n
2a

)
tn+2a

. Since
(

n
2a

)
≡ 1 (mod

2) and tn+2a 6= 0 (because ` ≥ n + 2a), we obtain ε = 0 and we conclude that ϕ is
the zero homomorphism. Therefore, by Theorem 2.2, it is seen that a vector bundle
α over Sn such that dim α ≥ n + 2a has the property that ind α = dim α and α is
I-stable. However, Hom(H̃∗(Sn), H̃∗(RP `)) is not zero at least for ` = n (for any
positive integer n), so that the above method does not seem to be adequate enough
for our purpose.

Let W (α) be the total Stiefel-Whitney class of α. By Proposition 2.2 in [T1], if
W (α) = 1, then ind α = dim α. This has been shown in the same context just as in
the proof of Proposition 2.1 observing em =

∑m−1
i=0 wm−ie

i = 0 (m = dim α). Since
W (α ⊕ k) = W (α) for any positive integer k, we can improve this proposition as
follows.
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Proposition 3.1. Let α be a real vector bundle over B. If W (α) = 1, then ind α =
dim α and α is I-stable.

In view of the above proposition, the first half of Theorem 1.5 follows from the
following theorem, which was originally proved by Milnor.

Theorem 3.2. [M, Theorem 1] If n 6= 1, 2, 4, 8, then W (α) = 1 for any vector
bundle α over Sn.

Proof. Milnor proved this theorem, first by using Wu’s formula of Steenrod squares
on Stiefel-Whitney classes (see [W]) for the case n 6= 2r, and next by using Bott’s
theorem on Pontrjagin classes. Here we give an alternative proof, which is more
straightforward for the case n 6= 2r and related to the Hopf invariant one problem.

It is obvious that W (α) = 1 if dim α < n. If dim α > n, α can be written as
α = β ⊕ k (k ∈ Z) for some n-dimensional vector bundle β and W (α) = W (β).
Therefore it suffices to prove the theorem in the case dim α = n. Let α be an
n-dimensional vector bundle over Sn (n > 1) and assume that wn(α) 6= 0, where
wn is the nth Stiefel-Whitney class. We look at the associated projective bundle
P (α) of α. If we denote by e the Z/2-Euler class of the line bundle λ : α → P (α),
H∗(P (α)) can be written as H∗(P (α)) = H∗(Sn){1, e, e2, · · · , en−1} as a H∗(Sn)-
module. Moreover, in H∗(P (α)), we have the relation en = wn(α) + wn−1(α)e +
wn−2(α)e2+· · ·+w1(α)en−1. Let s denote the generator of H∗(Sn). Then, wn(α) = s
by the assumption wn(α) 6= 0, and we have the relation en = s. Applying the total
squaring operation Sq, we have Sq(en) = Sq(s). Clearly, Sq(s) = s. On the other

hand, Sq(en) = (Sq(e))n = (e + e2)n = en(1 + e)n. Hence, we obtain
(

n
k

)
en+k = 0

for k ≥ 1. Now we remark that, in H∗(P (α)), e2n−1 = sen−1 6= 0 because en = s,

so that en+k 6= 0 for 1 ≤ k ≤ n − 1. Therefore, we obtain
(

n
k

)
≡ 0 (mod 2) for

1 ≤ k ≤ n− 1. This implies that n is a power of 2.
In the case where n is a power of 2, a considerably deeper argument would

be necessary. So we reduce it to the problem of nonexistence of elements of Hopf
invariant one. Let U ∈ Hn(D(α), S(α)) denote the Thom class of α, where D(α) is
the disk bundle of α. Let φ : H∗(Sn)

'−→ H∗(D(α), S(α)) be the Thom isomorphism.
Then we have SqnU = φ(wn(α)). Since we have assumed wn(α) 6= 0, SqnU is not
zero. Let T (α) be the Thom space of α. Then the operation Sqn is not trivial
on H̃∗(T (α)) ∼= H∗(D(α), S(α)). As is well-known, T (α) is homotopy-equivalent
to Sn∪Jαe2n, where Jα : S2n−1 −→ Sn is a map obtained by the Hopf-Whitehead
construction from α considered as a map Sn−1 −→ SO(n) (e.g. see [A, Lemma
10.1]). Since Sqn is not trivial on Hn(T (α)), Jα is a map of Hopf invariant one. By
the Adams’ theorem, it follows that n = 2, 4 or 8. �

For the latter half of Theorem 1.5, we consider the Hopf bundle. Let d = 1, 2
or 4 and consider Sd as FP 1, where F = R, C or H respectively. As shown in
the proof of Theorem 1.4, if we put α = ηF ⊕ (d − 1), then dim α = 2d − 1 and
ind α = ind(α ⊕ 1) = dim(α ⊕ 1) = 2d, so that ind α 6= dim α and α is not I-stable
either.

In the case d = 8, we should be a little more careful. As is well-known, there is a
S7-bundle S15 −→ S8 with group O(8) which is obtained by using Cayley numbers
(e.g. [S, p109]). This bundle can be extended to a 8-dimensional real vector bundle
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σ with S(σ) identified with S15. If we have constructed a Z/2 -map S15 −→ S(σ),
we will have 16 ≤ ind σ ≤ ind(σ ⊕ k) ≤ ind(σ ⊕ 8) for all k with 0 ≤ k ≤ 8. Since
ind(σ ⊕ 8) = dim(σ ⊕ 8) = 16 by Theorem 1.1, we will obtain ind(σ ⊕ k) = 16
for all k with 0 ≤ k ≤ 8. Thus, if we put α = σ ⊕ 7, then dim α = 15 and
ind α = ind(α ⊕ 1) = dim(α ⊕ 1) = 16, so that ind α 6= dim α and α is not I-stable
either.

Finally, we construct a Z/2 -map S15 −→ S(σ). Let T denote the involution
of S(σ), which by definition is the antipodal map on each fibre. We consider the
covering projection S(σ) −→ S(σ)/T . First, we choose a map f : RP 1 = S1 −→
S(σ)/T so that f represents the generator of π1(S(σ)/T ) = Z/2. Since 2f represents
zero in π1(S(σ)/T ) and πi(S(σ)/T ) = 0 for 2 ≤ i ≤ 14, f can be extend to a map
g : RP 15 −→ S(σ)/T . Moreover, g can be covered by a map g̃ : S15 −→ S(σ) by the
lifting theorem. Then, g̃ has the property either g̃(−x) = T g̃(x) or g̃(−x) = g̃(x)
(for all x ∈ S15). If g̃(−x) = g̃(x), then g has a lift, which contradicts our choice of
f . Therefore, g̃ is a Z/2 -map.

Remark. Since ind σ = 16 6= dim σ, it follows from Proposition 3.1 that w8(σ) 6= 0.
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