A stability theorem for the index of sphere bundles

Ryuichi Tanaka

Abstract

We prove that the index of every *m*-dimensional vector bundle over *B* is equal to *m* if $m \ge 2 \dim B$. We also determine the smallest integer *k* for which every *m*-dimensional vector bundle with $m \ge k$ is I-stable in the cases $B = FP^n$ and $B = S^n$.

1 Introduction

Let α be a finite-dimensional real vector bundle over a CW complex B, and let $S(\alpha)$ be its sphere bundle with respect to some metric on α . We regard $S(\alpha)$ as a $\mathbb{Z}/2$ -space by the antipodal map on each fibre. The index of α , denoted ind α , is defined to be the largest integer k for which there exists a $\mathbb{Z}/2$ -map from S^{k-1} to $S(\alpha)$ [CF1, CF2, T1]. Here, S^{k-1} also is regarded as a $\mathbb{Z}/2$ -space by the antipodal map. From the inclusion of the fibre, we clearly have ind $\alpha \geq \dim \alpha$. It is also clear that ind $\alpha \leq \operatorname{ind}(\alpha \oplus 1)$.

We describe α as *I*-stable if the equality $\operatorname{ind}(\alpha \oplus k) = \operatorname{ind} \alpha + k$ holds for any positive integer k. Here, we abuse notation and denote the k-dimensional trivial bundle simply by k. Our definition of the stability is slightly different from that in [CF1] in the sense that we consider the fibrewise suspension. If α is trivial, then $\operatorname{ind} \alpha = \dim \alpha$ and α is I-stable. The tangent bundle τ_M of a closed manifold Malso has this property ; $\operatorname{ind} \tau_M = \dim \tau_M$ and τ_M is I-stable (see [T2, Theorem 4.6]). For the canonical line bundle η_F over the projective space FP^n ($F = \mathbb{R}, \mathbb{C}$ or \mathbb{H}), $\eta_F \oplus dn$ has the above property but $\eta_F \oplus \ell$ ($0 \leq \ell < dn$) does not, where $d = \dim_{\mathbb{R}} F$ and η_F is considered as a real bundle (see [T2, Theorem 4.2, 4.4]).

Received by the editors April 2006 - In revised form in May 2006.

Communicated by Y. Félix.

Bull. Belg. Math. Soc. 14 (2007), 177-182

²⁰⁰⁰ Mathematics Subject Classification : Primary 55P91 ; Secondary 55R25. Key words and phrases : Sphere bundle, $\mathbb{Z}/2$ -map, index.

In this paper, we prove the following theorem.

Theorem 1.1. Let α be a vector bundle over a finite complex B with dim B = n. If dim $\alpha \ge 2n$, then ind $\alpha = \dim \alpha$ and α is I-stable.

From this theorem, the following corollary follows immediately.

Corollary 1.2. For any vector bundle α over a finite complex B, there exists an integer k such that $\operatorname{ind}(\alpha \oplus k) = \dim(\alpha \oplus k)$ and $\alpha \oplus k$ is I-stable. Moreover, such k can be taken so that $k \leq 2 \dim B - \dim \alpha$.

The condition dim $\alpha \geq 2n$ in Theorem 1.1 is best possible at least when $B = S^1, S^2, S^4$ and S^8 . Likewise, the condition $k \leq 2 \dim B - \dim \alpha$ in Corollary 1.2 is best possible as a general estimate.

If we define $\operatorname{ind}^{s}(\alpha)$, the stable index of α , by

$$\operatorname{ind}^{s}(\alpha) = \lim_{k \to \infty} \{ \operatorname{ind}(\alpha \oplus k) - \operatorname{dim}(\alpha \oplus k) \},\$$

the above corollary can be restated as follows.

Corollary 1.3. For any vector bundle α over a finite complex, we have $\operatorname{ind}^{s}(\alpha) = 0$.

The stable co-index co-ind^s(α) is similarly defined using the co-index which is the dual of the index. We note that the stable co-index satisfies $0 \leq \text{co-ind}^s(\alpha) \leq \dim B$ in general and, in the case $B = \mathbb{R}P^n$, every integer k such that $0 \leq k \leq \dim B$ can be realized actually as the stable co-index of some vector bundle over B (see [T3, Corollary 1.6]).

The condition dim $\alpha \ge 2n$ in Theorem 1.1 can be made more strict for individual spaces B. For $B = FP^n$, we obtain the following result.

Theorem 1.4. Let α be a vector bundle over FP^n . If dim $\alpha \ge \dim FP^n + d$, then ind $\alpha = \dim \alpha$ and α is I-stable. This condition is best possible; there is a vector bundle α over FP^n with dim $\alpha = \dim FP^n + d - 1$ such that ind $\alpha \ne \dim \alpha$, nor is α I-stable.

By this result, for $B = FP^n$, the smallest integer k such that every m-dimensional vector bundle with $m \ge k$ is I-stable is equal to dn + d. The smallest integer k such that the equality ind $\alpha = \dim \alpha$ holds for every vector bundle α with $\dim \alpha \ge k$ is also equal to dn + d.

For $B = S^n$, we obtain the following result.

Theorem 1.5. If $n \neq 1, 2, 4, 8$, then ind $\alpha = \dim \alpha$ and α is I-stable for any vector bundle α over S^n . If n = 1, 2, 4 or 8, there is a vector bundle α over S^n with $\dim \alpha = 2n - 1$ such that ind $\alpha \neq \dim \alpha$, nor is α I-stable.

By this result and Theorem 1.1, the smallest integer k, for $B = S^n$, such that every *m*-dimensional vector bundle with $m \ge k$ is I-stable, is equal to 2n if n = 1, 2, 4 or 8, and equal to 0 otherwise. The smallest integer k such that the equality ind $\alpha = \dim \alpha$ holds for every vector bundle α with dim $\alpha \ge k$ is the same as above.

2 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We use the following result in [T1].

Proposition 2.1. [T1, Proposition 2.4] Let α be an *m*-dimensional real vector bundle over *B*. If *B* satisfies Hom $(\widetilde{H}^*(B), \widetilde{H}^*(\mathbb{R}P^m)) = 0$, then ind $\alpha = m$.

Here, the cohomology has coefficients $\mathbb{Z}/2$ and $\operatorname{Hom}(\cdot, \cdot)$ consists of all homomorphisms (of degree 0) as graded algebra over the Steenrod algebra mod 2.

Sketch proof of Proposition 2.1. The inequality $\operatorname{ind} \alpha \geq m$ is obvious by the inclusion of the fibre. Assume $\operatorname{ind} \alpha > m$. Then there is a $\mathbb{Z}/2$ -map $f: S^m \longrightarrow S(\alpha)$ and it induces $\tilde{f}: \mathbb{R}P^m \longrightarrow P(\alpha)$. Here $P(\alpha)$ denotes the associated projective bundle of α . Let $e(\in H^1(P(\alpha)))$ denote the $\mathbb{Z}/2$ -Euler class of the line bundle $\alpha \to P(\alpha)$, and let $t(\in H^1(\mathbb{R}P^m))$ denote the $\mathbb{Z}/2$ -Euler class of the canonical line bundle over $\mathbb{R}P^m$. Then we have $\tilde{f}^*(e^m) = t^m \neq 0 \in H^m(\mathbb{R}P^m)$. Let $\bar{f}: \mathbb{R}P^m \longrightarrow B$ be the composition of \tilde{f} with the projection $p: P(\alpha) \longrightarrow B$. Then \bar{f}^* is the zero homomorphism since $\operatorname{Hom}(\widetilde{H}^*(B), \widetilde{H}^*(\mathbb{R}P^m)) = 0$. Using the relation $e^m = \sum_{i=0}^{m-1} w_{m-i}e^i$, where w_i denotes the *i*th Stiefel-Whitney class of α , we have $\tilde{f}^*(e^m) = \tilde{f}^*(\sum_{i=0}^{m-1} w_{m-i}e^i) = \sum_{i=0}^{m-1} \bar{f}^*(w_{m-i})t^i = 0$. This contradicts $\tilde{f}^*(e^m) \neq 0$.

From the above proposition, we have the following theorem.

Theorem 2.2. Suppose that a finite complex B satisfies the condition

$$\operatorname{Hom}(H^*(B), H^*(\mathbb{R}P^\ell)) = 0$$

for some integer ℓ with $\ell \geq \dim B$. Then, for any real vector bundle α over B with $\dim \alpha \geq \ell$, $\operatorname{ind} \alpha = \dim \alpha$ and α is I-stable.

Proof. Suppose that B satisfies $\operatorname{Hom}(\widetilde{H}^*(B), \widetilde{H}^*(\mathbb{R}P^{\ell})) = 0$ with $\ell \geq \dim B$, and let α be an m-dimensional vector bundle over B with $m \geq \ell$. We prove that $\operatorname{ind}(\alpha \oplus k) = \dim(\alpha \oplus k)$ for all $k \geq 0$. In view of Proposition 2.1, it suffices to prove that $\operatorname{Hom}(\widetilde{H}^*(B), \widetilde{H}^*(\mathbb{R}P^{m+k})) = 0$. Consider the diagram

$$\widetilde{H}^*(B) \xrightarrow{\varphi} \widetilde{H}^*(\mathbb{R}P^{m+k}) i^* \circ \varphi \searrow \qquad \qquad \downarrow i^* \widetilde{H}^*(\mathbb{R}P^\ell)$$

where *i* is the inclusion $\mathbb{R}P^{\ell} \hookrightarrow \mathbb{R}P^{m+k}$. Since dim $B \leq \ell$ and i^* is an isomorphism for $* \leq \ell$, we have $\varphi = 0$ if $i^* \circ \varphi = 0$. Thus, $\operatorname{Hom}(\widetilde{H}^*(B), \widetilde{H}^*(\mathbb{R}P^{\ell})) = 0$ implies $\operatorname{Hom}(\widetilde{H}^*(B), \widetilde{H}^*(\mathbb{R}P^{m+k})) = 0$. This proves the theorem.

By the above theorem, Theorem 1.1 follows immediately from the following Lemma.

Lemma 2.3. Let B be a finite complex with dim B = n. Then, Hom $(\widetilde{H}^*(B), \widetilde{H}^*(\mathbb{R}P^{2n})) = 0$.

Proof. Let $\varphi : \widetilde{H}^*(B) \longrightarrow \widetilde{H}^*(\mathbb{R}P^{2n})$ be a homomorphism. For any $x \in \widetilde{H}^i(B)$ $(1 \leq i \leq n)$, we put $\varphi(x) = \epsilon t^i$, where t is the generator of $\widetilde{H}^*(\mathbb{R}P^{2n})$ and $\epsilon = 0$ or 1. Now, choose an integer j so that $n < ij \leq 2n$. Then we have $x^j = 0$ because of the dimension reason, and so we have $\varphi(x^j) = 0$. On the other hand, we have $\varphi(x^j) = (\varphi(x))^j = \epsilon t^{ij}$. Hence, ϵ must be zero since t^{ij} is not zero. Therefore, $\varphi(x) = 0$ for any $x \in \widetilde{H}^i(B)$ and we conclude that φ is the zero homomorphism.

3 Proof of Theorem 1.4 and 1.5

In this section, we prove Theorem 1.4 and Theorem 1.5.

First, we consider the case $B = FP^n$. Theorem 1.4 is actually proved in [T2], but we reconsider it to emphasize that the first half of it follows as an immediate corollary of Theorem 2.2. In fact, it is easy to see that $\operatorname{Hom}(\widetilde{H}^*(FP^n), \widetilde{H}^*(\mathbb{R}P^{d(n+1)})) = 0$. Therefore, for any real vector bundle α over FP^n with dim $\alpha \ge d(n+1)$, we see that ind $\alpha = \dim \alpha$ and α is I-stable from Theorem 2.2. For the latter half of Theorem 1.4, we recall that $\operatorname{ind}(m\eta_F \oplus \ell) = \max\{d(n+1), dm+\ell\}$ (see [T2, Theorem 4.2, 4.4]). This has been shown as follows. It is enough to consider the case where $dm + \ell < d(n+1)$. First, it is shown that $\operatorname{ind}(m\eta_F \oplus \ell) \le d(n+1)$ by an analogous argument as in the proof of Proposition 2.1 calculating $\widehat{f}^*(e^{dm+\ell})$ with the fact $\operatorname{Hom}(\widetilde{H}^*(FP^n), \widetilde{H}^*(\mathbb{R}P^{d(n+1)})) = 0$. On the other hand, a $\mathbb{Z}/2$ -map $S^{d(n+1)-1} \longrightarrow$ $S(m\eta_F \oplus \ell)$ is given by the composition $S^{d(n+1)-1} \equiv S(\eta_F) \hookrightarrow S(m\eta_F \oplus \ell)$. Thus, $\operatorname{ind}(m\eta_F \oplus \ell) = d(n+1)$ when $dm + \ell < d(n+1)$.

From this result, for such a bundle α over FP^n with dim $\alpha = d(n+1) - 1$ as $\eta_F \oplus (dn-1)$ or $n\eta_F \oplus (d-1)$, we have ind $\alpha = \operatorname{ind}(\alpha \oplus 1) = \dim(\alpha \oplus 1) = d(n+1)$, so that ind $\alpha \neq \dim \alpha$ and α is not I-stable either.

Next, we consider the case $B = S^n$. If we intend to utilize Theorem 2.2, we will see that $\operatorname{Hom}(\widetilde{H}^*(S^n), \widetilde{H}^*(\mathbb{R}P^\ell)) = 0$ if $\ell \ge n + 2^a$ (and of course if $\ell < n$), where ais the integer defined by $n = 2^a(2b+1)$. In fact, let $\varphi : \widetilde{H}^*(S^n) \longrightarrow \widetilde{H}^*(\mathbb{R}P^\ell)$ be a homomorphism and put $\varphi(x) = \epsilon t^n$ for $x \in H^n(S^n)$ just as in the proof of Lemma 2.3. Since $Sq^{2^a}x = 0$ by the dimension reason, we have $\varphi(Sq^{2^a}x) = 0$. On the other hand, we have $\varphi(Sq^{2^a}x) = Sq^{2^a}\varphi(x) = \epsilon Sq^{2^a}(t^n) = \epsilon {n \choose 2^a}t^{n+2^a}$. Since ${n \choose 2^a} \equiv 1 \pmod{2}$ and $t^{n+2^a} \neq 0$ (because $\ell \ge n+2^a$), we obtain $\epsilon = 0$ and we conclude that φ is the zero homomorphism. Therefore, by Theorem 2.2, it is seen that a vector bundle α over S^n such that $\dim \alpha \ge n+2^a$ has the property that $\operatorname{ind} \alpha = \dim \alpha$ and α is I-stable. However, $\operatorname{Hom}(\widetilde{H}^*(S^n), \widetilde{H}^*(\mathbb{R}P^\ell))$ is not zero at least for $\ell = n$ (for any positive integer n), so that the above method does not seem to be adequate enough for our purpose.

Let $W(\alpha)$ be the total Stiefel-Whitney class of α . By Proposition 2.2 in [T1], if $W(\alpha) = 1$, then ind $\alpha = \dim \alpha$. This has been shown in the same context just as in the proof of Proposition 2.1 observing $e^m = \sum_{i=0}^{m-1} w_{m-i}e^i = 0$ ($m = \dim \alpha$). Since $W(\alpha \oplus k) = W(\alpha)$ for any positive integer k, we can improve this proposition as follows.

Proposition 3.1. Let α be a real vector bundle over *B*. If $W(\alpha) = 1$, then ind $\alpha = \dim \alpha$ and α is *I*-stable.

In view of the above proposition, the first half of Theorem 1.5 follows from the following theorem, which was originally proved by Milnor.

Theorem 3.2. [M, Theorem 1] If $n \neq 1, 2, 4, 8$, then $W(\alpha) = 1$ for any vector bundle α over S^n .

Proof. Milnor proved this theorem, first by using Wu's formula of Steenrod squares on Stiefel-Whitney classes (see [W]) for the case $n \neq 2^r$, and next by using Bott's theorem on Pontrjagin classes. Here we give an alternative proof, which is more straightforward for the case $n \neq 2^r$ and related to the Hopf invariant one problem.

It is obvious that $W(\alpha) = 1$ if $\dim \alpha < n$. If $\dim \alpha > n$, α can be written as $\alpha = \beta \oplus k$ $(k \in \mathbb{Z})$ for some *n*-dimensional vector bundle β and $W(\alpha) = W(\beta)$. Therefore it suffices to prove the theorem in the case $\dim \alpha = n$. Let α be an *n*-dimensional vector bundle over S^n (n > 1) and assume that $w_n(\alpha) \neq 0$, where w_n is the *n*th Stiefel-Whitney class. We look at the associated projective bundle $P(\alpha)$ of α . If we denote by e the $\mathbb{Z}/2$ -Euler class of the line bundle $\lambda : \alpha \to P(\alpha)$, $H^*(P(\alpha))$ can be written as $H^*(P(\alpha)) = H^*(S^n)\{1, e, e^2, \cdots, e^{n-1}\}$ as a $H^*(S^n)$ -module. Moreover, in $H^*(P(\alpha))$, we have the relation $e^n = w_n(\alpha) + w_{n-1}(\alpha)e + w_{n-2}(\alpha)e^2 + \cdots + w_1(\alpha)e^{n-1}$. Let s denote the generator of $H^*(S^n)$. Then, $w_n(\alpha) = s$ by the assumption $w_n(\alpha) \neq 0$, and we have the relation $e^n = s$. Applying the total squaring operation Sq, we have $Sq(e^n) = Sq(s)$. Clearly, Sq(s) = s. On the other hand, $Sq(e^n) = (Sq(e))^n = (e + e^2)^n = e^n(1 + e)^n$. Hence, we obtain $\binom{n}{k}e^{n+k} = 0$ for $k \geq 1$. Now we remark that, in $H^*(P(\alpha))$, $e^{2n-1} = se^{n-1} \neq 0$ because $e^n = s$, so that $e^{n+k} \neq 0$ for $1 \leq k \leq n-1$. Therefore, we obtain $\binom{n}{k} \equiv 0 \pmod{2}$ for $1 \leq k \leq n-1$. Therefore, we obtain $\binom{n}{k} \equiv 0 \pmod{2}$ for $1 \leq k \leq n-1$.

In the case where *n* is a power of 2, a considerably deeper argument would be necessary. So we reduce it to the problem of nonexistence of elements of Hopf invariant one. Let $U \in H^n(D(\alpha), S(\alpha))$ denote the Thom class of α , where $D(\alpha)$ is the disk bundle of α . Let $\phi : H^*(S^n) \xrightarrow{\simeq} H^*(D(\alpha), S(\alpha))$ be the Thom isomorphism. Then we have $Sq^nU = \phi(w_n(\alpha))$. Since we have assumed $w_n(\alpha) \neq 0$, Sq^nU is not zero. Let $T(\alpha)$ be the Thom space of α . Then the operation Sq^n is not trivial on $\widetilde{H}^*(T(\alpha)) \cong H^*(D(\alpha), S(\alpha))$. As is well-known, $T(\alpha)$ is homotopy-equivalent to $S^n \cup_{J\alpha} e^{2n}$, where $J\alpha : S^{2n-1} \longrightarrow S^n$ is a map obtained by the Hopf-Whitehead construction from α considered as a map $S^{n-1} \longrightarrow SO(n)$ (e.g. see [A, Lemma 10.1]). Since Sq^n is not trivial on $H^n(T(\alpha)), J\alpha$ is a map of Hopf invariant one. By the Adams' theorem, it follows that n = 2, 4 or 8.

For the latter half of Theorem 1.5, we consider the Hopf bundle. Let d = 1, 2or 4 and consider S^d as FP^1 , where $F = \mathbb{R}, \mathbb{C}$ or \mathbb{H} respectively. As shown in the proof of Theorem 1.4, if we put $\alpha = \eta_F \oplus (d-1)$, then dim $\alpha = 2d - 1$ and ind $\alpha = \operatorname{ind}(\alpha \oplus 1) = \dim(\alpha \oplus 1) = 2d$, so that ind $\alpha \neq \dim \alpha$ and α is not I-stable either.

In the case d = 8, we should be a little more careful. As is well-known, there is a S^7 -bundle $S^{15} \longrightarrow S^8$ with group O(8) which is obtained by using Cayley numbers (e.g. [S, p109]). This bundle can be extended to a 8-dimensional real vector bundle

 σ with $S(\sigma)$ identified with S^{15} . If we have constructed a $\mathbb{Z}/2$ -map $S^{15} \longrightarrow S(\sigma)$, we will have $16 \leq \operatorname{ind} \sigma \leq \operatorname{ind}(\sigma \oplus k) \leq \operatorname{ind}(\sigma \oplus 8)$ for all k with $0 \leq k \leq 8$. Since $\operatorname{ind}(\sigma \oplus 8) = \dim(\sigma \oplus 8) = 16$ by Theorem 1.1, we will obtain $\operatorname{ind}(\sigma \oplus k) = 16$ for all k with $0 \leq k \leq 8$. Thus, if we put $\alpha = \sigma \oplus 7$, then $\dim \alpha = 15$ and $\operatorname{ind} \alpha = \operatorname{ind}(\alpha \oplus 1) = \dim(\alpha \oplus 1) = 16$, so that $\operatorname{ind} \alpha \neq \dim \alpha$ and α is not I-stable either.

Finally, we construct a $\mathbb{Z}/2$ -map $S^{15} \longrightarrow S(\sigma)$. Let T denote the involution of $S(\sigma)$, which by definition is the antipodal map on each fibre. We consider the covering projection $S(\sigma) \longrightarrow S(\sigma)/T$. First, we choose a map $f : \mathbb{R}P^1 = S^1 \longrightarrow S(\sigma)/T$ so that f represents the generator of $\pi_1(S(\sigma)/T) = \mathbb{Z}/2$. Since 2f represents zero in $\pi_1(S(\sigma)/T)$ and $\pi_i(S(\sigma)/T) = 0$ for $2 \le i \le 14$, f can be extend to a map $g : \mathbb{R}P^{15} \longrightarrow S(\sigma)/T$. Moreover, g can be covered by a map $\tilde{g} : S^{15} \longrightarrow S(\sigma)$ by the lifting theorem. Then, \tilde{g} has the property either $\tilde{g}(-x) = T\tilde{g}(x)$ or $\tilde{g}(-x) = \tilde{g}(x)$ (for all $x \in S^{15}$). If $\tilde{g}(-x) = \tilde{g}(x)$, then g has a lift, which contradicts our choice of f. Therefore, \tilde{g} is a $\mathbb{Z}/2$ -map.

Remark. Since ind $\sigma = 16 \neq \dim \sigma$, it follows from Proposition 3.1 that $w_8(\sigma) \neq 0$.

References

- [A] J.F. Adams. On the groups J(X)-IV. Topology 5 (1966), 21–71.
- [CF1] P.E. Conner and E.E. Floyd. Fixed point free involutions and equivariant maps. Bull. Amer. Math. Soc. 66 (1960), 416–441.
- [CF2] P.E. Conner and E.E. Floyd. Fixed point free involutions and equivariant maps II. Trans. Amer. Math. Soc. 105 (1962), 222–228.
- [M] J. Milnor. Some consequences of a theorem of Bott. Ann. Math. 68 (1958), 444–449.
- [S] N. Steenrod. The topology of fibre bundles. Princeton Mathematical Series 14, Princeton University Press, Princeton, 1951.
- [T1] R. Tanaka. On the index and co-index of sphere bundles. Kyushu J. Math. 57 (2003), 371–382.
- [T2] R. Tanaka. On the stability of (co-)index of sphere bundles. Kyushu J. Math.
 59 (2005), 321–331.
- [T3] R. Tanaka. The index and co-index of the twisted tangent bundle over projective spaces. Math. J. Ibaraki Univ. 37 (2005), 35–38.
- [W] W-T. Wu. Les i-carrés dans une variété grassmannienne. C. R. Acad. Sci. Paris 230 (1950), 918–920.

Department of Liberal Arts, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510 Japan e-mail address : tanaka_ryuichi@ma.noda.tus.ac.jp