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Abstract
We obtain maximum modulus principles for solutions to some quasilin-

ear and fully nonlinear ODEs and discuss their applications to quasilinear
PDEs involving p-Laplacian. Our approach is convenient to deal with sin-
gular PDEs. Its idea can be tracked back to the old theory by Szegö on
orthogonal polynomials.

1 Introduction

The aim of this paper is to study maximum modulus principles for solutions of the
O.D.Es
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= 0, τ ∈ (α, β),

(1)
where f is nonnegative or nonpositive and either u ∈ C([α, β]) ∩ W 2,1((α, β)) or
u ∈ C([α, β]) ∩ C2((α, β)). This is a fully nonlinear equation which becomes quasi-
linear when f ≡ 0. The typical reprezentants of equations like (1) are some of
the hypergeometric equations of Gauss, like for example the equation defining the
Legendre polynomial

(1− τ 2)u
′′
(τ)− 2τu

′
(τ) + n(n + 1)u(τ) = 0, τ ∈ (−1, 1). (2)
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In general their solutions are not monotonic functions. Therefore the maximum
principles of our interest include oscillating functions as well. We consider three
variants of the maximum principles: left- and right-hand side maximum principles
asserting that the maximum of the modulus of the solution of (1) is achieved at the
left or right endpoint of an interval [α, β] respectively, and the maximum principle
asserting that the maximum modulus of u solving (1) is achieved at either α or
β. We are interested in both: the classical and the distributional solutions in the
convenient Sobolev space.

The theory of maximum principles is a broad discipline of mathematics (we
refer for example to monographs [11, 13, 18], or to the papers [19, 23] and to their
references).

Most of the maximum principles considered in this theory asserts the monotonic-
ity property of the solution to the PDE (see also [16] for the nonclassical solutions).
Roughly speaking, the monotonicity property asserts that if u is the solution to the
given PDE defined on Ω and Ω1, Ω2 are (sufficiently regular) subsets of Ω such that
Ω1 ⊆ Ω2 then max∂Ω1|u| ≤ max∂Ω2|u|. The monotonicity property for the solu-
tion to the PDE requires an assumption that the PDE defined on Ω restricted to
an arbitrary subdomain of Ω possesses the same structure. In particular it implies
the maximum principle for its solution also on the subdomain. In such case we
have max∂Ω1|u| = maxΩ1|u| ≤ maxΩ2|u| = max∂Ω2|u|, provided that Ω1 ⊆ Ω2 ⊆ Ω.
Therefore the monotonicity property follows.

This is not our case. The structure of our equations is not invariant under
the restriction to the subdomain. For that reason our principles admit oscillating
functions as well.

Many papers deal also with various principles admitting oscillating functions (as
e.g. [1, 4, 6, 7, 10, 14, 15, 25]). For example Duhoux [6, 7, 8] considers an eigenvalue
Sturm-Liouville problem

−(r(t)u
′
)

′
+ p(t)u = λm(t)u + h(t),

with boundary conditions of Dirichlet type on a bounded interval [a, b] and uses
properties of the Green function, spectral theory and topological degree theory to
obtain maximum principles that are subordinated to the weight.

The paper [10] deals with the antimaximum principle for the problem

−∆pu = µg(x)|u|p−2u + h(x)

where ∆pu := div(|∇u|p−2∇u) is the p–Laplacian, 1 < p < ∞, µ ∈ R, with some
special g and h.

Quasilinear problems

−div(A(x, u)∇u) + u = h in Ω

with nonhomogeneous Neuman boundary conditions were studied in [1]. Both results
[1] and [10] generalize an approach initiated in [4] (which dealt with the Laplace
operator and Dirichlet boundary conditions) and were extended in [14] to linear
elliptic operators. The paper [25] deals with elliptic systems.

Our techniques are inspired by an old theory by Szegö, who dealt with maximum
principles for orthogonal polynomials (see [21, 22]). As was shown in [15] his ideas
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well apply to the study of maximum principles for solutions of a certain class of linear
equations of the second order. For example hypergeometric equations in many cases
can be treated by such an approach. We extend the results originated in [15] to fully
nonlinear equations like (1). In particular some of the quasilinear equations can be
also treated by this theory.

Our approach to equation (1) follows as a special case from the result dealing
with a more general class of equations considered in Section 2. Therefore we believe
that also some of other fully nonlinear equations can be treated by the method
proposed here. We, however, restrict ourselves to the illustration of the technique
from Section 2 within the class of equations starting from linear and ending up on
equations like (1). Finally, in Chapter 4 we construct some nonlinear PDEs on the
ball B, whose radial solutions achieve their extremas either in the center of B or
on its boundary. Our examples deal with quasilinear equations involving the p–
Laplacian. We also show some applications to the Sturm-Liouville problem and to
the existence theory.

Let us mention that in the cases discussed here the function τ 7→ A(τ, λ0, λ1)
in equation (1) achieves 0 on an interval [α, β]. For example it vanishes at both its
endpoints like in equation (2). Therefore our approach seems to be convenient to
work with singular equations. This justifies our title.

The techniques of this paper can be extended in many directions. For example
one can deal with positive radial solutions to PDEs, or obtain the weighted variants
of the maximum principles. Some extensions to study oscilatory properties of the
solutions are also possible, see e.g. [2, 3, 9] and their references for the related
approaches. Therefore we hope that the ideas influenced by an old Szegö’s theory
and presented in this paper will contribute to the theory of maximum principles.

2 Maximum modulus principles. The general approach

2.1 Notation and basic definitions

Notation. In the sequel we assume that α, β ∈ R and α < β. We use the standard
notation for Sobolev spaces Wm,p((α, β)) and Wm,p

loc ((α, β)). By ∇f we denote the
distributional gradient of f . The k–th distributional derivative of a one-variable
function is denoted by f (k). For k,N ∈ N, k ≤ N , by k–Caratheodory function we
will mean an arbitrary function defined on a subset of RN , which is measurable with
respect to its first k variables and continuous with respect to the remaining ones.

We will deal with the following maximum modulus principles in the class of
scalar functions defined on an interval.

Definition 2.1 (Maximum modulus principle). Assume that α, β ∈ R are given
numbers, α < β, and let M be a subset of C0([α, β]). We will say that M fulfills a
maximum principle on [α, β] if for each u ∈ M we have

supx∈[α,β]|u(x)| = max{|u(α)|, |u(β)|}.

Definition 2.2 (Left- and right-hand side maximum modulus principles). Assume
that α, β ∈ R are given numbers, α < β, and let M be a subset of C0([α, β]). We
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will say that M fulfills a left (right) hand side maximum principle on [α, β] if for
each u ∈ M we have

supx∈[α,β]|u(x)| = |u(α)| (|u(β)|).

The following two conditions will play a special role in our approach.

Definition 2.3 (Gradient condition). We say that a 1–Caratheodory function f :
(α, β) × R3 → R satisfies the gradient condition if there exists a function Ψ ∈
C1([α, β]×R2) such that

f(τ, λ0, λ1, λ2) ≤ 〈∇Ψ(τ, λ0, λ1), (1, λ1, λ2)〉, (3)

for almost every τ ∈ (α, β) and every (λ0, λ1, λ2) ∈ R3.

Definition 2.4 (Majorization property). Let L : (α, β)×R3 → R be a 1-Caratheo-
dory function, G : (α, β)×R4 → R be a 2–Caratheodory function and φ : R → R
be a continuous function. We will say L has majorization property with the pair
(φ,G), if for almost every τ ∈ (α, β) and every λ = (λ0, λ1, λ2) ∈ R3

φ(λ0)λ1 ≤ G(τ, λ, L(τ, λ)). (4)

2.2 Maximum modulus principles for Sobolev functions

We will deal with the following sets of conditions.

(Mo)

1. G : (α, β)×R4 → R is a 1–Caratheodory function and Ψ ∈ C1([α, β]×R2)

2. G(·, 0) satisfies gradient condition with the function Ψ.

3. φ : R → R is an odd continuous function and τφ(τ) > 0 for τ 6= 0.

(LMo):

1. Ψ(α, λ) ≥ 0 and Ψ(β, λ) ≤ 0 for every λ ∈ R2,

2. Ψ(τ, λ0, 0) ≤ 0 for every (τ, λ0) ∈ (α, β)× (R \ {0}).

(RMo):

1. Ψ(α, λ) ≥ 0 and Ψ(β, λ) ≤ 0 for every λ ∈ R2,

2. Ψ(τ, λ0, 0) ≥ 0 for every (τ, λ0) ∈ (α, β)× (R \ {0}).

(Mol):

1. Ψ(α, λ) ≥ 0 for every λ ∈ R2,

2. Ψ(τ, λ0, 0) ≤ 0 for every (τ, λ0) ∈ (α, β)× (R \ {0}).
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(Mor):

1. Ψ(β, λ) ≤ 0 for every λ ∈ R2,

2. Ψ(τ, λ0, 0) ≥ 0 for every (τ, λ0) ∈ (α, β)× (R \ {0}).

Our first result reads as follows.

Theorem 2.1. Suppose that φ,G and Ψ satisfy (Mo), L : (α, β) × R3 → R is a
1-Caratheodory function, and let M be a set of solutions to the O.D.E:

L(τ, u(τ), u
′
(τ), u

′′
(τ)) = 0 a.e. in (α, β), u ∈ W 2,1((α, β)). (5)

Then we have:

i) If L has majorization property with the pair (φ, G) and the condition (LMo) is
satisfied then M fulfills the left hand side maximum principle on [α, β].

ii) If L has majorization property with the pair (−φ,G) and the condition (RMo)
is satisfied then M fulfills the right hand side maximum principle on [α, β].

iii) If L has majorization property with the pair (φ,G) and the conditions (Mol)
is satisfied or if L has majorization property with the pair (−φ,G) and the
conditions (Mor) are satisfied then M fulfills the maximum principle on [α, β].

Proof. We give the proof of part i) only. The proofs of all remaining cases follow
the same line. For the proof of part iii) we need to verify that if u ∈ M and |u| has
a local maximum at x ∈ (α, β) then |u(x)| ≤ |u(α)| or |u(x)| ≤ |u(β)| and apply the
same arguments as in the previous parts.

Let Φ(x) =
∫ x
0 φ(τ)dτ , M be the set of all all points x ∈ (α, β) where |u(x)| 6= 0

and |u| (so also u2) attains its local maximum at x, and let A = M∪{β}. Then Φ
is strictly increasing on [0,∞). Therefore it suffices to show that for every x ∈ A
we have: A(α, x) := Φ(|u(x)|)− Φ(|u(α)|) ≤ 0.

As |u| ∈ W 1,1((α, β)) and Φ ∈ C1, using Nikodym ACL Characterization The-
orem (see e.g. Theorem 1, Section 1.1.3 in [17]), we easily verify that Φ(|u|) ∈
W 1,1((α, β)), in particular

A(α, x) =
∫ x

α

d

dτ
Φ(|u(τ)|)dτ =

∫ x

α
Φ

′
(|u(τ)|)sgnu(τ)u

′
(τ)dτ.

Note that Φ
′
(|λ|)sgnλ = φ(λ). Moreover, according to (4) and (5) we have for almost

every τ ∈ (α, β)

φ(u(τ))u
′
(τ) ≤ G(τ, u(τ), u

′
(τ), u

′′
(τ), 0)

and G(·, 0) satisfies the gradient condition. Therefore

A(α, x) ≤
∫ x

α
G(τ, u(τ), u

′
(τ), u

′′
(τ), 0)dτ ≤

≤
∫ x

α
〈∇Ψ(τ, u(τ), u

′
(τ)),

d

dτ
(τ, u(τ), u

′
(τ))〉dτ,
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and using again Nikodym ACL Characterization Theorem again we observe that
Ψ(x, u(x), u

′
(x)) ∈ W 1,1((α, β)) and the function under the sign of an integral equals

d
dτ

(
Ψ(τ, u(τ), u

′
(τ))

)
. This gives

A(α, x) ≤ Ψ(τ, u(τ), u
′
(τ))|xα, (6)

and the last term is nonnegative according to our assumptions. This ends the proof
of the theorem. �

Remark 2.1. As by the Sobolev Embedding Theorem W 2,1((α, β)) ⊆ C1([α, β]),
we observe that G(τ, u(τ), u

′
(τ), u

′′
(τ), 0) is measurable for every u ∈ W 2,1((α, β))

and set M of solutions to (5) is contained in C([α, β]).

2.3 Maximum modulus principles for classical solutions

Our goal now is to study the situation when the set M of solutions to the equation
L(τ, u(τ), u

′
(τ), u

′′
(τ)) = 0 consists of more regular functions than Sobolev’s ones.

Namely, we are interested in the case when additionally M ⊆ C2((α, β)). In such a
situation we obtain another variant of the maximum principle.

For this purpose we introduce the following two sets:

S :={(τ, λ0, 0, λ2) ∈ (α, β)× (R \ {0})× {0} ×R : λ0λ2 ≤ 0 and L(τ, λ0, 0, λ2) = 0},
S ′

:={(τ, λ0, 0) : ∃λ2 ∈ R : (τ, λ0, 0, λ2) ∈ S}, (7)

and we will deal with the following sets of conditions:

(Mo)

1. G : (α, β)×R4 → R is a 1–Caratheodory function,

Ψ ∈ C1([α, β]×R2) and G(·, 0) satisfies the gradient condition

with the function Ψ,

2. φ : R → R is an odd continuous function and τφ(τ) > 0 for τ 6= 0.

(LMo1):

1. Ψ(α, λ) ≥ 0 and Ψ(β, λ) ≤ 0 for every λ ∈ R2,

2. if S 6= ∅ then Ψ(s) ≤ 0 for every s ∈ S ′
.

(RMo1):

1. Ψ(β, λ) ≤ 0 and Ψ(α, λ) ≥ 0 for every λ ∈ R2,

2. if S 6= ∅ then Ψ(s) ≥ 0 for every s ∈ S ′
.

(Mol1):

1. Ψ(α, λ) ≥ 0 for every λ ∈ R2,

2. S 6= ∅ and Ψ(s) ≤ 0 for every s ∈ S ′
.
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(Mor1):

1. Ψ(β, λ) ≤ 0 for every λ ∈ R2,

2. S 6= ∅ and Ψ(s) ≥ 0 for every s ∈ S ′
.

The result stated below is the interplay between the classical maximum principle
for a one–variable function and the maximum principle presented in Theorem 2.1.

Theorem 2.2. Suppose that L : (α, β)×R3 → R is a continuous function, and M
is the set of solutions to the O.D.E:

L(τ, u(τ), u
′
(τ), u

′′
(τ)) = 0 a.e. in (α, β), u ∈ W 2,1((α, β)) ∩ C2((α, β)). (8)

Then we have:

i) If L has majorization property with the pair (φ,G) and conditions (Mo) and
(LMo1) are satisfied then M fulfills the left hand side maximum principle on
[α, β].

ii) If L has majorization property with the pair (−φ,G) and conditions (Mo) and
(RMo1) are satisfied then M fulfills the right hand side maximum principle
on [α, β].

iii) If one of the conditions is satisfied:

• S = ∅
• L has majorization property with the pair (φ,G) and conditions (Mo)

and (Mol1) is satisfied

• L has majorization property with the pair (−φ, G) and conditions (Mo)
and (Mor1) are satisfied

then M fulfills the maximum principle on [α, β].

Proof. We use the same techniques as previously. The only difference is that if L
is continuous, u is the solution to (8) and M is the set of all points in (α, β),
where |u| achieves its local nonzero maximum then for every x ∈ M we have
(x, u(x), u

′
(x), u

′′
(x)) ∈ S. �

2.4 Preliminary remarks

Remark 2.2. Theorem 2.1 deals with more general assumptions than Theorem 2.2.
Indeed, in Theorem 2.2 one assumes that L is continuous and that the solution u
of the equation L(x, u(x), u

′
(x), u

′′
(x)) = 0 is of class C2((α, β)). In such case the

equation L(τ, λ0, λ1, λ2) = 0 is well defined at every point (τ, λ0, λ1, λ2) ∈ (α, β)×R3,
and also the sign of the expression u(τ)u

′′
(τ) is well prescribed everywhere in (α, β).

In particular the set S is well defined, and also the condition (τ, u(τ), u
′
(τ), u

′′
(τ)) ∈

S. This was not the case in Theorem 2.1. Therefore for purposes of Theorem 2.1
we had to verify the sign of the expression of the right hand side of (6) at β and on
the set of all critical points of u inside (α, β). For purposes of Theorem 2.2 this set
could be reduced to an essentially smaller one.
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Remark 2.3. Theorem 2.2 links Theorem 2.1 and the classical maximum principles.
Indeed, part iii) of Theorem 2.2 in the case when S = ∅ is a variant of the classical
one–dimensional maximum principle: the structure of the equation does not allow
local extremas, and so they must be achieved at the boundary points of an interval.
Note also that even in the case when one can use the classical maximum modulus
principles to deduce that extremas of the solution to the equation are achieved at the
boundary points of an interval, our statements allow to deduce at which boundary
point of an interval this extremum is achieved.

Remark 2.4. The statement of part iii) in Theorem 2.2 in the case when S = ∅
works also under weaker assumptions: M ⊆ C([α, β]) ∩ C(2)((α, β)). For proofs of
the remaining cases we have used the assumption: u ∈ W 2,1((α, β)) ∩ C(2)((α, β)).

Remark 2.5. Contrary to the classical maximum principles, our principles cannot
be inherited by subintervals. This means that if M fulfills the maximum principle
on (α, β) then it does not imply that M fulfills a maximum principle on its arbitrary
subinterval, as it is true for classical maximum principles. This is because our max-
imum principles admit the solutions of the equations to achieve their local extremas
inside the domain (α, β). In particular our solutions can be non-monotonic as it
happens in many known situations (see e.g. [16]). However, it is obvious that if
M fulfills the left-hand side maximum principle on (α, β) then it also fulfills the
left-hand side maximum principle on its arbitrary left subinterval: (α, t), for any
t ∈ (α, β). Similar observation holds for the right–hand side maximum principles.

Remark 2.6. The assumptions required for our maximum principles involve con-
ditions at the boundary points of an interval. For the classical maximum principles
no assumptions involving the boundary of the domain are required.

3 Applications. Singular O.D.Es

Our goal now is to present equations, to which our techniques can be applied. In
this Section we show that our maximum principles are very convenient to deal with
singular O.D.Es. Our discussion will be supported by examples of linear, quasilinear
and fully nonlinear equations.

3.1 Linear equations

Our first equations deal with the linear case. Let us introduce the following set of
conditions:

(Lin) a, c ∈ C1([α, β]) and c(τ) 6= 0 for every τ ∈ [α, β], b ∈ L1((α, β));

(LLin)

1.
a

c
(α) ≤ 0 and

a

c
(β) ≥ 0,

2. for every x ∈ (α, β) we have: (a
′
(x)− 2b(x))c(x) ≤ a(x)c

′
(x);
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(RLin)

1.
a

c
(α) ≥ 0 and

a

c
(β) ≤ 0,

2. for every x ∈ (α, β) we have: (a
′
(x)− 2b(x))c(x) ≥ a(x)c

′
(x);

(Linl)

1.
a

c
(α) ≤ 0,

2. for every x ∈ (α, β) we have: (a
′
(x)− 2b(x))c(x) ≤ a(x)c

′
(x);

(Linr)

1.
a

c
(β) ≤ 0,

2. for every x ∈ (α, β) we have: (a
′
(x)− 2b(x))c(x) ≥ a(x)c

′
(x).

Proposition 3.1 (Linear equation). Let M be the set of solutions to the O.D.E:

a(τ)u
′′
(τ) + b(τ)u

′
(τ) + c(τ)u(τ) = 0, for a.e. x ∈ (α, β), u ∈ W 2,1((α, β)). (9)

Then we have

i) If the conditions (Lin) and (LLin) are satisfied then M fulfills the left hand side
maximum principle on [α, β].

ii) If the conditions (Lin) and (RLin) are satisfied then M fulfills the right hand
side maximum principle on [α, β].

iii) If the conditions (Lin) and either (Linl) or (Linr) are satisfied then M fulfills
the maximum principle on [α, β].

Proof. We give a detailed proof of part i) and sketch the proof of part ii) only,
as the proof of the remaining part and missing details follow the same line.

i): Let u ∈ M and

L(τ, λ0, λ1, λ2) = a(τ)λ2 + b(τ)λ1 + c(τ)λ0. (10)

Then u satisfies the equation: L(τ, u(τ), u
′
(τ), u

′′
(τ)) = 0 a.e., and for every τ ∈

(α, β) and every λ0, λ1, λ2 ∈ R we have

λ0λ1 = −a

c
(τ)λ1λ2 −

b

c
(τ)λ2

1 +
L(τ, λ0, λ1, λ2)λ1

c(τ)
:= G(τ, λ0, λ1, λ2, L(τ, λ0, λ1, λ2)).

(11)
Now the result follows from part i) of Theorem 2.1 if we take φ(λ0) = λ0 and verify
that the function

g(τ, λ0, λ1, λ2) = −a

c
(τ)λ1λ2 −

b

c
(τ)λ2

1
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satisfies the gradient condition with the function Ψ(τ, λ0, λ1) = − a
2c

(τ)λ2
1, which

reads as:

g(τ, λ0, λ1, λ2) = 〈(−b

c
(τ)λ2

1, 0,−a

c
(τ)λ1), (1, λ1, λ2)〉 ≤ 〈∇Ψ(τ, λ0, λ1), 〈1, λ1, λ2〉〉.

ii): Let L be given by (10). Then instead of (11) used in the proof of part i) now
we use the equation:

(−λ0)λ1 =
a

c
(τ)λ1λ2 +

b

c
(τ)λ2

1−
L(τ, λ0, λ1, λ2)λ1

c(τ)
:= G(τ, λ0, λ1, λ2, L(τ, λ0, λ1, λ2)),

and check that for λ = (λ1, λ1, λ2) the function g(τ, λ) := G(τ, λ, 0) satisfies gradient
condition with the function Ψ(τ, λ0, λ1) = a

2c
(τ)λ2

1. Now the result follows from part
ii) of Theorem 2.1. �

Remark 3.1. In the proof of Proposition 3.1 we have used Theorem 2.1 and did
not apply Theorem 2.2. The reason is that we did not have any extra regularity
assumptions on solutions to (9) as we do not assume that M ⊆ C2((α, β)).

Example 3.1. The Legendre polynomial

Wn(τ) = Cn((1− τ)n(1 + τ)n)(n) = Wn(−τ)

satisfies hypergeometric equation of Gauss:

(1− τ 2)W (2)
n (τ)− 2τW

′

n(τ) + (n + 1)nWn(τ) = 0, for τ ∈ (−1, 1)

and fulfills the assumptions of Theorem 3.1. Hence maxx∈[−1,1]|Wn(x)| = |Wn(1)| =
|Wn(−1)|. This result is known in the theory of orthogonal polynomials (see [21],
Theorem 7.4.1, and [15] for some other variants of this theorem).

Remark 3.2. Maximum principles for linear equations (9), their applications to the
theory of special functions, to the existence of solutions of (9), and also relations
with Szegö’s theory were studied in [15], where more general forms of Proposition
3.1 were obtained.

Remark 3.3. An adaptation of Theorem 2.2, parts i), ii) and iii) for S 6= ∅, where
S is defined in (7) for the equation (9) does not bring a new result, as we only
impose additional restrictions: b ∈ C((α, β)), M ⊆ C2((α, β)), so we can adopt the
same proof as that for Proposition 3.1. The situation changes when we deal with
the case S = ∅ in part iii). An analysis when such situation can appear together
with Remark 2.4 leads to the following variant of the weak maximum principle:

Theorem 3.1 (Weak maximum principle). Assume that α, β ∈ R are given numbers
such that α < β. Let a, b, c ∈ C((α, β)) be given functions such that a ≥ 0, c < 0 in
(α, β). Suppose that u is a solution of the equation

a(x)u
′′
(x)+b(x)u

′
(x)+c(x)u(x) = 0, for x ∈ (α, β), u ∈ C2((α, β))∩C([α, β]). (12)

Then maxτ∈[α,β]|u(τ)| = max{|u(α)|, |u(β)|}.
Proof. We verify that the situation aλ2 + cλ0 = 0 for λ0 6= 0 and λ2λ0 ≤ 0 is

impossible. �
More sophisticated arguments (see e.g. [11], Sections 3.1, 3.2 and 3.3 in [13],

[18]) show that the assumption: a ≥ 0, c < 0 can be changed to: a > 0, c ≤ 0 in
(α, β). The variant of the above theorem with such an assumption is a case of the
classical weak maximum principle.
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3.2 Quasilinear equations

For our purposes we will deal with the following sets of conditions.

(Qlin)

1. Ψ ∈ C1([α, β]×R2),

2. A : (α, β)×R2 → R is continuous and A(τ, λ0, λ1) = − ∂Ψ

∂λ1

(τ, λ0, λ1),

3. B : (α, β)×R2 → R is a 1-Caratheodory function,

4. φ : R → R is an odd continuous function such that τφ(τ) > 0 for τ 6= 0;

(LQlin)

1. Ψ(α, ·) ≥ 0 and Ψ(β, ·) ≤ 0,

2. Ψ(τ, λ0, 0) ≤ 0 for every τ ∈ (α, β), λ0 ∈ R \ {0},

3. −B(τ, λ0, λ1) ≤ −φ(λ0)λ1 +
∂Ψ

∂τ
(τ, λ0, λ1) +

∂Ψ

∂λ0

(τ, λ0, λ1)λ1;

(RQlin)

1. Ψ(α, ·) ≥ 0 and Ψ(β, ·) ≤ 0,

2. Ψ(τ, λ0, 0) ≥ 0 for every τ ∈ (α, β), λ0 ∈ R \ {0},

3. B(τ, λ0, λ1) ≤ φ(λ0)λ1 +
∂Ψ

∂τ
(τ, λ0, λ1) +

∂Ψ

∂λ0

(τ, λ0, λ1)λ1;

(Qlinl)

1. Ψ(α, ·) ≥ 0,

2. Ψ(τ, λ0, 0) ≤ 0 for every τ ∈ (α, β), λ0 ∈ R \ {0},

3. −B(τ, λ0, λ1) ≤ −φ(λ0)λ1 +
∂Ψ

∂τ
(τ, λ0, λ1) +

∂Ψ

∂λ0

(τ, λ0, λ1)λ1;

(Qlinr)

1. Ψ(β, ·) ≤ 0,

2. Ψ(τ, λ0, 0) ≥ 0 for every τ ∈ (α, β), λ0 ∈ R \ {0},

3. B(τ, λ0, λ1) ≤ φ(λ0)λ1 +
∂Ψ

∂τ
(τ, λ0, λ1) +

∂Ψ

∂λ0

(τ, λ0, λ1)λ1.

Our next proposition deals with the quasilinear case.

Proposition 3.2 (Quasilinear equation). Let M be the set of solutions to the O.D.E:

A(τ, u(τ), u
′
(τ))u

′′
(τ) + B(τ, u(τ), u

′
(τ)) = 0, for a.e τ ∈ (α, β), u ∈ W 2,1((α, β)).

(13)
Then we have
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i) If the conditions (Qlin) and (LQlin) are satisfied then M fulfills the left hand
side maximum principle on [α, β].

ii) If the conditions (Qlin) and (RQlin) are satisfied then M fulfills the right hand
side maximum principle on [α, β].

iii) If the conditions (Qlin) and either (Qlinl) or (Qlinr) are satisfied then M
fulfills the maximum principle on [α, β].

Proof. We give the detailed proof of part i) only and sketch the proof of part ii).
The remaining proofs follow the same line and are left to the reader.

i): Let u ∈ M , λ = (λ0, λ1, λ2) and

L(τ, λ) = A(τ, λ0, λ1)λ2 + B(τ, λ0, λ1). (14)

Then L(τ, u(τ), u
′
(τ), u

′′
(τ)) = 0 for almost every τ ∈ (α, β), and

φ(λ0)λ1 = −B(τ, λ0, λ1)+φ(λ0)λ1−A(τ, λ0, λ1)λ2+L(τ, λ) := G(τ, λ, L(τ, λ)). (15)

We set g(τ, λ) := G(τ, λ, 0) and verify that

g(τ, λ) = −B(τ, λ0, λ1) + φ(λ0)λ1 − A(τ, λ0, λ1)λ2 ≤ 〈∇Ψ(τ, λ0, λ1), (1, λ1, λ2)〉,

in particular the function g satisfies the gradient condition. Now the result follows
from part i) of Theorem 2.1.

ii): We follow the same line as in the proof of part i), but instead of (15) we use
the equation

−φ(λ0)λ1 = B(τ, λ0, λ1)− φ(λ0)λ1 + A(τ, λ0, λ1)λ2 − L(τ, λ) := G(τ, λ, L(τ, λ)).

�

Remark 3.4. Proposition 3.1 can be deduced directly from Proposition 3.2 when
we consider

A(τ, λ0, λ1) =
a

c
(τ)λ1, B(τ, λ0, λ1) =

b

c
(τ)λ2

1 + λ0λ1,

and note that the solution to (9) satisfies a weaker equation:

a

c
(τ)u

′
(τ)u

′′
(τ) +

b

c
(τ)(u

′
(τ))2 + u(τ)u

′
(τ) = 0 a.e. in (α, β).

For example in the proof of part i) of Proposition 3.1 we take Ψ(τ) = − a
2c

(τ)λ2
1,

φ(λ0) = λ0 and verify the assumptions (Qlin) and (LQlin).

For the sake of completeness we present below the counterpart of Theorem 2.2
adopted to the quasilinear equation. We deal with the following set of conditions.

(Qlin1)

1. Ψ ∈ C1([α, β]×R2),

2. A, B : (α, β)×R2 → R are continuous and A(τ, λ0, λ1) = − ∂Ψ

∂λ1

(τ, λ0, λ1),

3. φ : R → R is an odd continuous function such that τφ(τ) > 0 for τ 6= 0;
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(LQlin1)

1. Ψ(α, ·) ≥ 0 and Ψ(β, ·) ≤ 0,

2. if S 6= ∅ then Ψ(s) ≤ 0 for every s ∈ S ′
,

3. −B(τ, λ0, λ1) ≤ −φ(λ0)λ1 +
∂Ψ

∂τ
(τ, λ0, λ1) +

∂Ψ

∂λ0

(τ, λ0, λ1)λ1;

(RQlin1)

1. Ψ(α, ·) ≥ 0 and Ψ(β, ·) ≤ 0,

2. if S 6= ∅ then Ψ(s) ≥ 0 for every s ∈ S ′
,

3. B(τ, λ0, λ1) ≤ φ(λ0)λ1 +
∂Ψ

∂τ
(τ, λ0, λ1) +

∂Ψ

∂λ0

(τ, λ0, λ1)λ1;

(Qlinl1)

1. Ψ(α, ·) ≥ 0,

2. S 6= ∅ and Ψ(s) ≤ 0 for every s ∈ S ′
,

3. −B(τ, λ0, λ1) ≤ −φ(λ0)λ1 +
∂Ψ

∂τ
(τ, λ0, λ1) +

∂Ψ

∂λ0

(τ, λ0, λ1)λ1;

(Qlinr1)

1. Ψ(β, ·) ≤ 0,

2. S 6= ∅ and Ψ(s) ≥ 0 for every s ∈ S ′
,

3. B(τ, λ0, λ1) ≤ φ(λ0)λ1 +
∂Ψ

∂τ
(τ, λ0, λ1) +

∂Ψ

∂λ0

(τ, λ0, λ1)λ1,

where S and S ′
are given by

S := {(τ, λ0, 0, λ2) ∈ (α, β)× (R \ {0})× {0} ×R : λ0λ2 ≤ 0 and

A(τ, λ0, 0)λ2 + B(τ, λ0, 0) = 0},
S ′

:= {(τ, λ0, 0) : ∃λ2∈R : (τ, λ0, 0, λ2) ∈ S}.

Our result reads as follows. Its easy proof is left to the reader.

Proposition 3.3. Let M be the set of solutions to the O.D.E:

A(τ, u(τ), u
′
(τ))u

′′
(τ) + B(τ, u(τ), u

′
(τ)) = 0, for a.e τ ∈ (α, β),

u ∈ W 2,1((α, β)) ∩ C2((α, β)). (16)

Then we have:

i) If the conditions (Qlin1) and (LQlin1) are satisfied then M fulfills the left hand
side maximum principle on [α, β].

ii) If the conditions (Qlin1) and (RQlin1) are satisfied then M fulfills the right
hand side maximum principle on [α, β].
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iii) If one of the conditions is satisfied:

• S = ∅
• the conditions (Qlin1) and (Qlinl1) are satisfied

• the conditions (Qlin1) and (Qlinr1) are satisfied

then M fulfills the maximum principle on [α, β].

3.3 Fully nonlinear equations

Now it is only a matter of routine to generalize the results of Proposition 3.2 to the
fully nonlinear case. The generalization reads as follows.

Proposition 3.4 (Fully nonlinear equation). Let M ⊆ W 2,1((α, β)) be the set of
solutions to the O.D.E:

A(τ, u(τ), u
′
(τ))u

′′
(τ)+B(τ, u(τ), u

′
(τ))+f(τ, u(τ), u

′
(τ), u

′′
(τ)) = 0, a.e. in (α, β).

(17)
Then we have

i) If the conditions (Qlin) and (LQlin) are satisfied and f ≥ 0 is an arbitrary
1-Caratheodory function then M fulfills the left hand side maximum principle
on [α, β].

ii) If the conditions (Qlin) and (RQlin) are satisfied and f ≤ 0 is an arbitrary
1-Caratheodory function then M fulfills the right hand side maximum principle
on [α, β].

iii) If the conditions (Qlin) and either ((Qlinl) and f ≥ 0) or ((Qlinr) and f ≤ 0)
are satisfied and f is an arbitrary 1-Caratheodory function then M fulfills the
maximum principle on [α, β].

Proof. We use the same techniques as in the proof of Proposition 3.2 for

L(τ, λ0, λ1, λ2) = A(τ, λ0, λ1)λ2 + B(τ, λ0, λ1) + f(τ, λ0, λ1, λ2).

�
The counterpart of Proposition 3.3 reads as follows. Its easy proof is left to the

reader.

Proposition 3.5. Let M be the set of solutions to the O.D.E:

A(τ, u(τ), u
′
(τ))u

′′
(τ) + B(τ, u(τ), u

′
(τ)) + f(τ, u(τ), u

′
(τ), u

′′
(τ)) = 0, (18)

for a.e τ ∈ (α, β), u ∈ W 2,1((α, β)) ∩ C2((α, β)). Then we have:

i) If the conditions (Qlin1) and (LQlin1) are satisfied and f ≥ 0 is an arbitrary
continuous function then M fulfills the left hand side maximum principle on
[α, β].
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ii) If the conditions (Qlin1) and (RQlin1) are satisfied and f ≤ 0 is an arbitrary
continuous function then M fulfills the right hand side maximum principle on
[α, β].

iii) If one of the conditions is satisfied:

• S = ∅
• the conditions (Qlin1) and (Qlinl1) are satisfied and f ≥ 0 is an arbi-

trary continuous function

• the conditions (Qlin1) and (Qlinr1) are satisfied and and f ≤ 0 is an
arbitrary continuous function

then M fulfills the maximum principle on [α, β].

4 The PDEs. Equations involving the p-Laplacian

Our goal now is to illustrate our approach by showing the PDEs, which are invariant
under rotations, and to which our techniques can be applied. We will specialize in
inequalities involving the p–Laplacian. Obviously, one can construct many examples
illustrating our previous results and we are not claiming that our choice is complete.
For some other related results dealing with the radial solutions of equations involving
the p–Laplacian we refer for example to [5, 12, 20, 23, 24, 26] and to their references.

Our first example shows that radial solutions to some quasilinear equations in-
volving the p-Laplacian are upperbounded by their value at 0. This property is
described in the Proposition 4.1 stated below.

Proposition 4.1. Let B be an arbitrary ball in Rn with radius r and center at 0
and w ∈ W 2,1(B) be a radial solution to the equation

−|x|α
(
div|∇w(x)|p−2∇w(x)

)
= φ(w(x)), a.e. in B (19)

where p ≥ 2, (n−1)p
p−1

≥ α ≥ 1 and φ is an arbitrary odd function such that τφ(τ) > 0

for τ 6= 0. Then supx∈B|w(x)| = |w(0)|.
Proof. As w(x) = u(|x|), where u ∈ W 2,1(0, r) is a one–variable function, u

solves the O.D.E:

(p− 1)τα|u′
(τ)|p−2u

′′
(τ) + (n− 1)τα−1|u′

(τ)|p−2u
′
(τ) + φ(u(τ)) = 0, (20)

and also its weaker variant:

(p− 1)τα|u′
(τ)|p−2u

′
(τ)u

′′
(τ) + (n− 1)τα−1|u′

(τ)|p + φ(u(τ))u
′
(τ) = 0. (21)

This is a quasilinear equation of the form:

A(τ, u(τ), u
′
(τ))u

′′
(τ) + B(τ, u(τ), u

′
(τ)) = 0

where

A(τ, λ0, λ1) = (p− 1)τα|λ1|p−2λ1, B(τ, λ0, λ1) = (n− 1)τα−1|λ1|p + φ(λ0)λ1.

Now it suffices to apply part i) of Proposition 3.2 with Ψ(τ, λ0, λ1) = −(1− 1
p
)τα|λ1|p

and φ as in the statement of the Proposition. �
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As an immediate corollary we obtain the following application to the Sturm-
Liouville problem involving the p-Laplacian.

Corollary 4.1. Let B be an arbitrary ball in Rn with radius r and center at 0 and
w ∈ W 2,1(B) be a solution to the eigenvalue problem

−|x|α
(
div|∇w(x)|p−2∇w(x)

)
= λw(x), a.e. in B (22)

with an arbitrary positive λ, p ≥ 2 and (n−1)p
p−1

≥ α ≥ 1. Then supx∈B|w(x)| = |w(0)|.

One could expect that the radial solutions of the equation −|x|α(1−|x|β)∆pw =
φ(w), x ∈ B(1), with some positive parameters α and β achieve their extremas at
the boundary points of B(1). The result stated below shows that it is not possible
if α is the same as in Proposition 4.1 and β ≥ 0 is taken arbitrary.

Proposition 4.2. Let B be the unit ball in Rn with center at 0 and w ∈ W 2,1(B)
be a radial solution to the equation

−|x|α(1− |x|)β
(
div|∇w(x)|p−2∇w(x)

)
= φ(w(x)), a.e. in B (23)

where p ≥ 2, (n−1)p
p−1

≥ α ≥ 1, β ≥ 0 and φ is an arbitrary odd continuous function

such that τφ(τ) > 0 for τ 6= 0. Then supx∈B|w(x)| = |w(0)|.

Proof. Let w(x) = u(|x|), u ∈ W 2,1(0, 1). Then u solves the O.D.E:

(p− 1)τα(1− τ)β|u′
(τ)|p−2u

′′
(τ) + (n− 1)τα−1(1− τ)β|u′

(τ)|p−2u
′
(τ) + φ(u(τ)) = 0,

(24)
and also its weaker variant:

(p−1)τα(1−τ)β|u′
(τ)|p−2u

′
(τ)u

′′
(τ)+(n−1)τα−1(1−τ)β|u′

(τ)|p+φ(u(τ))u
′
(τ) = 0,

(25)
which is a quasilinear equation of the form:

A(τ, u(τ), u
′
(τ))u

′′
(τ) + B(τ, u(τ), u

′
(τ)) = 0

where

A(τ, λ0, λ1) = (p−1)τα(1−τ)β|λ1|p−2λ1, B(τ, λ0, λ1) = (n−1)τα−1(1−τ)β|λ1|p+φ(λ0)λ1.

We apply part i) of Proposition 3.2 with Ψ(τ, λ0, λ1) = −(1 − 1
p
)τα(1 − τ)β|λ1|p

and φ as in the statement of the Proposition. It suffices to check that −B ≤
−φλ1 + ∂Ψ

∂τ
+ ∂Ψ

∂λ0
λ1. This is equivalent to the inequality:

−(n− 1)τα−1(1− τ)β ≤ −(1− 1

p
)

d

dτ

(
τα(1− τ)β

)
, τ ∈ (0, 1),

which reduces to

(n− 1)− (1− 1

p
)α ≥

(
(n− 1)− (1− 1

p
)(α + β)

)
τ, τ ∈ (0, 1).

Within the given range of parameters it is always satisfied. �
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As a corollary we immediately obtain the following result.

Corollary 4.2. Let B be the unit ball in Rn with center at 0 and w ∈ W 2,1(B) be
a solution to the eigenvalue problem

−|x|α(1− |x|)β
(
div|∇w(x)|p−2∇w(x)

)
= λw(x), a.e. in B (26)

with a positive λ and p ≥ 2, (n−1)p
p−1

≥ α ≥ 1, β ≥ 0. Then supx∈B|w(x)| = |w(0)|.

Our goal now is to deal with equations like |x|α(1 − |x|)β∆pw(x) = g(|x|, w(x),
〈∇w(x), x

|x|〉), x ∈ B(1), the disturbed variants of equation (19) and show that in

this case we can expect that their radial solutions achieve their extremas at ∂B(1).
Our next result reads as follows.

Proposition 4.3. Let B be the unit ball in Rn with center at 0 and w ∈ W 2,1(B)
be a radial solution to the equation

−|x|α(1− |x|)β
(
div|∇w(x)|p−2∇w(x)

)
= φ(w(x)) + h(|x|, 〈∇w(x),

x

|x|
〉) a.e. in B,

(27)
where

1. φ is an arbitrary odd function such that τφ(τ) > 0 for τ 6= 0,
2. h(τ, λ1) = −r(τ)τα−1(1−τ)β−1|λ1|p−2λ1, and r(τ) is an arbitrary C1 function

such that

C1 + C2τ ≤ r(τ) for every τ ∈ (0, 1),

with C1 = n− 1 + (1− 1
p
)α, C2 = −(1− 1

p
)(α + β)− n + 1, α, β > 0.

Then supx∈B|w(x)| = supx∈∂B|w(x)|.

Proof. Let w(x) = u(|x|), Then u ∈ W 2,1(0, 1) and u solves the O.D.E satisfied
on (0, 1):

(p− 1)τα(1− τ)β|u′
(τ)|p−2u

′′
(τ) + (n− 1)τα−1(1− τ)β|u′

(τ)|p−2u
′
(τ) +

+ φ(u(τ)) + h(τ, u
′
(τ)) = 0,

and also its weaker variant

(p− 1)τα(1− τ)β|u′
(τ)|p−2u

′
(τ)u

′′
(τ) + (n− 1)τα−1(1− τ)β|u′

(τ)|p +

+ φ(u(τ))u
′
(τ) + h(τ, u

′
(τ))u

′
(τ) = 0.

This is a quasilinear equation of the form

A(τ, u(τ), u
′
(τ)) + B(τ, u(τ), u

′
(τ)) = 0,

where

A(τ, λ0, λ1) = (p− 1)τα(1− τ)β|λ1|p−2λ1

B(τ, λ0, λ1) = (n− 1)τα−1(1− τ)β|λ1|p + φ(λ0)λ1 + h(τ, λ1)λ1.
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Using part ii) of Proposition 3.2 with Ψ(τ, λ0, λ1) = −(1− 1
p
)τα(1−τ)β|λ1|p and φ

as in the statement of the Proposition, it suffices to check that B ≤ φλ1+ ∂Ψ
∂τ

+ ∂Ψ
∂λ0

λ1.
This will be done after we verify that

(n− 1)τα−1(1− τ)β|λ1|p + h(τ, λ1)λ1 ≤ −(1− 1

p
)

d

dτ

(
τα(1− τ)β

)
|λ1|p. (28)

As
d

dτ

(
τα(1− τ)β

)
= τα−1(1− τ)β−1 (α− (α + β)τ) ,

the inequality (28) reduces to the verification that

(n− 1) + (1− 1

p
)α + τ(1− n− (1− 1

p
)(α + β)) ≤ r(τ),

which is satisfied under our assumptions. �

Our results can be applied to the existence theory. As a corollary from Proposi-
tion 4.3 we obtain for instance the following result.

Corollary 4.3. Let B be the unit ball in Rn with center at 0 and φ and h be the
same as in Proposition 4.3. Then the problem

−|x|α(1− |x|)β
(
div|∇w(x)|p−2∇w(x)

)
= φ(w(x)) + h(|x|, 〈∇w(x),

x

|x|
〉) a.e. in B,

u(0) = u0 6= 0, u ≡ 0 on ∂B

admits no radial solutions in the class W 2,1(B).
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