
Higher order functions and Walsh coefficients

M.Teresa Iglesias∗ Vicente S. Peñaranda Alain Verschoren

Abstract

In this note, we characterize the order of fitness functions in terms of their

Walsh coefficients.

Introduction

Genetic algorithms (GAs) are a mathematical tool inspired upon the mechanisms of
natural evolution and are mainly applied in the framework of function optimization.
If a GA is unable to find an optimum of a function in a reasonable time, one says
that this function is “(GA) hard”. It remains an open problem to characterize these
“difficult” functions.

In [9], Rawlins introduced the notion of epistasis (named after a related char-
acteristic in genetics) as an estimator for function difficulty. In particular, Rawl-
ins speaks of minimal epistasis when all genes are independent of the others and
it appears that functions having this property are exactly what should be called
“functions of order one”. It has been shown in [6] that these functions may also
be described by the fact that their Walsh coefficients wt vanish for t 6∈ {0, 2i}, a
property which allows for efficient calculation of (normalized) epistasis, cf. loc. cit.
The main purpose of this note is to show that a similar result holds for functions of
higher order. En passant, we will show by some examples how order and difficulty
are linked for several types of well-known functions.

1 Preliminaries

In order to apply a GA to the optimization of a function, one first has to codify
the data to which this function will be applied. Our data will always be assumed
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to be encoded as vectors (or strings) of length ℓ. GAs essentially act by processing
schemata, i.e., the algorithm acts on certain particular subsets of the search space,
ignoring others. Formally, if one considers the alphabet of alleles Σ (in our case
Σ = {0, 1}) and if one adds the symbol #, one obtains an extended alphabet Σ′. A
schema is an hyperplane H in the set Ωℓ of binary strings of length ℓ and may be
viewed as an element H = hℓ−1 . . . h0 of (Σ′)ℓ, where each place where the symbol #
occurs may be filled in by 0 or 1. Actually, one says that a string s ∈ Ωℓ “belongs”
to H (and one writes s ∈ H), if it has the same structure as H , i.e., if si = hi

whenever hi 6= #. For example, 100111 belongs to H = 10##1#, but 001011 does
not. The number of positions not filled in by # is the order of the schema. The
above schema is of order 3.

In what follows, we will consider for every 1 ≤ p ≤ ℓ, every set of indices
J = {j1, . . . , jp} ⊂ {0, . . . , ℓ− 1} and every 1 ≤ n ≤ p the set

PJ = {(αn, βp−n); {αn, βp−n} is a partition of J} ⊂ P(J) × P(J)

and the order p schema

Hβp−n
αn

= {t ∈ Ωℓ; ti = 0 if i ∈ αn, tj = 1 if j ∈ βp−n} ∈ (Σ′)ℓ,

where (αn, βp−n) ∈ PJ . Occasionally, it may be convenient to make explicit the loci
which are defined in the schema: we will write

H
j1...jp−n

i1...in = {s ∈ Ωℓ; si1 = · · · = sin = 0, sj1 = · · · = sjp−n = 1}.

On the other hand, we will denote the schema {s ∈ Ωℓ; si1 = · · · = sip = 0}, resp.
{s ∈ Ωℓ; sj1 = · · · = sjp = 1} by Hi1...ip, resp. Hj1...jp . One easily sees that the order
0 schema Ωℓ may be written as the disjoint union of two schemata of order 1. For
example, considering the schemata Hi = {s ∈ Ωℓ; si = 0} and H i = {s ∈ Ωℓ; si = 1}
for fixed i, clearly {Hi, H

i} defines a partition of Ωℓ. Moreover, if we denote for
any fitness function f : Ωℓ → R by f(Ωℓ), f(Hi) and f(H i) the average of f on
respectively Ωℓ, Hi and H i, then

f(Ωℓ) =
1

2ℓ

∑

s∈Ωℓ

f(s) =
1

2ℓ


∑

s∈Hi

f(s) +
∑

s∈Hi

f(s)


 =

1

2

[
f(Hi) + f(H i)

]
.

More generally, any order p schema may be written as the disjoint union of two
schemata of order p+ 1. In particular, it then follows that

f(Ωℓ) =
1

4

[
f(Hij) + f(Hj

i ) + f(H i
j) + f(H ij)

]
,

for example. Iterating this process, we obtain the following result:
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Lemma 1. The space Ωℓ may be decomposed into the disjoint union of 2p schemata

of order p.

Proof. Write Ep−n
n (J) as the disjoint union

⋃
PJ

Hβp−n
αn

of
(

p
n

)
schemata, then

Ωℓ =
⋃

0≤n≤p

Ep−n
n (J) =

⋃

0≤n≤p


⋃

PJ

Hβp−n
αn


 .

�

As an immediate corollary, note that the fitness f(Ωℓ) of the space Ωℓ is the
arithmetic average of the fitness values of the above schemata. Indeed, f(Ep−n

n (J))
is equal to

1

2ℓ−p
(

p
n

)
∑

s∈
⋃
PJ

H
βp−n
αn

f(s) =
1

2ℓ−p
(

p
n

)
∑

PJ

∑

s∈H
βp−n
αn

f(s) =
1(
p
n

)
∑

PJ

f(Hβp−n
αn

)

and hence

f (Ωℓ) =
1

2ℓ

p∑

n=0

∑

s∈Ep−n
n (J)

f(s) =
1

2ℓ

p∑

n=0

2ℓ−p
(

p
n

)
f(Ep−n

n (J))

=
1

2p

p∑

n=0

∑

PJ

f
(
Hβp−n

αn

)
.

As pointed out in the introduction, functions of minimal epistasis in the sense
of [9] are exactly those fitness functions f : Ωℓ → R, for which there exist gi :

{0, 1} → R such that f(s) =
ℓ−1∑
i=0

gi(si), i.e., they are described by components which

individually only depend upon a single bit. These functions are usually referred
to as being of order 1 and are “easy” to optimize with a genetic algorithm. This
notion may be generalized by defining a function to be of order k > 1, if f(s) may
be written in the form

∑

0≤i<ℓ

gi(si) +
∑

0≤i1<i2<ℓ

gi1i2(si1 , si2) + · · · +
∑

0≤i1<···<ik<ℓ

gi1···ik(si1, . . . , sik) (1)

where gi1···ir(si1 , . . . , sir) essentially describes the interaction between the r alleles
situated at the locations i1, i2, · · · , ir.

2 Order and difficulty: some examples

In this section, we will give some examples of functions, for which there is good
correlation between GA hardness and the order of the function.

As a first, easy example, recall (from [10], e. g.) that a function f (defined on
length ℓ strings) is said to be a camel function if for some 0 ≤ i < 2ℓ we have
fi = f2ℓ−1−i 6= 0 and fj = 0 elsewhere. (We denote by fk the k-th component of the
associated vector f of f.)
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It is obvious that camel functions have order ℓ. Note that camel functions are
extremely hard to optimize and are exactly those functions whose (normalized)
epistasis is maximal, cf. [10] for details. This already gives a first indication that
the order of a function is connected to its difficulty of being optimized.

As another example, let us consider the so-called Template functions, defined
by assigning to any string s ∈ Ωℓ the number of times a certain substring t of
length n ≤ ℓ appears in it. For convenience’s sake, we will always assume that
t = 1n = 1...1. These Template functions thus clearly depend upon two parameters
only (ℓ and n) and will be denoted by T n

ℓ . For example, T 2
ℓ (1ℓ) = T 2

ℓ (1...1) = ℓ− 1
and T 3

ℓ (01110...011) = 1.
Let us note:

Lemma 2. The function T n
ℓ has order n.

Proof. It suffices to note that T n
ℓ (s) =

ℓ−n∑
j=0

τj(s), where, for every 0 ≤ j ≤ ℓ− n, we

have

τj(s) =





1 if sj = ... = sj+n−1 = 1

0 otherwise.

�

As a last example, let us consider the so-called generalized Royal Road functions,
defined as follows. We consider binary strings of length ℓ = 2n and for every m ≤ n
let us define the schema σn,m

i = #2mi12m
#2n−2m(i+1) of order 2m, where 0 ≤ i < 2n−m.

As in [7] and inspired by previous work by Forrest and Mitchell [2], we then define
the generalized Royal Road function ℜn

m by ℜn
m(s) =

∑
s∈σn,m

i

2m. Let us note:

Lemma 3. The function ℜn
m has order 2m.

Proof. It suffices to note that ℜn
m(s) =

2n−m−1∑
j=0

ρj(s), where, for each 0 ≤ j < 2n−m,

we have

ρj(s) =





2m if sj·2m = · · · = s(j+1)·2m−1 = 1

0 otherwise.

�

With these definitions, one may verify the nice correlation between the order
of the previous functions and their GA hardness. Indeed, in the table below we
take a look at what happens over strings of length 64. We used ranking selection,
one-point crossover with probability 0.7 and simple mutation with probability 0.001.
We stop the GA when 50% of the population consists of the maximum and we use
the number of generations needed to attain this as a measure for the difficulty of
the function.

ord 1 2 4 8 16

f ℜ6
0 T 1

64 ℜ6
1 T 2

64 ℜ6
2 T 4

64 ℜ6
3 T 8

64 ℜ6
4 T 16

64

NG 37 41 68 46 164 63 > 1200 99 > 1200 > 1200
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Note that jointly increasing the order of both functions, their difficulty increases as
well. Nevertheless, for all practical purposes, the problem remains open to charac-
terize in a simple way the order of a function. The order 1 case has been solved in [6],
through the use of Walsh coefficients. In the present note, a similar approach will
given for functions of higher order, inspired by ideas of Goldberg’s, who successfully
applied Walsh analysis in [3] to the study of the fitness of arbitrary schemata.

3 Walsh coefficients of functions of order k

For any t ∈ Ωℓ, define the associated Walsh function ψt by ψt(s) = (−1)s·t, where
s · t denotes the scalar product of s and t. It is then well-known (cf. [3], for example)
that the set {ψt, t ∈ Ωℓ} forms a basis for the vector space of real-valued functions
on Ωℓ.

Actually, considering the 2ℓ-dimensional matrix Vℓ = (ψt(s))s,t∈Ωℓ
∈ M2ℓ(Z)

and representing a function f by its associated vector f ∈ R
2ℓ

, let us define the
Walsh transform w of f by w = Wℓf , where Wℓ = 2−ℓ/2Vℓ. The components
wi = wi(f) are then said to be the Walsh coefficients of f and are, up to the factor
2−ℓ/2, the coordinates of f with respect to the above basis. In practical situations,
it is usually easier to work with the matrix Wℓ which satisfies the recursion formula

Wℓ+1 = 2−
1
2

(
Wℓ Wℓ

Wℓ −Wℓ

)
.

In particular, v0 = 2−ℓ/2w0 = 2−ℓ/2(Wf)0 = 2−ℓ∑2ℓ−1
i=0 fi = f(Ωℓ).

As Wℓ is idempotent, it easily follows that f = Wℓw and that ‖ f ‖ = ‖w‖.
On the other hand, let us also mention Goldberg’s well-known Hyperplane aver-

age theorem (cf. [3], e. g.), which permits to calculate recursively the Walsh coeffi-
cients of order k:

w2i1+···+2ik = 2ℓ/2f(Hi1···ik) −




k−1∑

q=1

∑

1≤λ1<···<λq≤k

w
2

iλ1 +···+2
iλq


− w0, (2)

where i1, . . . , ik ∈ {0, . . . , ℓ− 1}. Given the fact that Walsh transforms respect the
separation between the parts of order 1, 2, . . . , k of the expression given in (1) for
any function f of order k, it suffices to consider each of these components separately.
Consider a simple order k function, i.e., an order k ≤ ℓ function G on Ωℓ, which has
no components of lower order: G(s) = Gi1···ik(si1 , . . . , sik). We will prove that the
Walsh coefficients of order higher than k all vanish and, using this, we will generalize
this property to functions of arbitrary order given by the expression (1).

In order to realize this, let us fix k ≥ 1 and a set of indices I = {i1, . . . , ik} ⊂
{0, . . . , ℓ − 1}. For any set of indices J ⊂ {0, . . . , ℓ − 1} and any partition of J

formed by, say, Q and J −Q, we then define the order p schema H
βq−mβ̃p−q−(n−m)

αmα̃n−m
as

{t ∈ Ωℓ; tj = 0, j ∈ αm ∪ α̃n−m, tj = 1, j ∈ βq−m ∪ β̃p−q−(n−m)},

where
(
(αm, βq−m), (α̃n−m, β̃p−q−(n−m))

)
∈ PQ ×PJ−Q.
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As before, subindices refer to the respective cardinalities of the components of
the partition. Moreover, for non-proper partitions, one eliminates the corresponding
index in the notation.

Example 1. If ℓ = 4, J = {0, 2, 3} and Q = {0, 2}, then we have H023, H
3
02 if

m = 2, we have H2
03, H

23
0 , H

03
2 , H

0
23 if m = 1 and H02

3 , H
023 if m = 0.

In a similar way, let us denote by H̃
βq−mβ̃p−q−(n−m)

αmα̃n−m
the schema in (Σ′)k obtained

from H
βq−mβ̃p−q−(n−m)

αmα̃n−m
by only considering the bits ti1 , . . . , tik .

We will need the following technical result:

Lemma 4. For every p > 0 and any 0 ≤ q, n ≤ p, we have:

p−1∑

q=0




q∑

j=0

(−1)q−j
(

n
j

)(
p−n
q−j

)

 = (−1)p−n+1.

Proof.

p−1∑

q=0




q∑

j=0

(−1)q−j
(

n
j

)(
p−n
q−j

)

 =

p−1∑

j=0




p−1∑

q=j

(−1)q−j
(

n
j

)(
p−n
q−j

)



=
p−1∑

j=0




p−j−1∑

z=0

(−1)z
(

n
j

)(
p−n

z

)



=
p−1∑

z=0




p−z−1∑

j=0

(−1)z
(

n
j

)(
p−n

z

)



=
p−n∑

z=0

(−1)z
(

p−n
z

) p−z−1∑

j=0

(
n
j

)
.

But now, as
p−z−1∑

j=0

(
n

j

)
=

n∑

j=0

(
n

j

)
= 2n,

for p− z − 1 ≥ n and
p−z−1∑

j=0

(
n

j

)
=

n−1∑

j=0

(
n

j

)
= 2n − 1

if z = p− n, it follows that

p−n∑

z=0

(−1)z
(

p−n
z

) p−z−1∑

j=0

(
n
j

)
=

p−n−1∑

z=0

(−1)z
(

p−n
z

) p−z−1∑

j=0

(
n
j

)
+ (−1)p−n

n−1∑

j=0

(
n
j

)

= 2n
p−n−1∑

z=0

(−1)z
(

p−n
z

)
+ (−1)p−n (2n − 1)

= (−1)p−n+1,

as claimed. �
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Using this, one may prove:

Proposition 1. For every set J = {j1, . . . , jp} ⊂ {0, . . . , ℓ − 1}, the value of the

coefficient w2j1+···+2jp of a simple order k function G is given by

w2j1+...+2jp =





2ℓ/2

2p

p∑
n=0

(−1)p−n
(

p
n

)
G(Ep−n

n (J)) if J ⊂ I

0 if J 6⊂ I.

Proof. We will use induction on p. For simplicity’s sake, let us calculate the values
v2j = 2−ℓ/2w2j . For p = 1, we find J = {j} and for J ∈ I

v2j = G(Hj) − v0 = G(Hj) − G(Ωℓ)

is clearly equal to

1

2

[
G(Hj) − G(Hj)

]
=

1

2

[
−G(E1

0 (J)) + G(E0
1(J))

]
.

If j /∈ I, then, since the function G is simple of order k, clearly G(Hj) = G(Hj) and
hence v2j = 0.

Let us now assume that the result holds true up to p− 1 and let us prove it for
p. We will distinguish two cases.

Case 1: J ⊂ I.

Since G is simple of order k ≥ p, it is easy to prove that G(Hj1···jp) = G(H̃j1···jp).
Indeed,

G(Hj1···jp) =
1

2ℓ−p

∑

s∈Hj1···jp

G(s) =
1

2ℓ−p

∑

s∈H̃j1···jp

2ℓ−kG(s)

=
1

2k−p

∑

s∈H̃j1···jp

G(s) = G(H̃j1···jp).

On the other hand, let Q = {jλ1 , · · · , jλq} be a subset of J of cardinality 1 ≤ q < p
and let (αm, βq−m) be an element of PQ. Then, by the induction hypothesis,

v
2

jλ1 +···+2
jλq =

1

2q

q∑

m=0

(−1)q−m
(

q
m

)
G
(
Eq−m

m (Q)
)

=
1

2q

q∑

m=0

(−1)q−m
∑

PQ

G
(
H̃βq−m

αm

)

=
1

2p

p∑

n=0

∑

PQ×PJ−Q

(−1)q−mG
(
H̃

βq−mβ̃p−n−(q−m)

αmα̃n−m

)
,

and v0 = G(Ωℓ) = G(Ωk) = 1
2p

p∑
n=0

∑
PJ

G
(
H̃τp−n

µn

)
. Now, in order to apply (2) to

calculate v2j1+···+2jp , we first need to calculate the value of

Γ = v0 +
p−1∑

q=1

∑

1≤λ1<···<λq≤p

v
2

jλ1 +···+2
jλq
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as follows

Γ =
1

2p

p∑

n=0

∑

PJ

G
(
H̃τp−n

µn

)

+
p−1∑

q=1

∑

1≤λ1<···<λq≤p


 1

2p

p∑

n=0

∑

PQ×PJ−Q

(−1)q−mG
(
H̃

βq−mβ̃p−n−(q−m)

αmα̃n−m

)


=
1

2p


G

(
H̃j1···jp

)
+

p−1∑

n=0

∑

PJ

G
(
H̃τp−n

µn

)



+
1

2p

p∑

n=0

∑

PQ×PJ−Q





p−1∑

q=1

∑

1≤λ1<···<λq≤p

(−1)q−mG
(
H̃

βq−mβ̃p−n−(q−m)

αmα̃n−m

)
 .

If n = p, then q = m and

H̃
βq−mβ̃p−n−(q−m)

αmα̃n−m
= H̃αqα̃p−q

= H̃j1···jp,

as αq = Q and α̃p−q = J −Q. It thus follows that

p−1∑

q=1

∑

1≤λ1<···<λq≤p

(−1)q−mG
(
H̃

βq−mβ̃p−n−(q−m)

αmα̃n−m

)
=

p−1∑

q=1

∑

1≤λ1<···<λq≤p

G
(
H̃j1···jp

)

=
p−1∑

q=1

(
p
q

)
G
(
H̃j1···jp

)

= (2p − 2)G
(
H̃j1···jp

)
.

On the other hand, if n < p a rather technical calculation (see [8] for details) shows
that

∑

PQ×PJ−Q





p−1∑

q=1

∑

1≤λ1<···<λq≤p

(−1)q−mG
(
H̃

βq−mβ̃p−n−(q−m)

αmα̃n−m

)
 =

∑

PJ

γp,nG
(
H̃τp−n

µn

)

whence

γp,n =
p−1∑

q=1

q∑

j=0

(−1)q−j
(

n
j

)(
p−n
q−j

)
.

Applying lemma 4, it now follows that

∑

PQ×PJ−Q





p−1∑

q=1

∑

1≤λ1<···<λq≤p

(−1)q−mG
(
H̃

βq−mβ̃p−n−(q−m)

αmα̃n−m

)


=
∑

PJ

γp,nG
(
H̃τp−n

µn

)
=
∑

PJ

(
(−1)p−n+1 − 1

)
G
(
H̃τp−n

µn

)
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and we finally obtain

v2j1+···+2jp = G
(
H̃j1···jp

)
− Γ = G

(
H̃j1···jp

)
−

2p − 1

2p
G
(
H̃j1···jp

)

−
1

2p

p−1∑

n=0

∑

PJ

(1 + γp,n)G
(
H̃τp−n

µn

)

=
1

2p
G
(
H̃j1···jp

)
−

1

2p

p−1∑

n=0

∑

PJ

(−1)p−n+1G
(
H̃τp−n

µn

)

=
1

2p

p∑

n=0

(−1)p−n
∑

PJ

G
(
H̃τp−n

µn

)
=

1

2p

p∑

n=0

(−1)p−n
(

p
n

)
G
(
Ep−n

n (J)
)
.

Case 2: J = {j1, . . . , jp} 6⊂ I.
Without loss of generality, assume that R = {j1, . . . , jr} ⊂ I, {jr+1, . . . , jp}∩I =

∅. It is straightforward to check that G
(
Hj1···jp

)
= G

(
H̃j1···jr

)
.

On the other hand, by the induction hypothesis,

v2j1+···+2jp = G(Hj1···jp) −


v0 +

p−1∑

q=1

∑

1≤λ1<···<λq≤p

v
2

jλ1 +···+2
jλq




= G(Hj1···jp) −


v0 +

r∑

q=1

∑

1≤λ1<···<λq≤r
jλi

∈R

v
2

jλ1 +···+2
jλq




= G(Hj1···jp) − Γ.

The set Q = {jλ1 , . . . , jλq} ⊂ R has cardinality q, hence, again by induction and
arguing as in case 1, it follows that

v
2

jλ1 +···+2
jλq =

1

2r

r∑

n=0

(−1)q−m
∑

PQ×PR−Q

G
(
H̃

βq−mβ̃r−n−(q−m)

αmα̃n−m

)
,

whence, as before, (αm, βq−m) ∈ PQ. So,

Γ =
1

2r

r∑

n=0

∑

PR

G
(
H̃τr−n

µn

)

+
r∑

q=1

∑

1≤λ1<···<λq≤r

1

2r




r∑

n=0

∑

PQ×PR−Q

(−1)q−mG
(
H̃

βq−mβ̃r−n−(q−m)

αmα̃n−m

)


=
1

2r


G

(
H̃j1···jr

)
+

r−1∑

n=0

∑

PR

G
(
H̃τr−n

µn

)



+
1

2r

r∑

n=0

∑

PQ×PR−Q




r∑

q=1

∑

1≤λ1<···<λq≤r

(−1)q−m


G

(
H̃

βq−mβ̃r−n−(q−m)

αmα̃n−m

)

=
1

2r


2r +

r−1∑

n=0

∑

PR


1 +

r∑

q=1

∑

1≤λ1<···<λq≤r

(−1)q−m




G

(
H̃

βq−mβ̃r−n−(q−m)

αmα̃n−m

)

= G(H̃j1···jr).
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Indeed, for n = r we have q = m and H̃
βq−mβ̃r−n−(q−m)

αmα̃n−m
= H̃αqα̃r−q

= H̃j1···jr (as

αq = Q and α̃r−q = R−Q) hence

r∑

q=1

∑

1≤λ1<···<λq≤r

(−1)q−mG
(
H̃

βq−mβ̃r−n−(q−m)

αmα̃n−m

)
=

r∑

q=1

∑

1≤λ1<···<λq≤r

G
(
H̃j1···jr

)

= (2r − 1)G
(
H̃j1···jr

)
.

On the other hand, if n < r, it has been proved in [8] that

∑

PQ×PR−Q

r∑

q=1

∑

1≤λ1<···<λq≤r

(−1)q−mG
(
H̃

βq−mβ̃r−n−(q−m)

αmα̃n−m

)
=
∑

PR

ζr,nG
(
H̃τr−n

µn

)

with

ζr,n =
r∑

q=1

q∑

j=0

(−1)q−j
(

n
j

)(
r−n
q−j

)

equal to

γr,n +
r∑

j=0

(−1)r−j
(

n
j

)(
r−n
r−j

)
= [−1 + (−1)r−n+1] + (−1)r−n = −1.

From (2), it now immediately follows that v2j1+···+2jp = G
(
Hj1···jp

)
− Γ = 0, which

finishes the proof. �

Corollary 1. If the function G : Ωℓ → R has order k, then its Walsh coefficients of

order p > k all vanish.

We thus finally obtain:

Theorem 1. For any function f : Ωℓ → R with Walsh coefficients wt, the following

statements are equivalent:

1. f has order k;

2. wt = 0 for all t /∈ {0, 2i1 + · · · + 2ij ; 1 ≤ j ≤ k, 0 ≤ i1 < · · · < ik < ℓ}.

Proof. In view of the previous results, it only remains to prove the converse of the
previous corollary. As

f(s) = (Wℓw)s = 2−ℓ/2w0 + 2−ℓ/2
k∑

j=1

∑

0≤i1<···<ij<ℓ

(−1)(si1
+···+sij

)w2i1+···+2ij ,

it suffices to define

gi1···ij (s) = 2−ℓ/2


 w0

k
(

ℓ
j

) + (−1)(si1
+···+sij

) w2i1+···+2ij


 ,

for every 0 ≤ i1 < · · · < ij < ℓ and to note that

f(s) =
k∑

j=1

∑

0≤i1<···<ij<ℓ

gi1···ij (s).

�
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