Improvement on the Bound of Intransitive Permutation Groups with Bounded Movement

Mehdi Alaeiyan
Hamid A. Tavallaee

Abstract

Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. Then we define the movement of G as, $m:=\operatorname{move}(G):=$ $\sup _{\Gamma}\left\{\left|\Gamma^{g} \backslash \Gamma\right| \mid g \in G\right\}$. Let p be a prime, $p \geq 5$, and let $\operatorname{move}(G)=m$. We show that if G is not a 2 -group and p is the least odd prime dividing $|G|$, then $n:=|\Omega| \leq 4 m-p$.

Moreover for an infinite family of groups the maximum bound $n=4 m-p$ is attained.

1 Introduction

Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a positive integer. If for a subset Γ of Ω the size $\left|\Gamma^{g}-\Gamma\right|$ is bounded, for $g \in G$, we define the movement of Γ as move $(\Gamma)=\max _{g \in G}\left|\Gamma^{g}-\Gamma\right|$. If move $(\Gamma) \leq m$ for all $\Gamma \subseteq \Omega$, then G is said to have bounded movement and the movement of G is defined as the maximum of move (Γ) over all subsets Γ, that is,

$$
m:=\operatorname{move}(G):=\sup \left\{\left|\Gamma^{g} \backslash \Gamma\right| \mid \Gamma \subseteq \Omega, g \in G\right\}
$$

This notion was introduced in [4]. By [4, Theorem 1], if G has bounded movement m, then Ω is finite. Moreover both the number of G-orbits in Ω and the length of each G-orbit are bounded above by linear functions of m. In particular, it was

[^0]proved that each G-orbit has length at most $3 m$ and $n:=|\Omega| \leq 5 m-2$. In [1] it was shown that $n=5 m-2$ if and only if $n=3$ and G is transitive. But in [3], this bound was refined further and it was shown that $n \leq \frac{1}{2}(9 m-3)$. Moreover, if $n=\frac{1}{2}(9 m-3)$ then either $n=3$ and $G=S_{3}$ or G is an elementary abelian 3-group and all its orbits have length 3 .

Now suppose that G is not a 2 -group. Let p be the least odd prime dividing $|G|$ and suppose that $p \geq 5$. Then by [4, Lemma 2.2], $n \leq(9 m-3) / 2$. In this paper we aim to improve the bound as follows:

Theorem 1.1 Let m be a positive integer, and let G be a finite permutation group on a set Ω with movement m such that G has no fixed points in Ω. If $|G|$ is not a 2-power and $|G|$ is not divisible by 3 , then $n:=|\Omega| \leq 4 m-p$, where p is the smallest odd prime dividing $|G|$

The maximum bound in Theorem 1.1 is attained for an infinite family of groups (see example 2.4).

We denote by K.P a semi-direct product of K by P with normal subgroup K.

2 Examples and preliminaries

Let $1 \neq g \in G$ and suppose that g in its disjoint cycle representation has t nontrivial cycles of lengths l_{1}, \ldots, l_{t} say. We might represent g as

$$
g=\left(a_{1} a_{2} \ldots a_{l_{1}}\right)\left(b_{1} b_{2} \ldots b_{l_{2}}\right) \ldots\left(z_{1} z_{2} \ldots z_{l_{t}}\right) .
$$

Let $\Gamma(g)$ denote a subset of Ω consisting of $\left\lfloor l_{i} / 2\right\rfloor$ points from the $i^{\text {th }}$ cycle, for each i, chosen in such a way that $\Gamma(g)^{g} \cap \Gamma(g)=\emptyset$. For example, we could choose

$$
\Gamma(g)=\left\{a_{2}, a_{4}, \ldots, a_{k_{1}}, b_{2}, b_{4}, \ldots, b_{k_{2}}, \ldots, z_{2}, z_{4}, \ldots, z_{k_{t}}\right\}
$$

where $k_{i}=l_{i}-1$ if l_{i} is odd and $k_{i}=l_{i}$ if l_{i} is even. Note that $\Gamma(g)$ is not uniquely determined as it depends on the way each cycle is written. For any set $\Gamma(g)$ of this kind we say that $\Gamma(g)$ consists of every second point of every cycle of g. From the definition of $\Gamma(g)$ we see that

$$
\left|\Gamma(g)^{g} \backslash \Gamma(g)\right|=|\Gamma(g)|=\sum_{i=1}^{t}\left\lfloor l_{i} / 2\right\rfloor .
$$

The next lemma shows that this quantity is an upper bound for $\left|\Gamma^{g} \backslash \Gamma\right|$ for an arbitrary subset Γ of Ω.
Lemma 2.1 [2, Lemma 2.1] Let G be a permutation group on a set Ω and suppose that $\Gamma \subseteq \Omega$. Then for each $g \in G,\left|\Gamma^{g} \backslash \Gamma\right| \leq \sum_{i=1}^{t}\left\lfloor l_{i} / 2\right\rfloor$ where l_{i} is the length of the $i^{\text {th }}$ cycle of g and t is the number of nontrivial cycles of g in its disjoint cycle representation. This upper bound is attained for $\Gamma=\Gamma(g)$ defined above.

Now we have the following lemma which is a classification of all transitive permutation groups G of degree p where p is the least odd prime dividing $|G|$.

Lemma 2.2 Let G be a transitive permutation group on a set Ω of size p, where p is the least odd prime dividing $|G|$. Then $G=Z_{p} . Z_{2^{a}}$, where $a \geq 0$, and $2^{a} \mid(p-1)$. Proof. Let G be a transitive permutation group on a set Ω of size p. Then G is isomorphic to a transitive subgroup of S_{p} and so p is the largest prime divisor of $|G|$. Since p is also the least odd prime dividing $|G|$, we have $|G|=p .2^{a}$ for some $a \geq 0$. By Burnside's" pq theorem" (see [6, Theorem 2.10.17]) G is soluble, and hence by a theorem of Galois [6,Theorem 3.6.1] G is isomorphic to a subgroup of the group AGL $(1, p)$ of affine transformations of a finite field consisting of p elements. Thus $G=Z_{p} . Z_{2^{a}}$ as asserted.

Corollary 2.3 Let G be a permutation group on a set Ω, and suppose that Δ is a G-orbit of length p in Ω where p is the least odd prime dividing $|G|$. Then the induced permutation group G^{Δ} is $Z_{p} \cdot Z_{2^{a}}$ where $2^{a} \mid p-1$.

Let d be a positive integer, p a prime, $G:=Z_{p}^{d}, t:=\left(p^{d}-1\right) /(p-1)$, and let H_{1}, \ldots, H_{t} be all subgroups of index p in G. Define Ω_{i} to be the right coset space $\left\{H_{i} g \mid g \in G\right\}$ of H_{i} and $\Omega:=\Omega_{1} \cup \cdots \cup \Omega_{t}$. Consider G as a permutation group on Ω by the right multiplication, that is $x \in G$ is identified with the composite of permutation $H_{i} g \longmapsto H_{i} g x(i=1, \ldots, t)$ on Ω_{i} for $i=1, \ldots, t$. If $g \in G-\{1\}$, then g lies in $\left(p^{d-1}-1\right) /(p-1)$ groups H_{i} and therefore acts on Ω as a permutation with $p\left(p^{d-1}-1\right) /(p-1)$ fixed points and p^{d-1} orbits of length p. Taking every second point from each of these p-cycles to form a set Γ we see that $\operatorname{move}(g)=m \geq p^{d-1}(p-1) / 2$ if p is odd or 2^{d-1} if $p=2$, and it is not hard to prove that in fact move $(g)=m=p^{d-1}(p-1) / 2$ if p is odd or 2^{d-1} if $p=2$. Since g is non-trivial, all non-identity elements of G have the same movement m.

Now we will show that there certainly is an infinite family of groups for which equality in Theorem 1.1 holds, for any prime $p \geq 5$.

Example 2.4 For a positive integer d and a prime $p \geq 5$, let $G_{1}:=\langle(12 \ldots p)\rangle \cong Z_{p}$ be a permutation group on $\Omega_{1}:=\{1,2, \ldots, p\}$. Moreover, suppose that $G_{2}:=Z_{2}^{d}$, and H_{1}, \ldots, H_{t} denote the groups defined in the above for the prime number 2 on $\Omega_{2}:=\bigcup_{i=1}^{2^{d}-1} \Omega_{2 i}$, where $\Omega_{2 i}$ denotes the set of two cosets of H_{i} in $G_{2}, 1 \leq i \leq t=$ $2^{d}-1$. Then G_{2} has movement equal to 2^{d-1} and also $\left(2^{d}-1\right)$ nontrivial orbits in Ω_{2}. Now we consider the direct product $G:=G_{1} \times G_{2}$ as a permutation on Ω which is the disjoint union of Ω_{1} and Ω_{2}, and G_{1} and G_{2} act trivially on Ω_{2} and Ω_{1}, respectively. Then G has movement $m=(p-1) / 2+2^{d-1}$. The set Ω splits into $2^{d}=2 m-(p-1)$ orbits under G, which are Ω_{1} and $2^{d}-1$ orbits of length 2 in Ω_{2}. In particular, none of them is trivial. Furthermore,

$$
4 m-p=2(p-1)+2^{d+1}-p=p+2\left(2^{d}-1\right)=\left|\Omega_{1}\right|+\left|\Omega_{2}\right|=|\Omega| .
$$

3 The maximum degree of bounded movement groups

Suppose that $G \leq \operatorname{Sym}(\Omega)$ and that G is not a 2 -group and $\operatorname{move}(G)=m$, and that $p \geq 5$ is the least odd prime dividing $|G|$. In this section we find an upper bound for $|\Omega|$ that is a linear function of m.

To prove the main theorems, we introduce the following notation.
$r_{p}(a):=$ number of G-orbits of length p on which G acts as $Z_{p} \cdot Z_{2^{a}}$ with $0 \leq a \leq a_{0}$ and set $r_{p}:=\sum_{a=0}^{a_{1}} r_{p}(a)$;
$\Phi:=$ union of G-orbits of lengths 2^{b}, where $1 \leq b \leq \log _{2} p$; and u is the number of orbits in Φ;
$s:=$ number of G-orbits of length $>p$.
The orbits are labeled accordingly: thus $\Omega_{1}, \ldots, \Omega_{r_{p}}$ are those of length p on which G acts as $Z_{p} . Z_{2^{a}}$ for some $a \geq 0 ; \Omega_{r_{p}+1}, \ldots, \Omega_{r_{p}+u}$ are those of length 2^{b} where $1 \leq b \leq \log _{2} p$, which the group induced by G on each orbit in Φ is a 2 -group; and etc. Define $t:=r_{p}+u+s, t_{1}:=r_{p}+u$. So t is the total number of G-orbits.

For $1 \leq i \leq r_{p}$ define K_{i} to be the kernel of the action of G on Ω_{i} and for $g \in G$ define $k(g)$ to be the number of i in that range for which g is not in K_{i}. For $g \in G$ and a G-invariant set Δ we denote by fix $_{\Delta}(g)=\left\{\alpha \in \Delta \mid \alpha^{g}=\alpha\right\}$ and $\operatorname{supp}_{\Delta}(g)=\left\{\alpha \in \Delta \mid \alpha^{g} \neq \alpha\right\}$ the set of fixed points of g in Δ and the support of g in Δ, respectively (so that $\left|\operatorname{fix}_{\Delta}(\mathrm{g})\right|+\left|\operatorname{supp}_{\Delta}(\mathrm{g})\right|=|\Delta|$), and define odd ${ }_{\Delta}(g):=$ the number non-trivial cycles of g in Δ that have odd length.

Lemma 3.1 With the above notation, let $\Delta:=\bigcup_{i=t_{1}+1}^{t} \Omega_{i}$ be the union of G-orbits of length $>p$, and let $g \in G$. Then

$$
\frac{p-1}{2} k(g)+\frac{1}{2}\left|\operatorname{supp}_{\Phi}(g)\right|+\frac{1}{2}\left(\left|\operatorname{supp}_{\Delta}(g)\right|-\operatorname{odd}_{\Delta}(g)\right) \leq m .
$$

Proof. For each i such that $1 \leq i \leq t_{0}$ and g is not in K_{i}, since $\left|\Omega_{i}\right|=p$ then $g^{\Omega_{i}}$ is a p-cycle or a 2 -element with one fixed point and we may choose a subset Γ_{i} of $\frac{p-1}{2}$ points of Ω_{i} such that $\Gamma_{i}^{g} \cap \Gamma_{i}=\emptyset$. Let Γ_{0} be the set of chosen points from all the Γ_{i} for $1 \leq i \leq r_{p}$, and so by definition $\Gamma_{0}^{g} \cap \Gamma_{0}=\emptyset$.

For each of the non-trivial cycles $\left(b_{1} \ldots b_{2 l}\right)$ and $\left(a_{1} a_{2} \ldots a_{k}\right)$ of g in Φ and Δ respectively, adjoin the points $b_{1}, b_{3}, \ldots, b_{2 l-1}$ and also $a_{1}, a_{3}, \ldots, a_{k^{\prime}}$ to Γ_{0}, where k^{\prime} is odd and $k-2 \leq k^{\prime} \leq k-1$.
Let Γ be the resulting set. It has been constructed so that $\Gamma^{g} \cap \Gamma=\emptyset$. Therefore $|\Gamma| \leq m$. Since

$$
|\Gamma|=\frac{p-1}{2} k(g)+\frac{1}{2}\left|\operatorname{supp}_{\Phi}(g)\right|+\frac{1}{2}\left(\left|\operatorname{supp}_{\Delta}(g)\right|-\text { odd }_{\Delta}(g)\right),
$$

we have the stated inequality.
To prove Theorem 1.1 we first prove the following lemma.

Lemma 3.2

$$
\sum_{a=0}^{a_{0}} \frac{p-1}{2} .\left(1-\frac{1}{2^{a} p}\right) r_{p}(a)+\frac{|\Phi|-u}{2}+\frac{p-1}{2 p}(|\Delta|-s)<m,
$$

Proof. Suppose that $1 \leq i \leq r_{p}$. Then the group induced by G on Ω_{i} is $Z_{p} Z_{2^{a}}$ for some $a \geq 0$, such that $2^{a} \mid(p-1)$, and since $\left|G: K_{i}\right|=2^{a} p$, there are

$$
|G|-\left|K_{i}\right|=\left(2^{a} p-1\right)\left|K_{i}\right|
$$

elements g which act nontrivially on Ω_{i}. It follows that

$$
\sum_{g \in G} \frac{p-1}{2} k(g)=\frac{p-1}{2} \sum_{a=0}^{a_{0}}\left(\frac{2^{a} p-1}{2^{a} p}|G|\right) r_{p}(a) .
$$

For $r_{p}+1 \leq i \leq t_{1}$, the group induced by G on Ω_{i} is a 2 -group. The union of these sets Ω_{i} is Φ, and since by Burnside's Lemma [5, Theorem 3.26] the average number of fixed points of elements of G in Φ is the number u of G-orbits in Φ, we have

$$
\sum_{g \in G} \frac{1}{2}\left|\operatorname{supp}_{\Phi}(g)\right|=\frac{1}{2} \sum_{g \in G}\left(|\Phi|-\mid \text { fix }_{\Phi}(g) \mid\right)=\frac{1}{2}|\Phi||G|-\frac{|G|}{2} u .
$$

Similarly,

$$
\sum_{g \in G} \frac{1}{2}\left|\operatorname{supp}_{\Delta}(g)\right|=\frac{1}{2}|\Delta| \cdot|G|-\frac{s|G|}{2},
$$

and since $\operatorname{odd}_{\Delta}(g)<\frac{1}{p}|\operatorname{supp} \Delta(g)|$, we have

$$
\sum_{g \in G} \frac{1}{2}\left(\left|\operatorname{supp}_{\Delta}(g)\right|-o d d_{\Delta}(g)\right)>\frac{p-1}{2 p}(|\Delta| \cdot|G|-s|G|) .
$$

Thus adding the inequality of Lemma 3.1 over all $g \in G$, we obtain

$$
m|G|>|G|\left(\sum_{a=0}^{a_{0}} \frac{p-1}{2} .\left(1-\frac{1}{2^{a} p}\right) r_{p}(a)+\frac{|\Phi|-u}{2}+\frac{p-1}{2 p}(|\Delta|-s)\right)
$$

where the last inequality recognizes the fact the inequality of Lemma 3.1 is strict for the identity element of G. This completes the proof of Lemma 3.2.

Recall that in general the movement move (g) of an element g of a permutation group G on a set Ω is defined as

$$
\operatorname{move}_{\Omega}(g):=\max \left\{\left|\Gamma^{g} \backslash \Gamma\right| \mid \Gamma \subseteq \Omega\right\}
$$

Thus the movement m of G is given as $m=\max \left\{\operatorname{move}_{\Omega}(g) \mid g \in G\right\}$. Assume that Ω is the disjoint union of G-invariant sets Ω_{1} and Ω_{2}. Then every subset Γ of Ω is a disjoint union of subsets $\Gamma_{i}:=\Gamma \cap \Omega_{i}$ for $i=1,2$. Let g_{i} be the permutation on Ω_{i} induced by g for $i=1,2$. Since $\left|\Gamma^{g} \backslash \Gamma\right|=\left|\Gamma_{1}^{g_{1}} \backslash \Gamma_{1}\right|+\left|\Gamma_{2}^{g_{2}} \backslash \Gamma_{2}\right|$, we have

$$
\operatorname{move}_{\Omega}(g)=\sum_{i=1}^{2} \max \left\{\left|\Gamma_{i}^{g_{i}} \backslash \Gamma_{i}\right| \mid \Gamma_{i} \subseteq \Omega_{i}\right\}=\text { move }_{\Omega_{1}}\left(g_{1}\right)+\text { move }_{\Omega_{2}}\left(g_{2}\right)
$$

Now

$$
n=\left(\sum_{a=0}^{a_{0}} r_{p}(a)\right) p+|\Phi|+|\Delta| .
$$

Also we have $|\Phi| \geq 2 u$, and so

$$
\frac{|\Phi|-u}{2} \geq \frac{|\Phi|}{4} .
$$

By above statement and since G is intransitive, thus the inequality in Lemma 3.2 implies that

$$
\begin{aligned}
m-1 & \geq \frac{n}{4}+\sum_{a=0}^{a_{0}} r_{p}(a)\left(\frac{p-1}{2}-\frac{p-1}{2^{a+1} p}-\frac{p}{4}\right)+|\Delta|\left(\frac{p-1}{2 p}-\frac{1}{4}\right)-\frac{p-1}{2 p} s \\
& =\frac{n}{4}+\sum_{a=0}^{a_{0}} r_{p}(a)\left(\frac{p-2}{4}-\frac{p-1}{2^{a+1} p}\right)+|\Delta|\left(\frac{p-2}{4 p}\right)-\frac{p-1}{2 p} s .
\end{aligned}
$$

Since G is not a 2-group, we have either $r_{p}(a)>0$ for some a or $s>0$. If some $r_{p}(a)>0$, then

$$
\begin{equation*}
m-1 \geq \frac{n}{4}+\frac{p-2}{4}-\frac{p-1}{2^{a+1} p} . \tag{*}
\end{equation*}
$$

But we note that since $p \geq 5$, for each $a \geq 0$,

$$
\frac{p-2}{4}-\frac{p-1}{2^{a+1} p} \geq \frac{p-2}{4}-\frac{p-1}{2 p}>0 .
$$

Hence,

$$
m-1 \geq \frac{n}{4}+\frac{p-2}{4}-\frac{p-1}{2 p}=\frac{n}{4}+\frac{p^{2}-4 p+2}{4 p} .
$$

On the other hand if $s>0$, then $|\Delta| \geq(p+1) s \geq p+1$. Thus,

$$
m-1 \geq \frac{n}{4}+|\Delta|\left(\frac{p-2}{4 p}\right)-\frac{p-1}{2 p} s \geq \frac{n}{4}+s\left(\frac{(p+1)(p-2)}{4 p}-\frac{p-1}{2 p}\right) \geq \frac{n}{4}+\frac{p^{2}-3 p}{4 p} .
$$

So in either case we must have,

$$
m-1 \geq \frac{n}{4}+\min \left\{\frac{p^{2}-4 p+2}{4 p}, \frac{p^{2}-3 p}{4 p}\right\}=\frac{n}{4}+\frac{p^{2}-4 p+2}{4 p} .
$$

Hence,

$$
4 m \geq n+p+\frac{2}{p}
$$

That is, $n \leq 4 m-p$. Hence the proof of Theorem 1.1 is complete.

References

[1] J. R. Cho, P. S. Kim, and C. E. Praeger, The maximal number of orbits of a permutation groups with bounded movement, J. Algebra 214 (1999), 625-630.
[2] A. Hassani, M. Khayaty (Alaeiyan), E. I. Khukhro and C. E. Praeger, Transitive permutation groups with bounded movement having maximal degree, J. Algebra 214(1999), 317-337.
[3] P. M. Neumann and C. E. Praeger, On the movement of a permutation group, J. Algebra 214 (1999) 631-635.
[4] C. E. Praeger, On permutation group with bounded movement, J. Algebra 144 (1991), 436-442.
[5] J. J. Rotman, An Introduction to the theory of groups, 3rd ed., Allyn and Bacon, Boston, 1984.
[6] T. Tsuzuku, Finite groups and finite geometries, Cambridge University Press, 1982.

Department of Mathematics
Iran University of Science and Technology
Narmak, Tehran 16844, Iran
E-mail: alaeiyan@iust.ac.ir, tavallaee@iust.ac.ir

[^0]: Received by the editors August 2004.
 Communicated by H. Van Maldeghem.
 1991 Mathematics Subject Classification : 20B05.
 Key words and phrases : Permutation group, Bounded movement, Transitive, Cycle, Semidirect product.

