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Abstract

Let G be a permutation group on a set Ω with no fixed points in Ω and let m
be a positive integer. Then we define the movement of G as, m := move(G) :=
supΓ{|Γg \ Γ||g ∈ G}. Let p be a prime, p ≥ 5, and let move(G) = m. We
show that if G is not a 2-group and p is the least odd prime dividing |G|, then
n := |Ω| ≤ 4m− p.

Moreover for an infinite family of groups the maximum bound n = 4m−p
is attained.

1 Introduction

Let G be a permutation group on a set Ω with no fixed points in Ω and let m be a
positive integer. If for a subset Γ of Ω the size |Γg − Γ| is bounded, for g ∈ G, we
define the movement of Γ as move(Γ) = maxg∈G |Γg − Γ|. If move(Γ) ≤ m for all
Γ ⊆ Ω, then G is said to have bounded movement and the movement of G is defined
as the maximum of move(Γ) over all subsets Γ, that is,

m := move(G) := sup{|Γg \ Γ||Γ ⊆ Ω, g ∈ G}.

This notion was introduced in [4]. By [4, Theorem 1 ], if G has bounded move-
ment m, then Ω is finite. Moreover both the number of G-orbits in Ω and the length
of each G-orbit are bounded above by linear functions of m. In particular, it was
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proved that each G-orbit has length at most 3m and n := |Ω| ≤ 5m − 2 . In [1] it
was shown that n = 5m − 2 if and only if n = 3 and G is transitive. But in [3],
this bound was refined further and it was shown that n ≤ 1

2
(9m − 3). Moreover, if

n = 1
2
(9m− 3) then either n = 3 and G = S3 or G is an elementary abelian 3-group

and all its orbits have length 3.

Now suppose that G is not a 2-group. Let p be the least odd prime dividing |G|
and suppose that p ≥ 5. Then by [4, Lemma 2.2], n ≤ (9m − 3)/2. In this paper
we aim to improve the bound as follows:

Theorem 1.1 Let m be a positive integer, and let G be a finite permutation group
on a set Ω with movement m such that G has no fixed points in Ω. If |G| is not
a 2-power and |G| is not divisible by 3, then n := |Ω| ≤ 4m − p, where p is the
smallest odd prime dividing |G|

The maximum bound in Theorem 1.1 is attained for an infinite family of groups
(see example 2.4).

We denote by K.P a semi-direct product of K by P with normal subgroup K.

2 Examples and preliminaries

Let 1 6= g ∈ G and suppose that g in its disjoint cycle representation has t nontrivial
cycles of lengths l1, ..., lt say. We might represent g as

g = (a1a2...al1)(b1b2...bl2)...(z1z2...zlt).

Let Γ(g) denote a subset of Ω consisting of bli/2c points from the ith cycle, for
each i , chosen in such a way that Γ(g)g ⋂

Γ(g) = ∅ . For example, we could choose

Γ(g) = {a2, a4, . . . , ak1 , b2, b4, . . . , bk2 , ..., z2, z4, . . . , zkt},

where ki = li − 1 if li is odd and ki = li if li is even. Note that Γ(g) is not uniquely
determined as it depends on the way each cycle is written. For any set Γ(g) of this
kind we say that Γ(g) consists of every second point of every cycle of g . From the
definition of Γ(g) we see that

|Γ(g)g\Γ(g)| = |Γ(g)| =
t∑

i=1

bli/2c.

The next lemma shows that this quantity is an upper bound for |Γg\Γ| for an
arbitrary subset Γ of Ω.

Lemma 2.1 [2, Lemma 2.1] Let G be a permutation group on a set Ω and suppose
that Γ ⊆ Ω. Then for each g ∈ G, |Γg\Γ| ≤ Σt

i=1bli/2c where li is the length of
the ith cycle of g and t is the number of nontrivial cycles of g in its disjoint cycle
representation. This upper bound is attained for Γ = Γ(g) defined above.
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Now we have the following lemma which is a classification of all transitive per-
mutation groups G of degree p where p is the least odd prime dividing |G|.

Lemma 2.2 Let G be a transitive permutation group on a set Ω of size p, where p
is the least odd prime dividing |G|. Then G = Zp.Z2a , where a ≥ 0, and 2a|(p− 1).

Proof. Let G be a transitive permutation group on a set Ω of size p. Then G is
isomorphic to a transitive subgroup of Sp and so p is the largest prime divisor of |G|.
Since p is also the least odd prime dividing |G|, we have |G| = p.2a for some a ≥ 0.
By Burnside’s“ pq theorem” ( see [6, Theorem 2.10.17]) G is soluble, and hence by
a theorem of Galois [6,Theorem 3.6.1] G is isomorphic to a subgroup of the group
AGL(1, p) of affine transformations of a finite field consisting of p elements. Thus
G = Zp.Z2a as asserted.

Corollary 2.3 Let G be a permutation group on a set Ω, and suppose that ∆ is
a G-orbit of length p in Ω where p is the least odd prime dividing |G|. Then the
induced permutation group G∆ is Zp.Z2a where 2a|p− 1.

Let d be a positive integer, p a prime, G := Zd
p , t := (pd − 1)/(p − 1), and

let H1, . . . , Ht be all subgroups of index p in G. Define Ωi to be the right coset
space {Hig|g ∈ G} of Hi and Ω := Ω1 ∪ · · · ∪ Ωt. Consider G as a permuta-
tion group on Ω by the right multiplication, that is x ∈ G is identified with the
composite of permutation Hig 7−→ Higx (i = 1, . . . , t) on Ωi for i = 1, . . . , t. If
g ∈ G − {1}, then g lies in (pd−1 − 1)/(p − 1) groups Hi and therefore acts on Ω
as a permutation with p(pd−1 − 1)/(p− 1) fixed points and pd−1 orbits of length p.
Taking every second point from each of these p-cycles to form a set Γ we see that
move(g) = m ≥ pd−1(p− 1)/2 if p is odd or 2d−1 if p = 2, and it is not hard to prove
that in fact move (g) = m = pd−1(p − 1)/2 if p is odd or 2d−1 if p = 2. Since g is
non-trivial, all non-identity elements of G have the same movement m.

Now we will show that there certainly is an infinite family of groups for which
equality in Theorem 1.1 holds, for any prime p ≥ 5 .

Example 2.4 For a positive integer d and a prime p ≥ 5, let G1 := 〈(12 . . . p)〉 ∼= Zp

be a permutation group on Ω1 := {1, 2, . . . , p}. Moreover, suppose that G2 := Zd
2 ,

and H1, . . . , Ht denote the groups defined in the above for the prime number 2 on
Ω2 :=

⋃2d−1
i=1 Ω2i, where Ω2i denotes the set of two cosets of Hi in G2, 1 ≤ i ≤ t =

2d − 1. Then G2 has movement equal to 2d−1 and also (2d − 1) nontrivial orbits
in Ω2. Now we consider the direct product G := G1 × G2 as a permutation on Ω
which is the disjoint union of Ω1 and Ω2, and G1 and G2 act trivially on Ω2 and Ω1,
respectively. Then G has movement m = (p − 1)/2 + 2d−1. The set Ω splits into
2d = 2m− (p− 1)orbits under G, which are Ω1 and 2d − 1 orbits of length 2 in Ω2.
In particular, none of them is trivial. Furthermore,

4m− p = 2(p− 1) + 2d+1 − p = p + 2(2d − 1) = |Ω1|+ |Ω2| = |Ω|.
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3 The maximum degree of bounded movement groups

Suppose that G ≤Sym(Ω) and that G is not a 2-group and move(G) = m, and that
p ≥ 5 is the least odd prime dividing |G|. In this section we find an upper bound
for |Ω| that is a linear function of m.

To prove the main theorems, we introduce the following notation.
rp(a) := number of G-orbits of length p on which G acts as Zp.Z2a with 0 ≤ a ≤ a0

and set rp :=
∑a1

a=0 rp(a);
Φ := union of G-orbits of lengths 2b, where 1 ≤ b ≤ log2 p; and u is the number of
orbits in Φ;
s := number of G-orbits of length > p.

The orbits are labeled accordingly: thus Ω1, ..., Ωrp are those of length p on
which G acts as Zp.Z2a for some a ≥ 0; Ωrp+1, ..., Ωrp+u are those of length 2b where
1 ≤ b ≤ log2 p, which the group induced by G on each orbit in Φ is a 2-group; and
etc. Define t := rp + u + s , t1 := rp + u. So t is the total number of G-orbits.

For 1 ≤ i ≤ rp define Ki to be the kernel of the action of G on Ωi and for
g ∈ G define k(g) to be the number of i in that range for which g is not in Ki.
For g ∈ G and a G-invariant set ∆ we denote by fix∆(g) = {α ∈ ∆|αg = α} and
supp∆(g) = {α ∈ ∆|αg 6= α} the set of fixed points of g in ∆ and the support of g
in ∆ , respectively (so that |fix∆(g)|+ |supp∆(g)| = |∆|), and define odd∆(g) := the
number non-trivial cycles of g in ∆ that have odd length.

Lemma 3.1 With the above notation, let ∆ :=
⋃t

i=t1+1 Ωi be the union of G-orbits
of length > p, and let g ∈ G. Then

p− 1

2
k(g) +

1

2
|suppΦ(g)|+ 1

2
(|supp∆(g)| − odd∆(g)) ≤ m.

Proof. For each i such that 1 ≤ i ≤ t0 and g is not in Ki, since |Ωi| = p then gΩi is
a p-cycle or a 2-element with one fixed point and we may choose a subset Γi of p−1

2

points of Ωi such that Γg
i

⋂
Γi = ∅. Let Γ0 be the set of chosen points from all the

Γi for 1 ≤ i ≤ rp, and so by definition Γg
0

⋂
Γ0 = ∅.

For each of the non-trivial cycles (b1...b2l) and (a1a2...ak) of g in Φ and ∆ respec-
tively, adjoin the points b1, b3, ..., b2l−1 and also a1, a3, ..., ak′ to Γ0, where k′ is odd
and k − 2 ≤ k′ ≤ k − 1.
Let Γ be the resulting set. It has been constructed so that Γg ⋂

Γ = ∅.
Therefore |Γ| ≤ m. Since

|Γ| =
p− 1

2
k(g) +

1

2
|suppΦ(g)|+ 1

2
(|supp∆(g)| − odd∆(g)),

we have the stated inequality.

To prove Theorem 1.1 we first prove the following lemma.
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Lemma 3.2
a0∑

a=0

p− 1

2
.(1− 1

2ap
)rp(a) +

|Φ| − u

2
+

p− 1

2p
(|∆| − s) < m,

.
Proof. Suppose that 1 ≤ i ≤ rp. Then the group induced by G on Ωi is ZpZ2a for
some a ≥ 0, such that 2a|(p− 1), and since |G : Ki| = 2ap, there are

|G| − |Ki| = (2ap− 1)|Ki|

elements g which act nontrivially on Ωi. It follows that

∑
g∈G

p− 1

2
k(g) =

p− 1

2

a0∑
a=0

(
2ap− 1

2ap
|G|)rp(a).

For rp + 1 ≤ i ≤ t1, the group induced by G on Ωi is a 2-group. The union of
these sets Ωi is Φ, and since by Burnside’s Lemma [5, Theorem 3.26] the average
number of fixed points of elements of G in Φ is the number u of G-orbits in Φ, we
have

∑
g∈G

1

2
|suppΦ(g)| =

1

2

∑
g∈G

(|Φ| − |fixΦ(g)|) =
1

2
|Φ||G| − |G|

2
u.

Similarly,

∑
g∈G

1

2
|supp∆(g)| =

1

2
|∆|.|G| − s|G|

2
,

and since odd∆(g) < 1
p
|supp ∆(g)|, we have

∑
g∈G

1

2
(|supp∆(g)| − odd∆(g)) >

p− 1

2p
(|∆|.|G| − s|G|).

Thus adding the inequality of Lemma 3.1 over all g ∈ G, we obtain

m|G| > |G|(
a0∑

a=0

p− 1

2
.(1− 1

2ap
)rp(a) +

|Φ| − u

2
+

p− 1

2p
(|∆| − s))

where the last inequality recognizes the fact the inequality of Lemma 3.1 is strict
for the identity element of G. This completes the proof of Lemma 3.2.

Recall that in general the movement move(g) of an element g of a permutation
group G on a set Ω is defined as

moveΩ(g) := max{|Γg \ Γ||Γ ⊆ Ω}.

Thus the movement m of G is given as m = max{moveΩ(g)|g ∈ G}. Assume that
Ω is the disjoint union of G-invariant sets Ω1 and Ω2. Then every subset Γ of Ω is a
disjoint union of subsets Γi := Γ ∩ Ωi for i = 1, 2. Let gi be the permutation on Ωi

induced by g for i = 1, 2. Since |Γg\Γ| = |Γg1
1 \ Γ1|+ |Γg2

2 \ Γ2|, we have

moveΩ(g) =
2∑

i=1

max{|Γgi
i \ Γi||Γi ⊆ Ωi} = moveΩ1(g1) + moveΩ2(g2).
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Now

n = (Σa0
a=0rp(a))p + |Φ|+ |∆|.

Also we have |Φ| ≥ 2u, and so

|Φ| − u

2
≥ |Φ|

4
.

By above statement and since G is intransitive, thus the inequality in Lemma 3.2
implies that

m− 1 ≥ n

4
+

a0∑
a=0

rp(a)(
p− 1

2
− p− 1

2a+1p
− p

4
) + |∆|(p− 1

2p
− 1

4
)− p− 1

2p
s

=
n

4
+

a0∑
a=0

rp(a)(
p− 2

4
− p− 1

2a+1p
) + |∆|(p− 2

4p
)− p− 1

2p
s.

Since G is not a 2-group, we have either rp(a) > 0 for some a or s > 0. If some
rp(a) > 0, then

m− 1 ≥ n

4
+

p− 2

4
− p− 1

2a+1p
. (∗)

But we note that since p ≥ 5, for each a ≥ 0,

p− 2

4
− p− 1

2a+1p
≥ p− 2

4
− p− 1

2p
> 0.

Hence,

m− 1 ≥ n

4
+

p− 2

4
− p− 1

2p
=

n

4
+

p2 − 4p + 2

4p
.

On the other hand if s > 0, then |∆| ≥ (p + 1)s ≥ p + 1. Thus,

m− 1 ≥ n

4
+ |∆|(p− 2

4p
)− p− 1

2p
s ≥ n

4
+ s(

(p + 1)(p− 2)

4p
− p− 1

2p
) ≥ n

4
+

p2 − 3p

4p
.

So in either case we must have,

m− 1 ≥ n

4
+ min{p2 − 4p + 2

4p
,
p2 − 3p

4p
} =

n

4
+

p2 − 4p + 2

4p
.

Hence,

4m ≥ n + p +
2

p
,

That is, n ≤ 4m− p. Hence the proof of Theorem 1.1 is complete.
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