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Abstract

Given a duality 〈E,F 〉, a dual strong sequence is a sequence of bidual
enlargements of F in the algebraic dual E∗ of E. In this article, we investigate
the bounded sets generated by a dual strong sequence and related associated
topologies.

1 Introduction

In this article, we continue to investigate the dual strong sequences of a non-
barrelled space, introduced in [9]. Our aim is to enhance the understanding of the
associated barrelled topology and its connection to the given nonbarrelled space.

There are plentiful examples of nonbarrelled spaces. The logical equivalence of
(a → b) and (NOT b → NOT a) converts any necessary condition of barrelledness
into a sufficient condition of nonbarrelledness, (for barrelledness conditions see [3],
[6], [8]). Important examples of nonbarrelled spaces C(X) of continuous functions
can be found in ([8], IV.2.3, IV.2.4; see also Theorem IV.6.2). A concise description
of the research of barrelledness in C(X) is given in [7]. New sophisticated examples
of nonbarrelled C(X) are developed in [5]. Nonbarrelled C(X) spaces, related to
the measure theory, are presented in ([3], Ch. 6).

Dual strong sequences of [9] pave the way to the associated barrelled topology
of a nonbarrelled space. The associated barrelled topology emerges as the infimum
of topologies finer than the given one and carrying the barrelledness property, ([1],
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Definition II.4.8, Proposition II.4.11). The associated barrelled topology can also
be approached by a transfinite induction, using the supremum topology for limit
ordinals and the strong topology for ordinals with a predecessor, ([6], 4.4., p. 113).
The construction of ([6], 4.4., p. 113) embodies the completeness principle of Krein-
Smulian-Ptak, ([1], I.2, p. 9, Comment). The idea of the dual strong sequence
pointed towards the associated barrelled space, is based on Krein-Smulian-Ptak
principle as well. However in developing the concept of dual strong sequence, our
target is the process rather than the endpoint of the processs. Dual strong sequences
are tools for discovering the intrinsinc properties and crucial ingredients of topologies
laying on the way to the associated barrelled topology.

In this article, we focus our attention on general nonbarrelled locally convex
spaces, continuing the broad overall approach of [9]. After describing bounded sets
affiliated to the dual strong sequence, (Propositions 5.1, 5.2, 5.3), we identify a
new (to the best of our knowledge) topology on E between the associated barrelled
and ultrabornological, namely the transbarrelled topology, (Definition 6.1). We
investigate the connection between the dual strong sequence and the associated
topologies of E, (Propositions 6.1, 6.2, 6.3, 6.4).

2 Preliminaries

We follow the notations and definitions of [1], [4], [6], [11]. Let (E, η) be a locally
convex topological vector space over the field K of the real or complex numbers and
E ′, respectively E∗, its topological, respectively algebraic, dual. We denote by
β(E, E ′), µ(E, E ′), σ(E, E ′) the strong, Mackey, weak topologies on E, respectively,
and by β∗(E, E ′) the topology on E of uniform convergence on all strongly bounded
subsets of E ′. All topologies are locally convex and Hausdorff. A disk is an absolutely
convex set. Given a disk B, we use EB for the linear hull of B, equipped with its
gauge gB. If B is bounded for some Hausdorff locally convex topology on E, then
EB is a normed space. A bounded disk B is barrelled (Banach), if EB is barrelled (a
Banach space). A disk is (weakly) fast compact, if it is (weakly) compact in EB for
some Banach disk B, ([1], Definition III.1.3). The polars of (weakly) fast compact
disks form a 0-neighbourhood base for (infra-)Schwartz topology, ([1], Definition
III.3.9; see also [4], t. I, p. 119; see also [11], p. 205). A disk B is (finite-)infinite-
dimensional, if EB is (finite-)infinite-dimensional.

3 The concept of a dual strong sequence and union

Let N0 = {0, 1, 2, 3, . . .}. Let k be a positive integer. Denote by n = n1n2 . . . nk

an ordered k-tuple of the cartesian product Nk
0, k ≥ 2. Define inductively an order

relation ≤∗ on Nk
0 in the following way :

1) For k = 1,≤∗ is the usual ≤ relation.

2) For k = 2,m ≤∗ n ⇔ ((m1 < n1)∨ ((m1 = n1)∧ (m2 ≤ n2)), for every n ∈ N2
0,

m ∈ N2
0.
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3) If k ≥ 3, then m ≤∗ n ⇔ ((m1 < n1)∨ ((m1 = n1)∧ (m2 . . . mk ≤∗ n2 . . . nk))),
for every n ∈ Nk

0,m ∈ Nk
0.

Denote by 0 the least element of (Nk
0,≤∗). Denote by n(0) = n1n2 . . . nk an

element of (Nk
0,≤∗) such that there exists a positive integer k′ satisfying :

i) 1 ≤ k′ ≤ k − 1,

ii) nk′ 6= 0,

iii) np = 0 for any p such that k′ + 1 ≤ p ≤ k.

We write n <∗ m, if n ≤∗ m and n 6= m. For n = n1n2 . . . nk ∈ (Nk
0,≤∗), we denote

by n + 1 the least of the elements {m ∈ (Nk
0,≤∗) : n <∗ m}. Speaking informally,

n + 1 is obtained by adding 1 to the last coordinate of n.
We extend Definition 3.2 of [9] by defining recursively a map from (Nk

0,≤∗) into
the set of subspaces of E∗ in the following way.

Definition 3.1. Let 〈E, F 〉 be a dual pair and n ∈ Nk
0 (k ≥ 2). Denote :

1) F0 = F ,

2) Fn+1 = (E, β(E, Fn))′,

3) Fn(0) = ∪{Fm : m <∗ n(0)}.

For any n1 . . . nk−1 ∈ Nk−1
0 , the sequence {Fn : nk ∈ N0} is called a dual strong

sequence of 〈E, F 〉. Any of the subspaces Fn(0) is called a dual strong union. The
chain {Fn : n ∈ Nk

0}, (well) ordered by ≤∗, is called the initial dual strong sequence
for k = 1 and the generalized dual strong sequence for a given k ≥ 2.

Informally we can think of {Fmn : mn ∈ N2
0} introduced in [9] as dots of the

xy-grid, considering n as the x-coordinate. For k = 3, we can visualise Fkmn as dots
(n,m, k) of xyz-lattice.

Observation 3.1. Definition 3.1 implies that m ≤∗ n ⇔ Fm ⊆ Fn.

Observation 3.2. For any fixed n ∈ Nk
0 (k ≥ 2), the tale {Fm : m ∗≥ n} is the

generalized dual strong sequence of 〈E, Fn〉.

Observation 3.3. For any fixed n1 ∈ N0, there is an order-preserving isomor-
phism of {Fn : n ∈ Nk

0, n1 fixed} onto {Fm : m ∈ Nk−1
0 } by n → m such that

np = mp−1, for 2 ≤ p ≤ k.

Observation 3.4. The following statements are equivalent :

i) There exists n ∈ Nk
0 such that (E, µ(E, Fn)) is barrelled.

ii) There exists n ∈ Nk
0 such that Fm = Fn for any m ∗≥ n.

Given a locally convex nonbarrelled space (E, τ), we say that τbar is the associated
barrelled topology for τ if τbar is the weakest barrelled topology, such that τbar ≥ τ ,
([6], 4.4.10; see also [1], Definition II.4.8).
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Proposition 3.1. Let {Fn : n ∈ Nk
0} (k ≥ 2) be the generalized dual strong

sequence of 〈E, F 〉. The following statements are equivalent.

i) τbar is the associated barrelled topology for µ(E, F ).

ii) τbar is the associated barrelled topology for any µ(E, Fn),n ∈ Nk
0.

iii) τbar is the associated barrelled topology for any β(E, Fn),n ∈ Nk
0.

Proof. For k = 1, it is Proposition 6.1 of [9]. For k = 2, it is Proposition 6.3 of [9].
For k > 2, we use Observations 3.2, 3.3 and the arguments of Proposition 6.1 of [9].

4 Systematization of bounded disks

Given two families A,B of bounded disks in E, we consider the usual order
relation : A ≤ B if and only if for any A ∈ A, there exists B ∈ B such that A ⊆ B.
We use A ⊆ B instead of A ≤ B if any member of A belongs to B. We write
A ∼ B if A ≤ B and B ≤ A. We use A = B instead of A ∼ B if A ⊆ B and
B ⊆ A.

We consider the following families of closed bounded disks of (E, η) :

1) B – the family of all closed bounded disks,

2) B∗ – the family of all closed strongly bounded disks,

3) NBAR – the family of all closed barrelled disks,

4) BAN – the family of all closed Banach disks,

5) WC – the family of all σ(E, E ′)-compact disks,

6) CO – the family of all compact disks of (E, η),

7) WFC – the family of all weakly fast compact disks,

8) FC – the family of all fast compact disks,

9) FIN – the family of all finite-dimensional disks.

Notice that :

a) B ⊇ B∗ ⊇ NBAR ⊇ BAN ⊇ WC ⊇ CO ⊇ FC ⊇ FIN,

b) WC ⊇ WFC ⊇ FC.

We say that E is 〈dual〉 locally (quasi-)barrelled, respectively 〈dual〉 locally
(quasi-)complete, if for any (strongly) bounded set A of E 〈of E ′〉, there exists
B ∈ NBAR, respectively B ∈ BAN, in E 〈in E ′〉, such that A ⊆ B. In
other words, E is 〈dual〉 locally (quasi-)barrelled, respectively 〈dual〉 locally (quasi-
)complete, if B ∼ BAN(B∗ ∼ BAN), in E 〈in E ′〉. The space (E, µ(E, E ′)) is
barrelled (quasi-barrelled) if B = WC(B∗ = WC) in E ′.
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5 Bounded sets generated by a dual strong sequence

Keeping in mind Observation 3.3, we continue the discussion on dual strong
sequences for k = 2. Denote by Akn a family of bounded disks in (E, µ(E, Fkn)).

Proposition 5.1. Let {Fkn : kn ∈ N2
0} be the generalized dual strong sequence

of the duality 〈E, F 〉. The following properties hold for the bounded families of type
1, 2 of (E, µ(E, Fkn)), ∀kn ∈ N2

0.

a) B∗
kn ∼ Bk,n+1,

b) B∗
kn ≥ Bk+1,0.

Proof. a) Fk,n+1 is the bidual of Fkn in the duality 〈Fkn, E〉, therefore B∗
kn ⊆ Bk,n+1.

Let B ∈ Bk,n+1. Since (E, β(E, Fkn)) admits a 0-neighbourhood base consisting of
µ(E, Fkn)-closed disks, the closure of B in (E, µ(E, Fkn)) is still β(E, Fkn)-bounded,
hence µ(E, Fk,n+1))-bounded, therefore Bk,n+1 ≤ B∗

kn. Hence B∗
kn ∼ Bk,n+1.

b) Let B ∈ Bk+1,0. Then B is bounded in (E, µ(E, Fkn)) for every n ∈ N0. By
the arguments of a), the µ(E, Fkn)-closure of B belongs to B∗

kn, therefore B∗
kn ≥

Bk+1,0.

Proposition 5.2. Let {Fkn : kn ∈ N2
0} be the generalized dual strong sequence

of 〈E, F 〉. The following statements hold for the bounded families of type 1 − 9 in
(E, µ(E, Fkn)) for any kn, mp ∈ N2

0, satisfying : kn ≤∗ mp.

a) Bkn ≥ Bmp,

b) B∗
kn ≥ B∗

mp,

c) NBARkn ⊆ NBARmp,

d) BANkn ⊆ BANmp,

e) WCkn ⊇ WCmp,

f) COkn ⊇ COmp,

g) WFCkn = WFCmp,

h) FCkn = FCmp,

i) FINkn = FINmp.

Proof. a) {(E, σ(E, Fkn)) : kn ∈ N2
0} is a projective spectrum with continuous

identity maps (E, σ(E, Fmp)) → (E, σ(E, Fkn)) for mp ∗ ≥ kn. Therefore each
bounded disk of (E, µ(E, Fmp)) is bounded in (E, µ(E, Fkn)).

b) By Proposition 5.1, B∗
kn ∼ Bk,n+1 ⊇ B∗

k,n+1 ≥ Bk+1,0 ⊇ B∗
k+1,0 ∼ Bk+1,1 ⊇

B∗
k+1,1. Therefore B∗

kn ≥ B∗
mp for any kn ≤∗ mp.
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c) Let B ∈ NBARkn. Then B is closed in (E, σ(E, Fmp)) for any mp ∗≥ kn.
Since NBARkn ⊆ B∗

kn ∼ Bk,n+1, B is a barrelled disk in (E, σ(E, Fk,n+1)), hence
B ∈ NBARk,n+1, and we conclude that B ∈ NBARkp for any p ≥ n. Since
Fk+1,0 = ∪{Fkn : n ∈ N0}, B is bounded in (E, σ(E, Fk+1,0), hence B ∈ NBARk+1,0.
Therefore NBARkn ⊆ NBARmp for any mp ∗≥ kn.

d) Using the same arguments as in c), we conclude that BANkn ⊆ BANmp.

e) The identity map (E, σ(E, Fmp)) → (E, σ(E, Fkn)) is continuous for kn ≤∗ mp.
Therefore WCkn ⊇ WCmp.

f) By the arguments of e), COkn ⊇ COmp.

g) Observing that any closed Banach disk of (E, σ(E, Fmp)) is still a Banach
disk but is not necessarily closed in (E, σ(E, Fkn)) for kn ≤∗ mp, we conclude that
(E, σ(E, Fkn)) and (E, σ(E, Fmp)) have the same Banach disks. Hence WFCkn =
WFCmp.

h) By the arguments of g), FCkn = FCmp.

i) It is trivial.

Observation 5.1. Using the arguments of Proposition 5.2, we conclude that
the members of the chain {(E, µ(E, Fkn)) : kn ∈ N2

0} have the same Banach (not
necessarily closed) disks. Generally, the family of nonclosed Banach disks in a locally
convex space is wider than the family of the closed Banach disks. A non-trivial
example of a nonclosed Banach disk, based on James Condition for Reflexivity, can
be found in ([6], 3.2.21).

Observation 5.2. The arguments of Proposition 5.2 assure us that the members
of the chain {(E, µ(E, Fkn)) : kn ∈ N2

0} have the same barrelled (not necessarily
closed) disks. Generally, the family of barrelled disks is wider than the family of
Banach disks. Each infinite-dimensional Banach disk has dense barrelled subspaces
with barrelled non-Banach disks, ([11], Ch. 1, 3.2.9). For every infinite-dimensional
Banach disk B, there exists a barrelled disk A such that SpA = SpB and A ⊆ B,
([2], Proposition 3.7).

Proposition 5.3. Let {Fkn : kn ∈ N2
0} be the generalized dual strong se-

quence of 〈E, F 〉. Suppose there exists kn ∈ N2
0 such that (E, µ(E, Fkn)) is locally

quasi-barrelled (resp. locally quasi-complete). Then (E, µ(E, Fmp)) is locally bar-
relled (resp. locally complete) and Bmp ∼ NBARmp ∼ NBARkn (resp. Bmp =
BANmp ∼ BANkn) for any mp ∗> kn.

Proof. Suppose B∗
kn ∼ NBARkn for some kn ∈ N2

0. By Propositions 5.1 and 5.2,
Bk,n+1 ∼ B∗

kn ∼ NBARkn ⊆ NBARmp ⊆ B∗
mp ⊆ Bmp ≤ Bk,n+1 for mp ∗≥

kn. Therefore Bmp ∼ NBARmp ∼ NBARkn, for any mp ∗≥ k, n + 1. Hence
(E, µ(E, Fmp)) is locally barrelled for any mp ∗≥ k, n+1. In a similar way, if B∗

kn =
BANkn for some kn ∈ N2

0, then Bmp = BANmp ∼ BANkn and (E, µ(E, Fmp)) is
locally complete for any mp ∗≥ k, n + 1.
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6 The associated topologies on E

A disk of E is absorbing, bornivorous or ultrabornivorous if it absorbs every
element, every bounded disk or every Banach disk of E, ([1], Definition III.2.1). A
disk of E is a transbarrel if it absorbs every barrelled disk of E. Any bornivorous disk
of E is a transbarrel and any transbarrel is ultrabornivorous. Since any barrelled disk
is strongly bounded, any barrel of E is a transbarrel. The gauge of a transbarrel is a
seminorm, ([4], t. I, p. 21), and finite intersections of transbarrels are transbarrels.

We say that (E, t) is transbarrelled if every transbarrel of (E, t) is a 0-neighbour-
hood in (E, t). Notice that a transbarrelled space is barrelled.

Given a locally convex space (E, τ), we say that τb(τub) is the associated bornolog-
ical (ultrabornological) topology for τ if τb(τub) is the weakest bornological (ultra-
bornological) topology of E such that τb ≥ τ(τub ≥ τ), ([1], Definition III.2.3, see
also [6], 6.2.4). Clearly, τub ≥ sup(τb, τbar). For two locally convex topologies τ, η
on E, we define sup{τ, η} as the weakest locally convex topology on E, finer that τ
and η. Remind that τbar is the associated barrelled topology for (E, µ(E, E ′)).

Proposition 6.1. Let E a locally convex space. Let τtrb be a locally convex
topology on E such that a disk is a 0-neighbourhood in (E, τtrb) if and only if it is a
transbarrel of (E, µ(E, E ′)). The space (E, τtrb) is transbarrelled and sup(τb, τbar) ≤
τtrb ≤ τub.

Proof. Clearly, τtrb is a locally convex Hausdorff topology on E, satisfying : τtrb ≥
β(E, E ′) and τb ≤ τtrb ≤ τub. Since a 0-neighbourhood in (E, τtrb) is a transbarrel of
(E, µ(E, E ′)), any barrelled disk of (E, µ(E, E ′)) is bounded in (E, τtrb), implying
that (E, µ(E, E ′)) and (E, τtrb) have the same barrelled disks. Hence any transbarrel
of (E, τtrb) is also a transbarrel in (E, µ(E, E ′)), therefore a 0-neighbourhood in
(E, τtrb), and we proved that (E, τtrb) is transbarrelled. Since (E, τtrb) is barrelled,
τtrb ≥ τbar. Therefore sup(τb, τbar) ≤ τtrb ≤ τub.

Definition 6.1. Let (E, τ) be a locally convex space. The topology τtrb such
that a disk is a 0-neighbourhood in (E, τtrb) if and only if it is a transbarrel of (E, τ)
is called the associated transbarrelled topology for (E, τ).

Proposition 6.2. Let {Fkn : kn ∈ N2
0} be the generalized dual strong sequence

of 〈E, F 〉 and τbar, (resp. τtrb, τub), the associated barrelled, (resp. transbarrelled,
ultrabornological), topology for µ(E, F ). The following statements are true for each
kn ∈ N2

0.

a) (E, µ(E, Fkn)), (E, τbar), (E, τtrb) have the same barrelled disks.

b) (E, µ(E, Fkn)), (E, τbar), (E, τtrb), (E, τub) have the same Banach disks.

c) (E, µ(E, Fkn)), (E, τbar), (E, τtrb), (E, τub) have the same fast compact and weak-
ly fast compact disks.

d) τtrb, (resp. τub), is the associated transbarrelled, (resp. ultrabornological),
topology for µ(E, Fkn)).



302 B. Tsirulnikov

Proof. a) follows from Observation 5.2 and Proposition 6.1.

b) follows from Observation 5.1, Proposition 6.1 and ([1], Proposition III.2.4).

c) follows from b).

d) follows from a) and b).

Proposition 6.3. Let (E, τ) be a locally convex space, F00 = E ′, {Fkn : kn ∈
N2

0} the generalized dual strong sequence of 〈E, E ′〉 and τb, (resp. τbar, τtrb, τub) the
associated bornological, (resp. barrelled, transbarrelled, ultrabornological), topology
for τ . The following statements are true for each kn ∈ N2

0.

a) If (E, τ) is locally barrelled, then τ ≤ µ(E, Fkn) ≤ τbar ≤ τb = τtrb ≤ τub.

b) If (E, τ) is locally complete, then τ ≤ µ(E, Fkn) ≤ τbar ≤ τb = τtrb = τub.

Proof. a) By ([1], Proposition III.2.4), (E, τb) is the inductive limit of {EB : B ∈ B}.
Therefore (E, τb) is barrelled, hence τb ≥ τbar. Since (E, τ), (E, τb) and (E, τtrb) have
the same bounded subsets, τb is the associated bornological topology for τ, µ(E, Fkn),
τbar and τtrb. Applying Propositions 6.1 and 6.2, we obtain the conclusion.

b) Follows from ([1], Proposition III.2.4) and Proposition 6.2.

For a duality 〈E, F 〉, we denote by (F, fc(F, E)) the Schwartz topology on F of
uniform convergence on the fast compact disks of E.

Proposition 6.4. Let {Fkn : kn ∈ N2
0} be the generalized dual strong sequence

of 〈E, F 〉. Let G be the completion of (F, fc(F, E)). Then Fkn is a dense subspace
of (G, fc(G, E)), for each kn ∈ N2

0.

Proof. By ([1], Proposition III.2.8), G is the dual of (E, τub). Since by Proposition
6.2, τub is the associated ultrabornological topology for µ(E, Fkn), we apply ([1],
Proposition III.2.8).

We conclude this article with a simple illustration of the associated transbarrelled
topology τtrb on a locally convex space, such that τtrb 6= τbar and τtrb 6= τub.

Example 6.1. Take a barrelled, nonbornological, locally complete space X,
such that X admits an infinite-dimensional bounded disk, ([12], Theorem 1, see
also [6], 6.2.16). Let E be a “remarkable hyperplane” in X equipped with the
induced topology, ([10]; see also [6], 6.3.11; for discussion on cardinality issues and
requirements see [3], 2.2). Then E is barrelled, locally barrelled, admits an infinite-
dimensional bounded disk, and any Banach disk of E is finite-dimensional (i.e.
B = B∗ ∼ NBAR and BAN = WC = CO = WFC = FC = FIN in E).
Since E is locally dense in X, E is nonbornological ([6], Proposition 6.2.7). Then
µ(E, E ′) = τbar < τb. By Observation 3.4 and Proposition 6.3 a), τb = τtrb. Therefore
the space (E, τtrb) is the inductive limit of {EB : B ∈ B}, ([1], III.2; see also [6], 6.1;
see also [11], Ch. 1, 3.2). Noticing that the associated ultrabornological topology
τub is the finest locally convex topology on E, we conclude that µ(E, E ′) = τbar <
τb = τtrb < τub.
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