A remark on a functor of rational representations

Ismaïl Bourizk

Abstract

Let k be a field of positive characteristic p. First we describe some specific subfunctors of the Burnside functor $k \otimes_{\mathbb{Z}} B$. We prove next that the restriction of the functor of rational representations $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$ to abelian finite p-groups, has a unique maximal filtration

$$k \otimes_{\mathbb{Z}} R_{\mathbb{Q}} = \overline{I_1} \supseteq \overline{I_2} \supseteq \overline{I_3} \supseteq \cdots$$

1 Introduction

The theory of Mackey functors for a finite group G over a ring k looks like an extension of the notion of kG-modules. So the usual notions of induction, restriction, inflation and deflation for modules, have their analogues for Mackey functors. This leads to the formalism of bisets, which gives a single natural framework involving restriction, inflation, induction and deflation. The classical properties of those constructions, such as the Mackey formula, become a single simple composition formula.

There are two kinds of Mackey functors, one kind defined only on the subgroups of a fixed group G, called by P. Webb ordinary Mackey functors (see [6]). The second kind defined on all finite groups, called globally-defined Mackey functors, or sometimes a subclass of finite groups. For example it could consist of all finite groups (see [1]), or just the identity group, or all nilpotent groups (see [2]) ore one of many other possibilities. In this work we consider the class of all abelian finite p-groups, over it some specific subfunctors of the Burnside functor will be described.

Bull. Belg. Math. Soc. 13 (2006), 149-157

Received by the editors December 2003.

Communicated by M. Van den Bergh.

¹⁹⁹¹ Mathematics Subject Classification : 20C15, 19A22.

Key words and phrases : rational representation, finite group, biset.

The consequence of this description is the following :

Theorem : The restriction of the functor of rational representations $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$ to abelian finite p-groups, has a unique maximal filtration

$$k \otimes_{\mathbb{Z}} R_{\mathbb{Q}} = \overline{I_1} \supseteq \overline{I_2} \supseteq \overline{I_3} \supseteq \cdots$$

2 Specific subfunctors of $k \otimes_{\mathbb{Z}} B$

Let Q and P be groups. An P-set-Q is a set X with a left P-action and a right Q-action, which commute, i.e. if $g \in Q$, $h \in P$ and $x \in X$

$$h \cdot (x \cdot g) = (h \cdot x) \cdot g.$$

If X is an P-set-Q, and if Q and P are clear from context, we will also say that X is a biset.

As in [1], let k be a field of positive characteristic p, and C_k be the category whose objects are abelian finite p-groups, and morphisms are k-virtual bisets, i.e. linear combinations of bisets with coefficients in k.

If G and H are two objects of C_k , then $\operatorname{Hom}_{C_k}(H, G)$ is the tensor product by k of the Grothendieck group of the category of G-sets-H, the product of two morphisms is defined by k-linearity in the following way :

If L is a subgroup of $G \times H$ we denote by $(G \times H)/L$, the biset formed by the classes (g,h)L for $(g,h) \in G \times H$, considered as G-set-H for the action

$$x \cdot (g,h)L \cdot y = (xg, y^{-1}h)L.$$

Let G' be another object of \mathcal{C}_k , E be a G-set-H and F be a H-set-G', we denote by $E \times_H F$ the set of orbits of H by its action over the product $E \times F$ given by $h \cdot (x, y) = (xh^{-1}, hy)$. It is a G-set-G': if $g \in G$ and $g' \in G'$, then by definition

$$g \cdot \overline{(x,y)} \cdot g' = \overline{(gx,yg')},$$

where (x, y) is the image of (x, y) in $E \times_H F$.

Let *H* be a subgroup of *G*, the operation associated to the set U = G, viewed as a *G*-set-*H*, is called induction, and denoted by Ind_{H}^{G} :

$$\operatorname{Ind}_{H}^{G} = (G \times H) / \{ (g, g) \mid g \in H \}.$$

Similarly, if G/N is a factor group of G, then the set U = G/N, viewed as a G-set-G/N, corresponds to inflation

$$\operatorname{Inf}_{G/N}^G = (G \times (G/N)) / \{(g, gN) \mid g \in G\}.$$

When U is viewed as G/N-set-G, the associated operation is called deflation, and denoted by $\operatorname{Def}_{G/N}^G$:

$$\operatorname{Def}_{G/N}^G = \left((G/N) \times G \right) / \left\{ (gN, g) \mid g \in G \right\}.$$

Let φ be an isomorphism between an object G of \mathcal{C}_k and another object G' of \mathcal{C}_k , the obvious associated operation of change of group is denoted by $\operatorname{Iso}_{G'}^G$, and corresponds to the set U = G', viewed as a G'-set-G:

$$\operatorname{Iso}_{G'}^{G} = (G' \times G) / \bigtriangleup_{\varphi} (G), \text{ with } \bigtriangleup_{\varphi} (G) = \{ (\varphi(g), g) \mid g \in G \}.$$

Let G and G' be two objects of C_k and L be a subgroup of $G \times G'$, we denote by $p_1(L)$ (resp. $p_2(L)$) the projection on L to G (resp. to G'). Let $k_1(L)$ and $k_2(L)$ denote

$$k_1(L) = \{g \in G \mid (g, 1) \in L\}$$
 and $k_2(L) = \{h \in G' \mid (1, h) \in L\}.$

For every element y of $p_2(L)$, there exists x_y element of G such that $(x_y, y) \in L$. We associate to $yk_2(L)$ the element $x_yk_1(L)$, so we obtain a canonical isomorphism between $p_2(L)/k_2(L)$ and $p_1(L)/k_1(L)$.

If G'' is another object of \mathcal{C}_k , and M is a subgroup of $G' \times G''$, let L * M denote

$$L * M = \{ (g, g'') \in G \times G'' \mid \exists g' \in G', \ (g, g') \in L, \ (g', g'') \in M \}.$$

It is a subgroup of $G \times G''$.

Thus, we obtain the Mackey formula relating to bisets : (cf.[1], 3.2)

$$(G \times G'/L) \times_{G'} (G' \times G''/M) = \sum_{g \in p_2(L) \setminus G'/p_1(M)} (G \times G'')/(L *^{(g,1)}M)$$

In the abelian case, this formula becomes

$$(G \times G'/L) \times_{G'} (G' \times G''/M) = |G'/(p_2(L) \cdot p_1(M))| \cdot (G \times G'')/(L * M).$$

We denote by \mathcal{F}_k the abelian category whose objects are the k-linear functors from \mathcal{C}_k to the category of k-modules. Let k be a field of positive characteristic p, the standard operations on Grothendieck rings make $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$, after tensoring with k, into a functor in the category \mathcal{F}_k . Another example of object of \mathcal{F}_k is $k \otimes_{\mathbb{Z}} B$, where B is Mackey functor which assigns to an abelian p-group G its Burnside ring B(G). For more details we refer to [1]. The type of functors considered in the whole paper are objects of \mathcal{F}_k .

Let C_{p^n} be a cyclic group of order p^n . We consider the subfunctor I_n of $k \otimes_{\mathbb{Z}} B$ defined, for an object P of \mathcal{C}_k by :

$$I_n(P) = \operatorname{Hom}_{\mathcal{C}_k}(C_{p^n}, P) \times_{C_{p^n}} \xi_n,$$

where $\xi_n = C_{p^n}/1 - C_{p^n}/C$, with C is the unique subgroup of order p of C_{p^n} . Lemma 1 : For $n \ge 2$, we have $I_{n+1} \subseteq I_n$.

Proof. We have

$$\xi_{n+1} = \operatorname{Ind}_{C_{p^n}}^{C_{p^{n+1}}} \xi_n \in I_n(C_{p^{n+1}}).$$

If P is an object of \mathcal{C}_k , then

 $\operatorname{Hom}_{\mathcal{C}_k}(C_{p^{n+1}}, P) \times_{C_{p^{n+1}}} \xi_{n+1} \subseteq \operatorname{Hom}_{\mathcal{C}_k}(C_{p^{n+1}}, P) \times_{C_{p^{n+1}}} \operatorname{Hom}_{\mathcal{C}_k}(C_{p^n}, C_{p^{n+1}}) \times_{C_{p^n}} \xi_n,$ and

$$\operatorname{Hom}_{\mathcal{C}_k}(C_{p^{n+1}}, P) \times_{C_{n^{n+1}}} \operatorname{Hom}_{\mathcal{C}_k}(C_{p^n}, C_{p^{n+1}}) \subseteq \operatorname{Hom}_{\mathcal{C}_k}(C_{p^n}, P).$$

Thus $I_{n+1} \subseteq I_n$.

Lemma 2. For $n \geq 2$, we have $\operatorname{End}_{\mathcal{C}_k}(C_{p^n}) \times_{C_{p^n}} \xi_n$ is a trivial $\operatorname{End}_{\mathcal{C}_k}(C_{p^n})$ module one-dimensional. Moreover, if K is an abelian p-group such that $|K| \leq p^n$ and $K \not\simeq C_{p^n}$, and if L is a subgroup of $K \times C_{p^n}$, then $(K \times C_{p^n} / L) \times_{C_{p^n}} \xi_n$ is zero.

Proof. Let K be an abelian p-group such that $|K| \leq p^n$, and L be a subgroup of $K \times C_{p^n}$, we will prove that

$$(K \times C_{p^n}/L) \times_{C_{p^n}} \xi_n \subseteq k\xi_n.$$

The use of the Mackey formula for the $(K \times C_{p^n})$ -biset $K \times C_{p^n}/L$ and the $(C_{p^n} \times 1)$ -biset ξ_n , implies that the result is a $(K \times 1)$ -biset, that is simply a K-set :

$$(K \times C_{p^n}/L) \times_{C_{p^n}} \xi_n = |C_{p^n}/p_2(L)| \cdot K/k_1(L) - |C_{p^n}/(p_2(L) \cdot C)| \cdot K/p_1(L \cap (K \times C)).$$

If $p_2(L) \neq C_{p^n}$, then

$$(K \times C_{p^n}/L) \times_{C_{p^n}} \xi_n = 0,$$

since $|p_2(L)| < p^n$ and $|p_2(L) \cdot C| < p^n$.

Hence we can suppose that $p_2(L) = C_{p^n}$, so

$$(K \times C_{p^n}/L) \times_{C_{p^n}} \xi_n = K/k_1(L) - K/p_1(L \cap (K \times C)).$$

There are two cases to consider.

Case 1. If $k_2(L) = 1$, then $p_1(L)/k_1(L) \simeq C_{p^n}$, thus $K \simeq C_{p^n}$ if $|K| \le p^n$. We have $k_1(L) = 1$, so $k_1(L \cap (C_{p^n} \times C)) = 1$, and as

$$p_2(L \cap (C_{p^n} \times C)) \Big/ k_2(L \cap (C_{p^n} \times C)) \cong p_1(L \cap (C_{p^n} \times C)) \Big/ k_1(L \cap (C_{p^n} \times C)),$$

it follows that $|p_1(L \cap (C_{p^n} \times C))| \leq p$. In other words

$$(K \times C_{p^n}/L) \times_{C_{p^n}} \xi_n = C_{p^n}/1 - C_{p^n}/p_1(L \cap (C_{p^n} \times C)),$$

with $|p_1(L \cap (C_{p^n} \times C))| \leq p$.

Case 2. If $k_2(L) \neq 1$, then $C \subseteq k_2(L)$; let c be a generator of the subgroup C. If $(x,c) \in L$ then $(x,1) \in L$, because $(x,c) = (x,1) \cdot (1,c)$, so we obtain $k_1(L) = p_1(L \cap (K \times C))$. Hence

$$(K \times C_{p^n}/L) \times_{C_{p^n}} \xi_n = 0.$$

Thus we have the following easy consequences :

$$\operatorname{End}_{\mathcal{C}_k}(C_{p^n}) \times_{C_{p^n}} \xi_n = k\xi_n,$$

and if K is an abelian p-group such that $|K| < p^n$, then

$$(K \times C_{p^n}/L) \times_{C_{p^n}} \xi_n = 0,$$

since $k_2(L) \neq 1$ if $p_2(L) = C_{p^n}$, and we can be reduced to the second case.

Proposition 1 : Let J_n and J_1 be subfunctors of $k \otimes_{\mathbb{Z}} B$ defined, for an object P of \mathcal{C}_k by :

$$J_n(P) = \{ u \in I_n(P) \mid \forall \varphi \in \operatorname{Hom}_{\mathcal{C}_k}(P, C_{p^n}) : \varphi \times_P u = 0 \},\$$

and

$$J_1(P) = \{ u \in k \otimes_{\mathbb{Z}} B(P) \mid \forall \varphi \in \operatorname{Hom}_{\mathcal{C}_k}(P, 1) : \varphi \times_P u = 0 \},\$$

i.e.

$$J_1(P) = \{ X \in k \otimes_{\mathbb{Z}} B(P) \mid \forall U \text{ subgroup of } P, \ |U \setminus X| = 0 \}.$$

Then J_n is the unique maximal subfunctor of I_n , and J_1 is the unique maximal subfunctor of $k \otimes_{\mathbb{Z}} B$.

Proof. First we prove that J_n is a subfunctor of I_n : Let P and P' be two objects of \mathcal{C}_k , let $\psi \in \operatorname{Hom}_{\mathcal{C}_k}(P', P)$, we prove

$$\psi \times_{P'} J_n(P') \subset J_n(P)$$
.

Indeed we have

$$\forall u \in J_n(P'), \forall \psi' \in \operatorname{Hom}_{\mathcal{C}_k}(P, C_{p^n}), \ \psi' \times_P (\psi \times_{P'} u) = (\psi' \times_P \psi) \times_{P'} u$$

However by the definition of $J_n(P')$:

$$\operatorname{Hom}_{\mathcal{C}_k}(P', C_{p^n}) \times_{P'} u = 0,$$

and $(\psi' \times_P \psi) \in \operatorname{Hom}_{\mathcal{C}_k}(P', \mathbb{C}_{p^n})$, then $(\psi' \times_P \psi) \times_{P'} u = 0$, so $\psi' \times_P (\psi \times_{P'} u) = 0$, and J_n is a subfunctor of I_n . Moreover $J_n \neq I_n$, because for example $J_n(\mathbb{C}_{p^n}) = \{0\}$ while $I_n(\mathbb{C}_{p^n}) = \operatorname{End}_{\mathcal{C}_k}(\mathbb{C}_{p^n}) \times_{\mathbb{C}_{p^n}} \xi_n$ which is one-dimensional (see Lemma 2).

Now we prove that J_n is the unique maximal subfunctor of I_n . Let L be a subfunctor of I_n , in particular we have

$$L(C_{p^n}) \subset I_n(C_{p^n}) = \operatorname{End}_{\mathcal{C}_k}(C_{p^n}) \times_{C_{p^n}} \xi_n.$$

As $\operatorname{End}_{\mathcal{C}_k}(C_{p^n}) \times_{C_{p^n}} \xi_n$ is one-dimensional, there are two cases : Case 1 : if $L(C_{p^n}) = 0$, then for an abelian finite *p*-group *P* we have

$$\forall u \in L(P), \forall \varphi \in \operatorname{Hom}_{\mathcal{C}_k}(P, C_{p^n}) : (\varphi \times_P u) \in L(C_{p^n}),$$

thus $L \subset J_n$. Case 2 : if $L(C_{p^n}) = \operatorname{End}_{\mathcal{C}_k}(C_{p^n}) \times_{C_{p^n}} \xi_n$, then for an abelian finite *p*-group *P* we have

$$I_n(P) = \operatorname{Hom}_{\mathcal{C}_k}(C_{p^n}, P) \times_{C_{p^n}} \xi_n$$

=
$$\operatorname{Hom}_{\mathcal{C}_k}(C_{p^n}, P) \times_{C_{p^n}} L(C_{p^n}).$$

Since L is a functor, we have

$$\operatorname{Hom}_{\mathcal{C}_k}(C_{p^n}, P) \times_{C_{p^n}} L(C_{p^n}) \subset L(P),$$

then $L(P) = I_n(P)$. It follows that $L = I_n$.

Similarly, we prove that J_1 is the unique maximal subfunctor of $k \otimes_{\mathbb{Z}} B$.

Proposition 2 : Let P be an object of C_k , for $n \ge 2$ we have

$$I_n(P) \supseteq J_n(P) \oplus \langle P/R - P/Z, \text{ where } Z \supset R \text{ are subgroups of } P \text{ with}$$

 $P/R \simeq C_{p^n} \text{ and } |Z/R| = p > ,$

and

Proof. First we have

$$I_n(P) \supseteq \langle P/R - P/Z, \text{ where } Z \supset R \text{ are subgroups of } P \text{ with}$$

 $P/R \simeq C_{p^n} \text{ and } |Z/R| = p > ,$

because for any subgroup R such that $P/R \simeq C_{p^n}$ and |Z/R| = p, we have

$$P/R - P/Z = \operatorname{Inf}_{P/R}^{P} \operatorname{Iso}_{P/R}^{C_{p^{n}}} \xi_{n} \in \operatorname{Hom}_{\mathcal{C}_{k}}(C_{p^{n}}, P) \times_{C_{p^{n}}} \xi_{n}.$$

On the other hand

$$J_n(P) \cap \langle P/R - P/Z, \text{ where } Z \supset R \text{ are subgroups of } P \text{ with}$$

 $P/R \simeq C_{p^n} \text{ and } |Z/R| = p > = \{0\}.$

Indeed, let x be the following element

$$x = \sum_{\substack{R \\ P/R \simeq C_{p^n}}} \lambda_R(P/R - P/Z) \in J_n(P) \,.$$

Fixing a subgroup R of P such that $P/R \simeq C_{p^n}$, we now prove $\lambda_R = 0$: Applying the functor $\operatorname{Def}_{P/R}^P$ to x, we obtain $\operatorname{Def}_{P/R}^P(x) \in J_n(P/R)$. By Proposition 1, we have $J_n(P/R) = \{0\}$. In other words

$$0 = \lambda_R \Big[(P/R)/(R/R) - (P/R)/(Z \cdot R/R) \Big] + \sum_{\substack{P/R' \simeq C_{p^n} \\ |Z'/R'| = p \\ R' \neq R}} \lambda_{R'} \Big[(P/R)/(R' \cdot R/R) - (P/R)/(Z' \cdot R/R) \Big].$$

In this equality (P/R)/(R/R) is unique, so $\lambda_R = 0$. Since R is arbitrary, we obtain x = 0, it follows that

$$J_n(P) \cap \langle P/R - P/Z, \text{ where } Z \supset R \text{ are subgroups of } P \text{ with}$$

 $P/R \simeq C_{p^n} \text{ and } |Z/R| = p > = \{0\}.$

Similarly, we have

$$J_1(P) \cap \langle P/P, P/M - P/P \text{ with } M \text{ a maximal subgroup of } P \rangle = \{0\}.$$

Let x be the following element

$$\left(x = \lambda_P P / P + \sum_{\substack{M \\ |P/M| = p}} \lambda_M P / M\right) \in J_1(P),$$

so, by the Mackey formula, for any subgroup K of P we have

$$\lambda_P |K \backslash P/P| + \sum_{\substack{M \\ |P/M| = p}} \lambda_M |K \backslash P/M| = 0 \qquad (\clubsuit).$$

In particular for K = 1, the equality (\clubsuit) becomes $\lambda_P | 1 \setminus P/P | = 0$, so $\lambda_P = 0$. Hence

$$x = \sum_{\substack{M \\ |P/M| = p}} \lambda_M \cdot P/M \in J_1(P) \,.$$

For the subgroup K = P, the equality (\clubsuit) becomes

$$\sum_{\substack{M\\|P/M|=p}} \lambda_M = 0 \qquad (\clubsuit_1) \,.$$

We fix a subgroup M_0 of P such that $|P/M_0| = p$, and we apply (\clubsuit) to the subgroup $K = M_0$, we obtain

$$\sum_{\substack{M \neq M_0 \\ |P/M| = p}} \lambda_M = 0 \qquad (\clubsuit_2) \,.$$

From $(\spadesuit_1 - \spadesuit_2)$, we deduce that $\lambda_{M_0} = 0$. Since M_0 is arbitrary, we obtain x = 0. Hence in $k \otimes_{\mathbb{Z}} B(P)$ we have

 $J_1(P) \cap \langle P/P, P/M - P/P \text{ with } M \text{ a maximal subgroup of } P \rangle = \{0\}.$

3 A unique maximal filtration of $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$

An important result of Ritter [3] and Segal [4] states that if P is a p-group, then the natural morphism s from the Burnside ring B(P) of P to the Grothendieck ring $R_{\mathbb{Q}}(P)$ of rational representations of P, mapping a finite P-set X to the permutation module $\mathbb{Q}X$, is surjective. We shall denote s(X) by \overline{X} .

Remark 1 : Let P be a finite p-group, $\dim_k(k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P))$ is equal to the number of conjugacy classes of cyclic subgroups of P (see [5], Chapitre 13, Théorème 29, Corollaire 1). Thus, if P is a cyclic group of order p^n , then $k \otimes_{\mathbb{Z}} B(P)$ and $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P)$ are isomorphic. In particular, we have $\overline{\xi_n}$ is non-zero.

Theorem 1 : The restriction of the functor of rational representations $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$ to abelian finite p-groups, has a unique maximal filtration

 $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}} = \overline{I_1} \supseteq \overline{I_2} \supseteq \overline{I_3} \supseteq \cdots$

Proof. By Lemma 1, for any integer n we have $I_{n+1} \subseteq I_n$. Let P be an object of \mathcal{C}_k and C_{p^n} be a cyclic group of order p^n , we will prove that $\overline{J_n}(P) = \overline{I_{n+1}}(P)$:

Indeed $\overline{J_n} \neq \overline{I_n}$, because for example $\overline{J_n}(C_{p^n}) = \{\overline{0}\}$ while $\overline{I_n}(C_{p^n}) = \overline{\xi_n}$ is non-zero (see Remark 1). Therefore

$$I_n(P)/J_n(P) \simeq \overline{I_n}(P)/\overline{J_n}(P)$$
.

By Proposition 2, in $k \otimes_{\mathbb{Z}} B(P)$ we have

$$I_n(P) \supseteq J_n(P) \oplus \langle P/R - P/Z \text{ where } Z \supset R \text{ are subgroups of } P \text{ with}$$

 $P/R \simeq C_{p^n} \text{ and } |Z/R| = p > ,$

then in $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P)$ we have

$$\overline{I_n}(P) \supseteq \overline{J_n}(P) \oplus \langle \overline{P/R} - \overline{P/Z} \text{ where } Z \supset R \text{ are subgroups of } P \text{ with}$$

 $P/R \simeq C_{p^n} \text{ and } |Z/R| = p > .$

Similarly, we find

 $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P) \supseteq \overline{J_1}(P) \oplus \langle \overline{P/P}, \overline{P/M} - \overline{P/P} \text{ with } M \text{ a maximal subgroup of } P \rangle$.

Thus, the following set

$$\mathcal{L} = \{\overline{P/P}, \overline{P/M} - \overline{P/P} \text{ where } M \text{ is a maximal subgroup of } P, \overline{P/R} - \overline{P/Z} \}$$

where $Z \supset R$ are subgroups of P with P/R is non-trivial cyclic and |Z/R| = p

is linearly independent in the space $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P)$. As P is abelian, by duality $|\mathcal{L}|$ is the number of (conjugacy classes of) cyclic subgroups of P, which is exactly $\dim_k(k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P))$. Hence \mathcal{L} is a basis of $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P)$, and $\overline{J_n}(P) = \overline{I_{n+1}}(P)$ for $n \geq 1$.

We now show that, in the abelian case, the functors $(\overline{I_n})_{n\geq 2}$ are the unique nonzero proper subfunctors of $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$:

Let \overline{F} be a proper subfunctor of $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$. The restriction of the functor of rational representations $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$ to abelian finite *p*-groups, has a unique maximal subfunctor $\overline{J_1}$ (see Proposition 1), then $\overline{F} \subseteq \overline{J_1}$. Moreover $\overline{J_1} = \overline{I_2}$, so $\overline{F} \subseteq \overline{I_2}$.

Each functor $\overline{I_n}$ admits a unique maximal (proper) subfunctor $\overline{J_n}$ (see Proposition 1), let n_0 be the maximal integer such that $\overline{F} \subseteq \overline{I_{n_0}}$. Since $\overline{I_{n_0}}$ admits a unique maximal subfunctor $\overline{J_{n_0}}$, and since $\overline{I_{n_0+1}} = \overline{J_{n_0}}$, it follows that

$$\overline{F} = \overline{I_{n_0}} \text{ or } \overline{F} \subseteq \overline{I_{n_0+1}}.$$

By the hypothesis about the integer n_0 , we must have $\overline{F} = \overline{I_{n_0}}$. Hence, in the abelian case, the functors $(\overline{I_n})_{n\geq 2}$ are the unique non-zero proper subfunctors of $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$.

To complete the proof of this theorem, let us now show that

$$\overline{I} = \bigcap_{n \ge 2} \overline{I_n} = \{0\}$$

Assume that the proper subfunctor \overline{I} is non-zero, then by the previous result \overline{I} must be equal to $\overline{I_{n_0}}$, for a suitable integer n_0 . In particular, we would have $\overline{I_{n_0}}(C_{p^{n_0}}) \subseteq \overline{I_{n_0+1}}(C_{p^{n_0}})$. By Remark 1 $\overline{I_{n_0}}(C_{p^{n_0}})$ is non-zero, while by Lemma 2

$$I_{n_0+1}(C_{p^{n_0}}) = \operatorname{Hom}_{\mathcal{C}_k}(C_{p^{n_0+1}}, C_{p^{n_0}}) \times_{C_{p^{n_0+1}}} \xi_{n_0+1}$$

= {0},

and consequently $\overline{I_{n_0+1}}(C_{p^{n_0}}) = \{0\}$. This contradiction shows that

$$\overline{I} = \bigcap_{n \ge 2} \overline{I_n} = \{0\}.$$

References

- S. Bouc, Foncteurs d'ensembles munis d'une double action. Journal of Algebra 183, 664–736, 1996.
- [2] I. Bourizk, *Restricting globally defined Mackey functors to nilpotent finite groups*. Preprint.
- [3] J. Ritter, Ein Induktionssatz f
 ür rationale Charaktere von nilpotenten Gruppen. J. Reine Angew. Math. 254, 133–151, 1972.
- [4] G. Segal, Permutation representations of finite p-groups. Quart. J. Math. Oxford 23, 375–381, 1972.
- [5] J.-P. Serre, *Représentations linéaires des groupes finis*. Méthodes. Hermann, seconde édition, 1971.
- [6] P. Webb, Weight Theory in the Context of Arbitrary Finite Groups. Fields Institute Communications 40, 277–289, 2004.

Mandil, Parc du Peterbos, 18A/611 1070 Bruxelles, Belgique e-mail: bourizk@ccr.jussieu.fr