A remark on a functor of rational representations

Ismaïl Bourizk

Abstract

Let k be a field of positive characteristic p. First we describe some specific subfunctors of the Burnside functor $k \otimes_{\mathbb{Z}} B$. We prove next that the restriction of the functor of rational representations $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$ to abelian finite p-groups, has a unique maximal filtration

$$
k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}=\overline{I_{1}} \supseteq \overline{I_{2}} \supseteq \overline{I_{3}} \supseteq \cdots
$$

1 Introduction

The theory of Mackey functors for a finite group G over a ring k looks like an extension of the notion of $k G$-modules. So the usual notions of induction, restriction, inflation and deflation for modules, have their analogues for Mackey functors. This leads to the formalism of bisets, which gives a single natural framework involving restriction, inflation, induction and deflation. The classical properties of those constructions, such as the Mackey formula, become a single simple composition formula.

There are two kinds of Mackey functors, one kind defined only on the subgroups of a fixed group G, called by P. Webb ordinary Mackey functors (see [6]). The second kind defined on all finite groups, called globally-defined Mackey functors, or sometimes a subclass of finite groups. For example it could consist of all finite groups (see [1]), or just the identity group, or all nilpotent groups (see [2]) ore one of many other possibilities. In this work we consider the class of all abelian finite p-groups, over it some specific subfunctors of the Burnside functor will be described.

[^0]The consequence of this description is the following :
Theorem : The restriction of the functor of rational representations $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$ to abelian finite p-groups, has a unique maximal filtration

$$
k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}=\overline{I_{1}} \supseteq \overline{I_{2}} \supseteq \overline{I_{3}} \supseteq \cdots
$$

2 Specific subfunctors of $k \otimes_{\mathbb{Z}} B$

Let Q and P be groups. An P-set- Q is a set X with a left P-action and a right Q-action, which commute, i.e. if $g \in Q, h \in P$ and $x \in X$

$$
h \cdot(x \cdot g)=(h \cdot x) \cdot g
$$

If X is an P-set- Q, and if Q and P are clear from context, we will also say that X is a biset.

As in [1], let k be a field of positive characteristic p, and \mathcal{C}_{k} be the category whose objects are abelian finite p-groups, and morphisms are k-virtual bisets, i.e. linear combinations of bisets with coefficients in k.

If G and H are two objects of \mathcal{C}_{k}, then $\operatorname{Hom}_{\mathcal{C}_{k}}(H, G)$ is the tensor product by k of the Grothendieck group of the category of G-sets- H, the product of two morphisms is defined by k-linearity in the following way :
If L is a subgroup of $G \times H$ we denote by $(G \times H) / L$, the biset formed by the classes $(g, h) L$ for $(g, h) \in G \times H$, considered as G-set- H for the action

$$
x \cdot(g, h) L \cdot y=\left(x g, y^{-1} h\right) L
$$

Let G^{\prime} be another object of \mathcal{C}_{k}, E be a G-set- H and F be a H-set- G^{\prime}, we denote by $E \times_{H} F$ the set of orbits of H by its action over the product $E \times F$ given by $h \cdot(x, y)=\left(x h^{-1}, h y\right)$. It is a G-set- $G^{\prime}:$ if $g \in G$ and $g^{\prime} \in G^{\prime}$, then by definition

$$
g \cdot \overline{(x, y)} \cdot g^{\prime}=\overline{\left(g x, y g^{\prime}\right)},
$$

where $\overline{(x, y)}$ is the image of (x, y) in $E \times_{H} F$.
Let H be a subgroup of G, the operation associated to the set $U=G$, viewed as a G-set- H, is called induction, and denoted by $\operatorname{Ind}_{H}^{G}$:

$$
\operatorname{Ind}_{H}^{G}=(G \times H) /\{(g, g) \mid g \in H\}
$$

Similarly, if G / N is a factor group of G, then the set $U=G / N$, viewed as a G-setG / N, corresponds to inflation

$$
\operatorname{Inf}_{G / N}^{G}=(G \times(G / N)) /\{(g, g N) \mid g \in G\}
$$

When U is viewed as G / N-set- G, the associated operation is called deflation, and denoted by $\operatorname{Def}_{G / N}^{G}$:

$$
\operatorname{Def}_{G / N}^{G}=((G / N) \times G) /\{(g N, g) \mid g \in G\}
$$

Let φ be an isomorphism between an object G of \mathcal{C}_{k} and another object G^{\prime} of \mathcal{C}_{k}, the obvious associated operation of change of group is denoted by $\mathrm{Iso}_{G^{\prime}}^{G}$, and corresponds to the set $U=G^{\prime}$, viewed as a G^{\prime}-set- G :

$$
\operatorname{Iso}_{G^{\prime}}^{G}=\left(G^{\prime} \times G\right) / \triangle_{\varphi}(G), \text { with } \triangle_{\varphi}(G)=\{(\varphi(g), g) \mid g \in G\}
$$

Let G and G^{\prime} be two objects of \mathcal{C}_{k} and L be a subgroup of $G \times G^{\prime}$, we denote by $p_{1}(L)$ (resp. $\left.p_{2}(L)\right)$ the projection on L to G (resp. to G^{\prime}).
Let $k_{1}(L)$ and $k_{2}(L)$ denote

$$
k_{1}(L)=\{g \in G \mid(g, 1) \in L\} \text { and } k_{2}(L)=\left\{h \in G^{\prime} \mid(1, h) \in L\right\} .
$$

For every element y of $p_{2}(L)$, there exists x_{y} element of G such that $\left(x_{y}, y\right) \in L$. We associate to $y k_{2}(L)$ the element $x_{y} k_{1}(L)$, so we obtain a canonical isomorphism between $p_{2}(L) / k_{2}(L)$ and $p_{1}(L) / k_{1}(L)$.
If $G^{\prime \prime}$ is another object of \mathcal{C}_{k}, and M is a subgroup of $G^{\prime} \times G^{\prime \prime}$, let $L * M$ denote

$$
L * M=\left\{\left(g, g^{\prime \prime}\right) \in G \times G^{\prime \prime} \mid \exists g^{\prime} \in G^{\prime},\left(g, g^{\prime}\right) \in L,\left(g^{\prime}, g^{\prime \prime}\right) \in M\right\}
$$

It is a subgroup of $G \times G^{\prime \prime}$.
Thus, we obtain the Mackey formula relating to bisets: (cf.[1], 3.2)

$$
\left(G \times G^{\prime} / L\right) \times_{G^{\prime}}\left(G^{\prime} \times G^{\prime \prime} / M\right)=\sum_{g \in p_{2}(L) \backslash G^{\prime} / p_{1}(M)}\left(G \times G^{\prime \prime}\right) /\left(L *^{(g, 1)} M\right) .
$$

In the abelian case, this formula becomes

$$
\left(G \times G^{\prime} / L\right) \times_{G^{\prime}}\left(G^{\prime} \times G^{\prime \prime} / M\right)=\left|G^{\prime} /\left(p_{2}(L) \cdot p_{1}(M)\right)\right| \cdot\left(G \times G^{\prime \prime}\right) /(L * M) .
$$

We denote by \mathcal{F}_{k} the abelian category whose objects are the k-linear functors from \mathcal{C}_{k} to the category of k-modules. Let k be a field of positive characteristic p, the standard operations on Grothendieck rings make $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$, after tensoring with k, into a functor in the category \mathcal{F}_{k}. Another example of object of \mathcal{F}_{k} is $k \otimes_{\mathbb{Z}} B$, where B is Mackey functor which assigns to an abelian p-group G its Burnside ring $B(G)$. For more details we refer to [1]. The type of functors considered in the whole paper are objects of \mathcal{F}_{k}.

Let $C_{p^{n}}$ be a cyclic group of order p^{n}. We consider the subfunctor I_{n} of $k \otimes_{\mathbb{Z}} B$ defined, for an object P of \mathcal{C}_{k} by :

$$
I_{n}(P)=\operatorname{Hom}_{\mathcal{C}_{k}}\left(C_{p^{n}}, P\right) \times_{C_{p^{n}}} \xi_{n}
$$

where $\xi_{n}=C_{p^{n}} / 1-C_{p^{n}} / C$, with C is the unique subgroup of order p of $C_{p^{n}}$.
Lemma 1: For $n \geq 2$, we have $I_{n+1} \subseteq I_{n}$.
Proof. We have

$$
\xi_{n+1}=\operatorname{Ind}_{C_{p^{n}}}^{C_{p^{n+1}}} \xi_{n} \in I_{n}\left(C_{p^{n+1}}\right) .
$$

If P is an object of \mathcal{C}_{k}, then
$\operatorname{Hom}_{\mathcal{C}_{k}}\left(C_{p^{n+1}}, P\right) \times_{C_{p^{n+1}}} \xi_{n+1} \subseteq \operatorname{Hom}_{\mathcal{C}_{k}}\left(C_{p^{n+1}}, P\right) \times{ }_{C_{p^{n+1}}} \operatorname{Hom}_{\mathcal{C}_{k}}\left(C_{p^{n}}, C_{p^{n+1}}\right) \times_{C_{p^{n}}} \xi_{n}$, and

$$
\operatorname{Hom}_{\mathcal{C}_{k}}\left(C_{p^{n+1}}, P\right) \times_{C_{p^{n+1}}} \operatorname{Hom}_{\mathcal{C}_{k}}\left(C_{p^{n}}, C_{p^{n+1}}\right) \subseteq \operatorname{Hom}_{\mathcal{C}_{k}}\left(C_{p^{n}}, P\right) .
$$

Thus $I_{n+1} \subseteq I_{n}$.

Lemma 2. For $n \geq 2$, we have $\operatorname{End}_{\mathcal{C}_{k}}\left(C_{p^{n}}\right) \times_{C_{p^{n}}} \xi_{n}$ is a trivial $\operatorname{End}_{\mathcal{C}_{k}}\left(C_{p^{n}}\right)$ module one-dimensional. Moreover, if K is an abelian p-group such that $|K| \leq p^{n}$ and $K \not \not C_{p^{n}}$, and if L is a subgroup of $K \times C_{p^{n}}$, then $\left(K \times C_{p^{n}} / L\right) \times_{C_{p^{n}}} \xi_{n}$ is zero.

Proof. Let K be an abelian p-group such that $|K| \leq p^{n}$, and L be a subgroup of $K \times C_{p^{n}}$, we will prove that

$$
\left(K \times C_{p^{n}} / L\right) \times_{C_{p^{n}}} \xi_{n} \subseteq k \xi_{n}
$$

The use of the Mackey formula for the $\left(K \times C_{p^{n}}\right)$-biset $K \times C_{p^{n}} / L$ and the $\left(C_{p^{n}} \times 1\right)$ biset ξ_{n}, implies that the result is a $(K \times 1)$-biset, that is simply a K-set :
$\left(K \times C_{p^{n}} / L\right) \times_{C_{p^{n}}} \xi_{n}=\left|C_{p^{n}} / p_{2}(L)\right| \cdot K / k_{1}(L)-\left|C_{p^{n}} /\left(p_{2}(L) \cdot C\right)\right| \cdot K / p_{1}(L \cap(K \times C))$.
If $p_{2}(L) \neq C_{p^{n}}$, then

$$
\left(K \times C_{p^{n}} / L\right) \times_{C_{p^{n}}} \xi_{n}=0,
$$

since $\left|p_{2}(L)\right|<p^{n}$ and $\left|p_{2}(L) \cdot C\right|<p^{n}$.
Hence we can suppose that $p_{2}(L)=C_{p^{n}}$, so

$$
\left(K \times C_{p^{n}} / L\right) \times_{C_{p^{n}}} \xi_{n}=K / k_{1}(L)-K / p_{1}(L \cap(K \times C)) .
$$

There are two cases to consider.
Case 1. If $k_{2}(L)=1$, then $p_{1}(L) / k_{1}(L) \simeq C_{p^{n}}$, thus $K \simeq C_{p^{n}}$ if $|K| \leq p^{n}$. We have $k_{1}(L)=1$, so $k_{1}\left(L \cap\left(C_{p^{n}} \times C\right)\right)=1$, and as

$$
p_{2}\left(L \cap\left(C_{p^{n}} \times C\right)\right) / k_{2}\left(L \cap\left(C_{p^{n}} \times C\right)\right) \cong p_{1}\left(L \cap\left(C_{p^{n}} \times C\right)\right) / k_{1}\left(L \cap\left(C_{p^{n}} \times C\right)\right),
$$

it follows that $\left|p_{1}\left(L \cap\left(C_{p^{n}} \times C\right)\right)\right| \leq p$. In other words

$$
\left(K \times C_{p^{n}} / L\right) \times_{C_{p^{n}}} \xi_{n}=C_{p^{n}} / 1-C_{p^{n}} / p_{1}\left(L \cap\left(C_{p^{n}} \times C\right)\right),
$$

with $\left|p_{1}\left(L \cap\left(C_{p^{n}} \times C\right)\right)\right| \leq p$.
Case 2. If $k_{2}(L) \neq 1$, then $C \subseteq k_{2}(L)$; let c be a generator of the subgroup C. If $(x, c) \in L$ then $(x, 1) \in L$, because $(x, c)=(x, 1) \cdot(1, c)$, so we obtain $k_{1}(L)=$ $p_{1}(L \cap(K \times C))$. Hence

$$
\left(K \times C_{p^{n}} / L\right) \times_{C_{p^{n}}} \xi_{n}=0 .
$$

Thus we have the following easy consequences :

$$
\operatorname{End}_{\mathcal{C}_{k}}\left(C_{p^{n}}\right) \times_{C_{p^{n}}} \xi_{n}=k \xi_{n},
$$

and if K is an abelian p-group such that $|K|<p^{n}$, then

$$
\left(K \times C_{p^{n}} / L\right) \times_{C_{p^{n}}} \xi_{n}=0,
$$

since $k_{2}(L) \neq 1$ if $p_{2}(L)=C_{p^{n}}$, and we can be reduced to the second case.

Proposition 1 : Let J_{n} and J_{1} be subfunctors of $k \otimes_{\mathbb{Z}} B$ defined, for an object P of \mathcal{C}_{k} by :

$$
J_{n}(P)=\left\{u \in I_{n}(P) \mid \forall \varphi \in \operatorname{Hom}_{\mathcal{C}_{k}}\left(P, C_{p^{n}}\right): \varphi \times_{P} u=0\right\}
$$

and

$$
J_{1}(P)=\left\{u \in k \otimes_{\mathbb{Z}} B(P) \mid \forall \varphi \in \operatorname{Hom}_{\mathcal{C}_{k}}(P, 1): \varphi \times_{P} u=0\right\},
$$

i.e.

$$
J_{1}(P)=\left\{X \in k \otimes_{\mathbb{Z}} B(P) \mid \forall U \text { subgroup of } P,|U \backslash X|=0\right\} .
$$

Then J_{n} is the unique maximal subfunctor of I_{n}, and J_{1} is the unique maximal subfunctor of $k \otimes_{\mathbb{Z}} B$.
Proof. First we prove that J_{n} is a subfunctor of I_{n} :
Let P and P^{\prime} be two objects of \mathcal{C}_{k}, let $\psi \in \operatorname{Hom}_{\mathcal{C}_{k}}\left(P^{\prime}, P\right)$, we prove

$$
\psi \times_{P^{\prime}} J_{n}\left(P^{\prime}\right) \subset J_{n}(P)
$$

Indeed we have

$$
\forall u \in J_{n}\left(P^{\prime}\right), \forall \psi^{\prime} \in \operatorname{Hom}_{\mathcal{C}_{k}}\left(P, C_{p^{n}}\right), \psi^{\prime} \times_{P}\left(\psi \times_{P^{\prime}} u\right)=\left(\psi^{\prime} \times_{P} \psi\right) \times_{P^{\prime}} u
$$

However by the definition of $J_{n}\left(P^{\prime}\right)$:

$$
\operatorname{Hom}_{\mathcal{C}_{k}}\left(P^{\prime}, C_{p^{n}}\right) \times_{P^{\prime}} u=0,
$$

and $\left(\psi^{\prime} \times_{P} \psi\right) \in \operatorname{Hom}_{\mathcal{C}_{k}}\left(P^{\prime}, C_{p^{n}}\right)$, then $\left(\psi^{\prime} \times_{P} \psi\right) \times_{P^{\prime}} u=0$, so $\psi^{\prime} \times_{P}\left(\psi \times_{P^{\prime}} u\right)=0$, and J_{n} is a subfunctor of I_{n}. Moreover $J_{n} \neq I_{n}$, because for example $J_{n}\left(C_{p^{n}}\right)=\{0\}$ while $I_{n}\left(C_{p^{n}}\right)=\operatorname{End}_{\mathcal{C}_{k}}\left(C_{p^{n}}\right) \times{ }_{C_{p^{n}}} \xi_{n}$ which is one-dimensional (see Lemma 2).

Now we prove that J_{n} is the unique maximal subfunctor of I_{n}. Let L be a subfunctor of I_{n}, in particular we have

$$
L\left(C_{p^{n}}\right) \subset I_{n}\left(C_{p^{n}}\right)=\operatorname{End}_{\mathcal{C}_{k}}\left(C_{p^{n}}\right) \times_{C_{p^{n}}} \xi_{n} .
$$

As $\operatorname{End}_{\mathcal{C}_{k}}\left(C_{p^{n}}\right) \times \times_{C_{p^{n}}} \xi_{n}$ is one-dimensional, there are two cases :
Case 1: if $L\left(C_{p^{n}}\right)=0$, then for an abelian finite p-group P we have

$$
\forall u \in L(P), \forall \varphi \in \operatorname{Hom}_{\mathcal{C}_{k}}\left(P, C_{p^{n}}\right):\left(\varphi \times_{P} u\right) \in L\left(C_{p^{n}}\right),
$$

thus $L \subset J_{n}$.
Case 2: if $L\left(C_{p^{n}}\right)=\operatorname{End}_{\mathcal{C}_{k}}\left(C_{p^{n}}\right) \times{ }_{C_{p^{n}}} \xi_{n}$, then for an abelian finite p-group P we have

$$
\begin{aligned}
I_{n}(P) & =\operatorname{Hom}_{\mathcal{C}_{k}}\left(C_{p^{n}}, P\right) \times_{C_{p^{n}}} \xi_{n} \\
& =\operatorname{Hom}_{\mathcal{C}_{k}}\left(C_{p^{n}}, P\right) \times_{C_{p^{n}}} L\left(C_{p^{n}}\right) .
\end{aligned}
$$

Since L is a functor, we have

$$
\operatorname{Hom}_{\mathcal{C}_{k}}\left(C_{p^{n}}, P\right) \times_{C_{p^{n}}} L\left(C_{p^{n}}\right) \subset L(P),
$$

then $L(P)=I_{n}(P)$. It follows that $L=I_{n}$.
Similarly, we prove that J_{1} is the unique maximal subfunctor of $k \otimes_{\mathbb{Z}} B$.

Proposition 2: Let P be an object of \mathcal{C}_{k}, for $n \geq 2$ we have

$$
\begin{gathered}
I_{n}(P) \supseteq J_{n}(P) \oplus<P / R-P / Z, \text { where } Z \supset R \text { are subgroups of } P \text { with } \\
P / R \simeq C_{p^{n}} \text { and }|Z / R|=p>,
\end{gathered}
$$

and
$k \otimes_{\mathbb{Z}} B(P) \supseteq J_{1}(P) \oplus<P / P, P / M-P / P$ with M a maximal subgroup of $P>$.
Proof. First we have

$$
\begin{gathered}
I_{n}(P) \supseteq \quad<P / R-P / Z, \text { where } Z \supset R \text { are subgroups of } P \text { with } \\
P / R \simeq C_{p^{n}} \text { and }|Z / R|=p>,
\end{gathered}
$$

because for any subgroup R such that $P / R \simeq C_{p^{n}}$ and $|Z / R|=p$, we have

$$
P / R-P / Z=\operatorname{Inf}_{P / R}^{P} \operatorname{Iso}_{P / R}^{C_{p^{n}}} \xi_{n} \in \operatorname{Hom}_{\mathcal{C}_{k}}\left(C_{p^{n}}, P\right) \times_{C_{p^{n}}} \xi_{n} .
$$

On the other hand

$$
\begin{gathered}
J_{n}(P) \cap \quad<P / R-P / Z, \text { where } Z \supset R \text { are subgroups of } P \text { with } \\
P / R \simeq C_{p^{n}} \text { and }|Z / R|=p>=\{0\} .
\end{gathered}
$$

Indeed, let x be the following element

$$
x=\sum_{\substack{R \\ P / R \simeq C_{p^{n}}}} \lambda_{R}(P / R-P / Z) \in J_{n}(P) .
$$

Fixing a subgroup R of P such that $P / R \simeq C_{p^{n}}$, we now prove $\lambda_{R}=0$: Applying the functor $\operatorname{Def}_{P / R}^{P}$ to x, we obtain $\operatorname{Def}_{P / R}^{P}(x) \in J_{n}(P / R)$. By Proposition 1 , we have $J_{n}(P / R)=\{0\}$. In other words

$$
\begin{aligned}
& 0=\lambda_{R}[(P / R) /(R / R)-(P / R) /(Z \cdot R / R)]+ \\
& \sum_{\substack{P / R^{\prime} \simeq C_{p^{n}} \\
\left|Z^{\prime}\right|=R^{\prime} \mid=p \\
R^{\prime} \neq R}} \lambda_{R^{\prime}}\left[(P / R) /\left(R^{\prime} \cdot R / R\right)-(P / R) /\left(Z^{\prime} \cdot R / R\right)\right] .
\end{aligned}
$$

In this equality $(P / R) /(R / R)$ is unique, so $\lambda_{R}=0$. Since R is arbitrary, we obtain $x=0$, it follows that

$$
\begin{gathered}
J_{n}(P) \cap \quad<P / R-P / Z, \text { where } Z \supset R \text { are subgroups of } P \text { with } \\
P / R \simeq C_{p^{n}} \text { and }|Z / R|=p>=\{0\} .
\end{gathered}
$$

Similarly, we have
$J_{1}(P) \cap<P / P, P / M-P / P$ with M a maximal subgroup of $P>=\{0\}$.

Let x be the following element

$$
\left(x=\lambda_{P} P / P+\sum_{\substack{M \\|P / M|=p}} \lambda_{M} P / M\right) \in J_{1}(P),
$$

so, by the Mackey formula, for any subgroup K of P we have

$$
\begin{equation*}
\lambda_{P}|K \backslash P / P|+\sum_{\substack{M \\|P / M|=p}} \lambda_{M}|K \backslash P / M|=0 \tag{贯}
\end{equation*}
$$

In particular for $K=1$, the equality ($\boldsymbol{\&}$) becomes $\lambda_{P}|1 \backslash P / P|=0$, so $\lambda_{P}=0$. Hence

$$
x=\sum_{\substack{M \\|P / M|=p}} \lambda_{M} \cdot P / M \in J_{1}(P) .
$$

For the subgroup $K=P$, the equality ($\boldsymbol{\phi}$) becomes

$$
\begin{equation*}
\sum_{\substack{M \\|P / M|=p}} \lambda_{M}=0 \tag{1}
\end{equation*}
$$

We fix a subgroup M_{0} of P such that $\left|P / M_{0}\right|=p$, and we apply ($\boldsymbol{\rho}$) to the subgroup $K=M_{0}$, we obtain

$$
\sum_{\substack{M \neq M_{0} \\|P / M|=p}} \lambda_{M}=0 \quad\left(\boldsymbol{\varphi}_{2}\right) .
$$

From $\left(\boldsymbol{\omega}_{1}-\boldsymbol{\omega}_{2}\right)$, we deduce that $\lambda_{M_{0}}=0$. Since M_{0} is arbitrary, we obtain $x=0$. Hence in $k \otimes_{\mathbb{Z}} B(P)$ we have

$$
J_{1}(P) \cap<P / P, P / M-P / P \text { with } M \text { a maximal subgroup of } P>=\{0\} .
$$

3 A unique maximal filtration of $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$

An important result of Ritter [3] and Segal [4] states that if P is a p-group, then the natural morphism s from the Burnside ring $B(P)$ of P to the Grothendieck ring $R_{\mathbb{Q}}(P)$ of rational representations of P, mapping a finite P-set X to the permutation module $\mathbb{Q} X$, is surjective. We shall denote $s(X)$ by \bar{X}.
Remark 1 : Let P be a finite p-group, $\operatorname{dim}_{k}\left(k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P)\right)$ is equal to the number of conjugacy classes of cyclic subgroups of P (see [5], Chapitre 13, Théorème 29, Corollaire 1). Thus, if P is a cyclic group of order p^{n}, then $k \otimes_{\mathbb{Z}} B(P)$ and $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P)$ are isomorphic. In particular, we have $\overline{\xi_{n}}$ is non-zero.
Theorem 1: The restriction of the functor of rational representations $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$ to abelian finite p-groups, has a unique maximal filtration

$$
k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}=\overline{I_{1}} \supseteq \overline{I_{2}} \supseteq \overline{I_{3}} \supseteq \cdots
$$

Proof. By Lemma 1, for any integer n we have $I_{n+1} \subseteq I_{n}$. Let P be an object of \mathcal{C}_{k} and $C_{p^{n}}$ be a cyclic group of order p^{n}, we will prove that $\overline{J_{n}}(P)=\overline{I_{n+1}}(P)$:

Indeed $\overline{J_{n}} \neq \overline{I_{n}}$, because for example $\overline{J_{n}}\left(C_{p^{n}}\right)=\{\overline{0}\}$ while $\overline{I_{n}}\left(C_{p^{n}}\right)=\overline{\xi_{n}}$ is non-zero (see Remark 1). Therefore

$$
I_{n}(P) / J_{n}(P) \simeq \overline{I_{n}}(P) / \overline{J_{n}}(P)
$$

By Proposition 2 , in $k \otimes_{\mathbb{Z}} B(P)$ we have

$$
\begin{gathered}
I_{n}(P) \supseteq J_{n}(P) \oplus<P / R-P / Z \text { where } Z \supset R \text { are subgroups of } P \text { with } \\
P / R \simeq C_{p^{n}} \text { and }|Z / R|=p>
\end{gathered}
$$

then in $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P)$ we have

$$
\begin{gathered}
\overline{I_{n}}(P) \supseteq \overline{J_{n}}(P) \oplus<\overline{P / R}-\overline{P / Z} \text { where } Z \supset R \text { are subgroups of } P \text { with } \\
P / R \simeq C_{p^{n}} \text { and }|Z / R|=p>
\end{gathered}
$$

Similarly, we find
$k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P) \supseteq \overline{J_{1}}(P) \oplus<\overline{P / P}, \overline{P / M}-\overline{P / P}$ with M a maximal subgroup of $P>$.
Thus, the following set

$$
\mathcal{L}=\{\overline{P / P}, \overline{P / M}-\overline{P / P} \text { where } M \text { is a maximal subgroup of } P, \overline{P / R}-\overline{P / Z}
$$

where $Z \supset R$ are subgroups of P with P / R is non-trivial cyclic and $|Z / R|=p\}$ is linearly independent in the space $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P)$. As P is abelian, by duality $|\mathcal{L}|$ is the number of (conjugacy classes of) cyclic subgroups of P, which is exactly $\operatorname{dim}_{k}\left(k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P)\right)$. Hence \mathcal{L} is a basis of $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}(P)$, and $\overline{J_{n}}(P)=\overline{I_{n+1}}(P)$ for $n \geq 1$.

We now show that, in the abelian case, the functors $\left(\overline{I_{n}}\right)_{n \geq 2}$ are the unique nonzero proper subfunctors of $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$:
Let \bar{F} be a proper subfunctor of $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$. The restriction of the functor of rational representations $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$ to abelian finite p-groups, has a unique maximal subfunctor $\overline{J_{1}}$ (see Proposition 1), then $\bar{F} \subseteq \overline{J_{1}}$. Moreover $\overline{J_{1}}=\overline{I_{2}}$, so $\bar{F} \subseteq \overline{I_{2}}$.
Each functor $\overline{I_{n}}$ admits a unique maximal (proper) subfunctor $\overline{J_{n}}$ (see Proposition 1), let n_{0} be the maximal integer such that $\bar{F} \subseteq \overline{I_{n_{0}}}$. Since $\overline{I_{n_{0}}}$ admits a unique maximal subfunctor $\overline{J_{n_{0}}}$, and since $\overline{I_{n_{0}+1}}=\overline{J_{n_{0}}}$, it follows that

$$
\bar{F}=\overline{I_{n_{0}}} \text { or } \bar{F} \subseteq \overline{I_{n_{0}+1}}
$$

By the hypothesis about the integer n_{0}, we must have $\bar{F}=\overline{I_{n_{0}}}$. Hence, in the abelian case, the functors $\left(\overline{I_{n}}\right)_{n \geq 2}$ are the unique non-zero proper subfunctors of $k \otimes_{\mathbb{Z}} R_{\mathbb{Q}}$.

To complete the proof of this theorem, let us now show that

$$
\bar{I}=\bigcap_{n \geq 2} \overline{I_{n}}=\{0\}
$$

Assume that the proper subfunctor \bar{I} is non-zero, then by the previous result \bar{I} must be equal to $\overline{I_{n_{0}}}$, for a suitable integer n_{0}. In particular, we would have $\overline{I_{n_{0}}}\left(C_{p^{n_{0}}}\right) \subseteq$ $\overline{I_{n_{0}+1}}\left(C_{p^{n_{0}}}\right)$. By Remark $1 \overline{I_{n_{0}}}\left(C_{p^{n_{0}}}\right)$ is non-zero, while by Lemma 2

$$
\begin{aligned}
I_{n_{0}+1}\left(C_{p^{n_{0}}}\right) & =\operatorname{Hom}_{\mathcal{C}_{k}}\left(C_{p^{n_{0}+1}}, C_{p^{n_{0}}}\right) \times_{C_{p^{n_{0}+1}}} \xi_{n_{0}+1} \\
& =\{0\}
\end{aligned}
$$

and consequently $\overline{I_{n_{0}+1}}\left(C_{p^{n_{0}}}\right)=\{0\}$. This contradiction shows that

$$
\bar{I}=\bigcap_{n \geq 2} \overline{I_{n}}=\{0\}
$$

References

[1] S. Bouc, Foncteurs d'ensembles munis d'une double action. Journal of Algebra 183, 664-736, 1996.
[2] I. Bourizk, Restricting globally defined Mackey functors to nilpotent finite groups. Preprint.
[3] J. Ritter, Ein Induktionssatz für rationale Charaktere von nilpotenten Gruppen. J. Reine Angew. Math. 254, 133-151, 1972.
[4] G. Segal, Permutation representations of finite p-groups. Quart. J. Math. Oxford 23, 375-381, 1972.
[5] J.-P. Serre, Représentations linéaires des groupes finis. Méthodes. Hermann, seconde édition, 1971.
[6] P. Webb, Weight Theory in the Context of Arbitrary Finite Groups. Fields Institute Communications 40, 277-289, 2004.

Mandil, Parc du Peterbos, 18A/611
1070 Bruxelles, Belgique
e-mail: bourizk@ccr.jussieu.fr

[^0]: Received by the editors December 2003.
 Communicated by M. Van den Bergh.
 1991 Mathematics Subject Classification : 20C15, 19A22.
 Key words and phrases : rational representation, finite group, biset.

