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Abstract

Given a field K, all polynomial maps Sm1(K) × · · · × Smk(K) → Tn(K)
of generalized tori over K are studied. Furthermore, a full description of
holomorphic maps Cm → Cn1 × · · · × Cnk and Cm1 × · · · × Cmk → Cn which
restrict to maps Tm → S2n1−1×· · ·×S2nk−1 and S2m1−1×· · ·×S2mk−1 → Tn

respectively, is presented.

Introduction

In virtue of Wood [7] (see also [4, Chapter 13]) a necessary condition for the existence
of a non-constant polynomial map Sm → Sn of spheres for m ≥ n is that 2k+1 >
m ≥ n ≥ 2k for some k ≥ 0. It follows that all polynomial maps Sm → Sn

are constant if m ≥ 2n. In particular, any polynomial map Sm → S1 is constant
for m > 1. If we replace the reals R by the complex numbers C the situation
is different. Write Sm(C) for the complex sphere defined as the locus of complex
zeros in Cm+1 of the polynomial

∑m
k=0X

2
k − 1. Given a complex polynomial map

f : Sm(C) → C we get a non-constant one (f, if, 1, 0 . . . , 0) : Sm(C) → Sn(C) for
n ≥ 2. Whence the only remaining cases for complex spheres to be considered are
polynomial maps Sm(C) → S1(C). It was shown in [8] that from the homotopy point
of view nothing is lost by complexifying the problem of which homotopy classes of
maps of spheres contain a polynomial representative. Furthermore, in virtue of [5],
any complex polynomial self-map of S2(C) yields a regular self-map of the sphere
S2 in a canonical way. Then Loday [6], using algebraic and topological K-theory,
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proved some results on polynomials maps into Sn. For instance, every polynomial
map from the torus Tn (as the n-th cartesian power of S1) to Sn is null-homotopic
if n > 1. For n even those results were extended in [1, 2] to regular and then in [4]
to polynomial maps Sn1 × · · · × Snk → Sn with n = n1 + · · ·+ nk odd.

This paper grew out of our attempt to describe all polynomial self-maps of the
real and complex circle as well. This was accomplished by some analytic methods
and then some purely algebraic ideas came to simplify our investigations. We tend
to transfer some results from [6, 7, 8] on spheres and their polynomial maps into
spheres over any field. Given a field K, the m-sphere Sm(K) ⊆ Kn+1 over K is
defined as the locus of zeros in Km+1 of the polynomial

∑m
k=0X

2
k − 1. Write Tn(K)

for the n-th cartesian power of S1(K) for any n ≥ 1 called the n-torus over K.
If K is the field of real or complex numbers then any continuous map Sm1(K)×

· · · × Smk(K) → Tn(K) is obviously null-homotopic provided m1, . . . ,mt > 1. On
the other hand, those polynomial maps are worth to be studied from the algebraic
point of view. Section 1 takes up the systematic study of polynomial maps Sm1(K)×
· · ·×Smk(K) → Tn(K) for any field K. We make use of the abelian group structure
on the sphere S1(K) to show

Theorem 1.4. Let K be a field and f : S1(K) → S1(K) a polynomial self-map.
Then:

(1) if K is of characteristic two, f = (f0, 1 + f0);
(2) if K is finite, any set self-map of S1(K) is a polynomial one;
(3) if K is an infinite field of characteristic different from two, f(z) = αzk for
any z ∈ S1(K) with some α ∈ S1(K) and an integer k.

However, any self-map S1(K) → S1(K) is polynomial for a finite field K. Then,
we observe that Sn(K) and Kn are birationally equivalent to assert

Theorem 1.7. Let K be a field, f : Sn(K) → S1(K) a polynomial map and n ≥ 2.
Then:

(1) if K is of characteristic two, f = (f0, 1 + f0);
(2) if K is finite, any set map Sn(K) → S1(K) is a polynomial one;
(3) if K is an infinite field of characteristic different from two, f is constant.

A full description of all polynomial maps Sm1(K) × · · · × Smk(K) → Tn(K) is
derived in

Corollary 1.8. Let K be an infinite field and f = (f1, . . . , fn) : Sm1(K) × · · · ×
Smk(K) → Tn(K) a polynomial map with m1, . . . ,mk ≥ 1. Then:

(1) fj = (f ′j, f
′
j + 1), where f ′j is a polynomial function on the sphere Smj(K) for

j = 1, . . . , n provided K is of characteristic two;
(2)

fj(x1, . . . , xk) = αjx
l1j

1 · · ·xlkj

k

for any point (x1, . . . , xk) ∈ Sm1(K) × · · · × Smk(K) and j = 1, . . . , n with some
α1, . . . , αn ∈ S1(K) and integers luv such that luv = 0 provided mu > 1 for u =
1, . . . , k, v = 1, . . . , n and K is of characteristic different from two. We put x0 = 1
whenever x ∈ Sd(K) with d ≥ 1 and identify points of S1(K) with elements of the
group U(K̃).

Section 2 ends the paper with purely topological investigations. Holomorphic
maps Cm → Cn1 × · · · × Cnk and Cm1 × · · · × Cmk → Cn which restrict to Tm →
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S2n1−1×· · ·×S2nk−1 and S2m1−1×· · ·×S2mk−1 → Tn respectively, are then considered.
It follows that any map Tm → S2n1−1 × · · · × S2nk−1 is null-homotopic through a
complex polynomial homotopy provided n1, . . . , nk > 1 (see [1, 3, 6] for the real
case).

1 Tori over fields and their maps

Let K be a field. The affine set

Sn(K) = VK

( n∑
k=0

X2
k − 1

)

in Kn+1, given by the zeros of the polynomial
∑n

k=0X
2
k − 1, is called the n-sphere

over the field K for n ≥ 0. We say that a map f = (f0, . . . , fn) : Sm(K) → Sn(K) is
polynomial if there exist polynomials F0, . . . , Fn ∈ K[X0, . . . , Xm] such that fk(x) =
Fk(x) and

∑n
k=0 fk(x)

2 = 1 for all x ∈ Sm(K). If characteristic of K is two then
Sn(K) = VK(

∑n
k=0Xk + 1). Whence any polynomials F1, . . . , Fn ∈ K[X0, . . . , Xm]

with F0 = 1 +
∑n

k=1 Fk determine a polynomial map f = (f0, . . . , fn) : Sm(K) →
Sn(K).

Write now U(K) for the multiplicative group of K.

Proposition 1.1. Let K be an algebraically closed field and f : U(K) → U(K) a
self-map given by a Laurent polynomial F ∈ K[X,X−1]. Then, there exist α ∈ U(K)
and an integer k such that f(r) = αrk for all r ∈ U(K).

Proof. Let F (X) = X−nG(X) for some natural number n, where G(X) ∈ K[X].
Since F (r) 6= 0 for all r ∈ U(K) and K is an algebraically closed so we have
G(X) = αXm with α 6= 0 and some m ≥ 0. Thus f(r) = αrm−n for any r ∈ U(K).

�

Observe that on the 1-sphere S1(K) called also a circle there is an abelian group
structure defined by (x0, x1) ◦ (x′0, x

′
1) = (x0x

′
0 − x1x

′
1, x0x

′
1 + x1x

′
0) for any points

(x0, x1), (x
′
0, x

′
1) ∈ S1(K). On the other hand, consider for convenience the quotient

ring K̃ = K[X]/(X2 +1) and denote by I the class of X in K̃. Whence any element
of K̃ is uniquely written as r + sI with r, s ∈ K. Then, the circle S1(K) might be
identified with the subgroup of units U(K̃) of the ring K̃ given by elements x0 +x1I
with x0, x1 ∈ K and x2

0 + x2
1 = 1.

Suppose first that K is a field of characteristic different from two and there is
an element i ∈ K with i2 = −1. Be aware that I 6= i and observe that K̃ always
has zero divisors because (I + i)(I − i) = 0. It is clear that the map

ρ : S1(K) → U(K)

given by ρ(x0 + x1I) = x0 + x1i for x0 + x1I ∈ S1(K) is an isomorphism of groups
with the inverse

ρ−1 : U(K) → S1(K)
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given by ρ−1(r) = 1+r2

2r
+ i(1−r2)

2r
I for r ∈ U(K). Furthermore, any polynomial

self-map f = (f0, f1) : S1(K) → S1(K) is given by f(z) = f0(
1+z2

2z
, 1−z2

2z
I) +

f1(
1+z2

2z
, 1−z2

2z
I)I for any z ∈ S1(K) using the identification of S1(K) as a subgroup

of U(K̃).

Corollary 1.2. Let K be an algebraically closed field of characteristic different from
two. Then for any polynomial self-map f : S1(K) → S1(K) there exist β ∈ S1(K)
and an integer k such that f(z) = βzk for any z ∈ S1(K) ⊆ K̃.

Proof. Given a polynomial self-map f = (f0, f1) : S1(K) → S1(K) consider
the Laurent polynomial map g : U(K) → U(K) defined by g(r) = ρ(f(ρ−1(r)) =
f0(

1+r2

2r
, 1−r2

2r
i)+ f1(

1+r2

2r
, 1−r2

2r
i)i for r ∈ U(K). Then Proposition 1.1 says that there

are α ∈ U(K) and an integer k such that g(r) = αrk for all r ∈ U(K) and so taking
z = ρ−1(r) and β = ρ−1(α) we get f(z) = βzk for all z ∈ S1(K). �

Now, for a field K of characteristic different from two, let VK = VK(X0 −
1,

∑n
k=1X

2
k) and Sn−1

i (K) = VK(
∑n

k=1X
2
k + 1) be affine sets in Kn+1 and Kn, re-

spectively. Then, the rational function Φn(K) = ( X1

1−X0
, · · · , Xn

1−X0
) (determined by

the familiar stereographic projection) yields the bijection

φn(K) : Sn(K)\VK −→ Kn\Sn−1
i (K)

with the inverse
ψn(K) : Kn\Sn−1

i (K) −→ Sn(K)\VK

determined by the inverse Ψn(K) = 1
1+

∑n

k=1
X2

k

(
∑n

k=1X
2
k − 1, 2X1, . . . , 2Xn) to the

stereographic projection. Whence, Sn(K) and Kn are birationally equivalent for any
n ≥ 0 and we are in a position to state

Proposition 1.3. Let K be an infinite field of characteristic different from two.
Then Sn(K) = Sn(K̄) for n ≥ 0, where K̄ denotes the algebraic closure of K and
Sn(K) the Zariski closure of Sn(K) in K̄n+1.

Proof. Obviously, S0(K) = S0(K̄). If now n ≥ 1 and a polynomial F ∈
K̄[X0, . . . , Xn] vanishes on Sn(K) then FΨn(K) vanishes on Kn+1\Sn

i (K). Because
the fieldK is infinite, Kn is dense in K̄n (with respect to the Zariski topology on K̄n)
and consequently Kn\Sn−1

i (K) is dense in K̄n\Sn−1
i (K̄) as well. The regular func-

tion FΨn(K) vanishes on Kn\Sn−1
i (K) whence FΨn(K̄) vanishes on K̄n\Sn−1

i (K̄).
Consequently, the polynomial F vanishes on the non-empty open subset Sn(K̄)\VK̄ .
Because the principal ideal (

∑n
k=0X

2
k−1) is prime so the sphere Sn(K̄) is irreducible

and hence the open set Sn(K̄)\VK̄ is dense in Sn(K̄). Thus, F vanishes on the whole
sphere Sn(K̄), and the proof follows. �

Now, we can state our first result.

Theorem 1.4. Let K be a field and f : S1(K) → S1(K) a polynomial self-map.
Then:

(1) if K is of characteristic two, f = (f0, 1 + f0);
(2) if K is finite, any set self-map of S1(K) is a polynomial one;
(3) if K is an infinite field of characteristic different from two, f(z) = αzk for
any z ∈ S1(K) with some α ∈ S1(K) and an integer k.
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Proof. The cases (1) and (2) are straightforward.
(3) By Proposition 1.3, the map f : S1(K) → S1(K) can be extended to a poly-

nomial map f ′ : S1(K̄) → S1(K̄), where K̄ is the algebraic closure of K. Corollary
1.2 says that there is α ∈ S1(K̄) and an integer k such that f ′(z) = αzk for all
z ∈ S1(K̄). Taking z ∈ S1(K) we deduce that α ∈ S1(K) and the proof follows. �

Now, we move to the study of polynomial maps from n-spheres over any field
with n > 1. But before we need

Lemma 1.5. Let K be an algebraically closed field of characteristic different from
two. Then any polynomial map f : S2(K) → S1(K) with a finite image is necessarily
constant.

Proof. Let α1, . . . , αm be all the points in the image of f : S2(K) → S1(K)
and consider the map ρ ◦ f : S2(K) → U(K), where ρ : S1(K) → U(K) is the
isomorphism described above.

The polynomial map F = (ρ ◦ f − ρ(α1)) · · · (ρ ◦ f − ρ(αm)) obviously vanishes
on S2(K) and so F is a multiple of the polynomial X2

0 + X2
1 + X2

2 − 1. Thus for
some j, the polynomial ρ ◦ f − ρ(αj) is a multiple of X2

0 +X2
1 +X2

2 − 1 because the
principal ideal (X2

0 +X2
1 +X2

2 − 1) is prime. Therefore ρ(f(x0, x1, x2)) = ρ(αj)) for
all (x0, x1, x2) ∈ S2(K) and so f(x0, x1, x2) = αj for all (x0, x1, x2) ∈ S2(K). �

Next, we show

Lemma 1.6. If K is an algebraically closed field of characteristic different from two
then any polynomial map f : S2(K) → S1(K) is constant.

Proof. First we show that any two orthogonal vectors u, v ∈ S2(K) (for the form
x2

0 + x2
1 + x2

2) differ only by multiplication with a power of I.
In fact, consider the polynomial self-map g of S1(K) given by g(x, y) = f(xu+yv)

for any (x, y) ∈ S1. By Theorem 1.4 there exist α ∈ U(K) and an integer k such
that g(x, y) = α(x, y)k. Therefore, f(u) = α, f(v) = αIk and so f(v) = f(u)Ik.

Now, given x ∈ S2, by Witt Theorem there exists y ∈ S2 orthogonal to the
vectors x and e0 = (1, 0, 0). By means of the above, there are integers k and l such
that f(y) = f(e0)I

k and f(y) = f(x)I l. Therefore, f(x) = f(e0)I
k−l and the image

of f is finite. Thus, by Lemma 1.5 the result follows. �

Whence, we are in a position to show our next main result.

Theorem 1.7. Let K be a field, f : Sn(K) → S1(K) a polynomial map and n ≥ 2.
Then:

(1) if K is of characteristic two, f = (f0, 1 + f0);
(2) if K is finite, any set map Sn(K) → S1(K) is a polynomial one;
(3) if K is an infinite field of characteristic different from two, f is constant.

Proof. The cases (1) and (2) are straightforward.
(3) In the light of Proposition 1.3 we can assume that K is algebraically closed.

Let (x0, . . . , xn) ∈ Sn(K) with x2
i + x2

j 6= 1 for some couple of indexes i, j such that
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0 ≤ i < j ≤ n. Choose one of the two square roots of 1 − x2
i − x2

j and define
ι : S2(K) → Sn(K) by

ι(y0, y1, y2) = y0ei + y1ej +
y2√

1− x2
i − x2

j

n∑
k=0

k 6=i,j

xkek,

where e0, . . . , en+1 denote vectors of the standard basis in Kn+1.

Using now Lemma 1.6, we know that fι is constant. In particular

f(ei) = f(ι(1, 0, 0)) = f(ι(0, 1, 0)) = f(ej) =

f(ι(xi, xj,
√

1− x2
i − x2

j)) = f(x0, . . . , xn).

Therefore, by taking as (x0, . . . , xn) the points e0, . . . , en respectively, we deduce
that f(e0) = f(e1) = · · · = f(en) = f(x0, . . . , xn) for any (x0, . . . , xn) ∈ Sn(K) with
the possible exception of those (x0, . . . , xn) such that x2

0 = · · · = x2
n and 2x2

0 = 1.
Therefore f is constant with a possible exception of a finite number of points in
Sn(K). But since K is infinite, being an algebraically closed field, we derive that f
is constant. �

Let now S1, S2, S3 be any sets and f : S1×S2 → S3 a map. It is obvious that f is
constant provided the maps f(−, s2) : S1 → S3 and f(s1,−) : S2 → S3 are constant
for any s1 ∈ S1 and s2 ∈ S2. Write Tn(K) for the n-th cartesian power of S1(K) for
any n ≥ 1 called the n-torus over K. Then, the results above lead to

Corollary 1.8. Let K be an infinite field and f = (f1, . . . , fn) : Sm1(K) × · · · ×
Smk(K) → Tn(K) a polynomial map with m1, . . . ,mk ≥ 1. Then:

(1) fj = (f ′j, f
′
j + 1), where f ′j is a polynomial function on the sphere Smj(K) for

j = 1, . . . , n provided K is of characteristic two;

(2)

fj(x1, . . . , xk) = αjx
l1j

1 · · ·xlkj

k

for any point (x1, . . . , xk) ∈ Sm1(K) × · · · × Smk(K) and j = 1, . . . , n with some
α1, . . . , αn ∈ S1(K) and integers luv such that luv = 0 provided mu > 1 for u =
1, . . . , k, v = 1, . . . , n and K is of characteristic different from two. We put x0 = 1
whenever x ∈ Sd(K) with d ≥ 1 and identify points of S1(K) with elements of the
group U(K̃).

For the field R of reals by [7] (see also [4, Chapter 13]) any polynomial map
Sn(R) → Sn−1(R) of spheres is constant provided n is a power of 2. It follows that
all polynomial maps Sm(R) → Sn(R) are constant if m ≥ 2n. On the other hand, if
K is a field with i ∈ K then any polynomial F ∈ K[X0, . . . , Xm] determines the non-
constant polynomial map (f, if, 1, 0, . . . , 0) : Sm(K) → Sn(K) provided n ≥ 2, where
f(x) = F (x) for any x ∈ Sm(K). In particular, for the field of complex numbers C
and any positive integers m,n with n ≥ 2 there are non-constant polynomial maps
Sm(C) → Sn(C).
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2 Maps of tori over reals

Throughout of this section the n-sphere Sn(R) (resp. the n-torus Tn(R)) over the
reals R will be denoted simply by Sn (resp. Tn) for n ≥ 0. Observe that any poly-
nomial F (X) ∈ C[X] yields two polynomials F0(X0, X1), F1(X0, X1) ∈ R[X0, X1],
where F (X0 + iX1) = F0(X0, X1) + iF1(X0, X1). If the associated polynomial self-
map R2 → R2 restricts to such a map f : S1 → S1 then by Theorem 1.4 there are
α ∈ S1 and a non-negative integer k with f(z) = αzk for any z ∈ S1 and conse-
quently F (X) = αXk. Whence, given a polynomial F (X1, . . . , Xn) ∈ C[X1, . . . , Xn]
restricting to a map Tn → S1 we get F (X1, . . . , Xn) = αXk1

1 · · ·Xkn
n for some α ∈ S1

and non-negative integers k1, . . . , kn.

We aim to state a more general result. Then, write D = {z ∈ C; |z| ≤ 1} for
the closed disc in the complex plane C.

Proposition 2.1. The following conditions are equivalent for a continuous map
f : S1 → S1:

(1) f is the restriction of a meromorphic map f̃ : U → C on some neighbourhood
U of S1;

(2) there exist α, z1, . . . , zn ∈ C such that |α| = 1, |zk| < 1 for k = 1, . . . , n and
f is the restriction of the rational map f̃ given by

f̃(z) = α
n∏

k=1

(
z − zk

z̄kz − 1

)εk

with εk = ±1 and k = 1, . . . , n;
(3) f is the restriction of a rational map f̃ ;
(4) there exists an integer n0 such that either an = 0 for all n > n0 or an = 0 for

all n < n0, the radius of convergence of
∑

n<0 anz
−n in the first case and the radius

of convergence of
∑

n>0 anz
n in the second case is greater than one, where

an =
1

2π

∫ 2π

0
f(eit)e−intdt

are the Fourier coefficient of f for all integers n.

Proof. The implications (2) =⇒ (3) =⇒ (4) =⇒ (1) are clear and so why we
only check (1) =⇒ (2).

Let z1, . . . , zn be the zeroes or poles of f̃ on D, where we count each zero or pole
as many times as indicated by its order. We consider then the rational map

g(z) =
n∏

k=1

(
z − zk

z̄kz − 1

)
,εk

where εk = 1 if zk is a zero and εk = −1 if zk is a pole.
It is clear that g restricts to a map S1 → S1 and it has exactly the same zeros

and poles on D as the meromorphic map f̃ . By the lifting homotopy property there

exists a holomorphic map θ defined on a neighbourhood of D such that f̃
g

= eθ.

But |z| = 1 implies | f̃(z)
g(z)

| = 1. Whence, |e(θ(z))| = 1 provided |z| = 1. If eθ would
be non-constant then by the maximum-modulus principle:
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(a) |z| < 1 implies |eθ(z)| < 1;
(b) because eθ(z) 6= 0 for any z ∈ D so there is z0 ∈ S1 with |eθ(z0)| = 1 as the

minimum of the map |eθ|.
This contradiction shows that eθ must be constant and of course |eθ| = 1. Hence

f̃(z) = α
n∏

k=1

( z − zk

z̄kz − 1

)
,εk

for any z ∈ C with α ∈ S1. �

In particular, if a holomorphic map f̃ : C → C restricts to a map f : S1 → S1

then all its possible zeros on the disc D coincide with 0 and so by (2) in Proposition
2.1 we get α ∈ S1 and a non-negative integer k with f̃(z) = αzk for any z ∈ S1 and
consequently f(z) = αzk for any z ∈ C.

More generally, observe first that

S2n+1 = {(z0, . . . , zn) ∈ Cn+1;
n∑

k=0

|zk|2 = 1}

for any n ≥ 1 and

Sn = {(λ, z1, . . . , zn
2
) ∈ R× C

n
2 ; λ2 +

n
2∑

k=1

|zk|2 = 1}

for n even. If now a holomorphic map f̃ : (f̃1, . . . , f̃n) : C → Cn restricts to a map
f : S1 → S2n−1 then by the maximum-modulus principle we get that |f̃j(z)| ≤ 1 for
any z ∈ D and j = 1, . . . , n. Then as above we derive that there are αj ∈ C and
non-negative integers kj such that fj(z) = αjz

kj for any z ∈ C and j = 1, . . . , n.

Corollary 2.2. If a map f : Tm → S2n−1 with m,n ≥ 1 is the restriction of a
holomorphic map f̃ = (f̃1, . . . , f̃n) : Cm → Cn then

f̃(z1, . . . , zm) = (α1z
k11
1 · · · zkm1

m , . . . , αnz
k1n
1 · · · zkmn

m )

for any (z1, . . . , zm) ∈ Cm with some (α1, . . . , αn) ∈ S2n−1 and non-negative integers
kst for s = 1, . . . ,m and t = 1, . . . , n.

Now, let f : Tm → S2n1−1×· · ·×S2nk−1 with m,n1, . . . , nk ≥ 1 be the restriction
of a holomorphic map f̃ : Cm → Cn1×· · ·×Cnk . Then it might be easily derived from
the result above. In particular, any complex polynomial Tm → S2n1−1×· · ·×S2nk−1 is
fully described. Obviously it follows that any such a map is null-homotopic through
a complex polynomial homotopy provided n1, . . . , nk > 1 (see [1, 3, 6] for the real
case).

Furthermore, the following result holds.

Corollary 2.3. (1) Let f ′ : Cm → C be a holomorphic map with m > 1. If f ′

restricts to a map S2m−1 → S1 then f ′ is constant.
(2) Let f ′′ : R × Cm → C be a map such that f ′′(λ,−) : Cm → C is holo-

morphic for any λ ∈ R and f ′′(−, z1, . . . , zm) : R → C is a polynomial map for
any (z1, . . . , zm) ∈ Cm with m ≥ 1. If f ′′ restricts to a map S2m → S1 then f ′′ is
constant.
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Proof. (1) For a fixed point x ∈ S2m−1 consider the map

f ′x : C −→ C

given by f ′x(z) = f ′(zx) for any z ∈ C. Then f ′x restricts to a map f̃ ′x : S1 → S1

with Brouwer degree zero. By Corollary 2.2, the map f̃ ′x is constant on the whole C
and so f ′(zx) = f ′(x) = f ′(0) for any z ∈ C. Now, for y ∈ Cm with y 6= 0 we get
f ′(y) = f ′(||y|| y

||y||) = f ′( y
||y||) = f ′(0) and consequently f ′ is constant.

(2) For a fixed point (λ, x) ∈ S2m consider the map

f ′′(λ,x) : C −→ C

given by f ′′(λ,x)(z) = f ′′(λ, zx) for any z ∈ C. Then f ′′(λ,x) restricts to a map S1 → S1

with Brouwer degree zero. By means of Corollary 2.2, we conclude as above that
f ′′(λ, zx) = f ′′(λ, x) = f ′′(λ, 0) for any z ∈ C. Now, for any y ∈ Cm with y 6= 0 and

|λ| < 1 we get f ′′(λ, y) = f ′′(λ, ( ||y||√
1−λ2 )(

√
1−λ2

||y|| y)) = f ′′(λ, 0) because (λ,
√

1−λ2

||y|| y) ∈
S2m. Therefore there are a0, . . . , ak ∈ C with ak 6= 0 and such that

f ′′(λ, y) = f ′′(λ, 0) = akλ
k + · · ·+ a1λ+ a0

for any y ∈ Cm provided |λ| < 1. Because f ′′(λ, y) ∈ S2m and f ′′(S2m) ⊆ S1 so
(akλ

k + · · ·+ a1λ + a0)(ākλ
k + · · ·+ ā1λ + ā0) = 1 for any λ < 1, where − denotes

the conjugation in C. Whence k = 0 and the polynomial map f ′′(−, y) is constant
for any y ∈ Cm. Finally we derive that f ′′ is a constant map. �

Because any complex polynomial map Rl → S1 is constant for l ≥ 0 so the
following complex version of Corollary 1.8 arises.

Proposition 2.4. Let f̃ : Rl×Cm1×· · ·×Cmk → Cn be a map with m1, . . . ,mk ≥ 1,
l ≥ 0 and such that:

(1) the map f̃(λ,−, · · · ,−) : Cm1 × · · · × Cmk → Cn is holomorphic for any
λ ∈ Rl;

(2) the map f̃(−, z1, . . . , zm) : Rl → Cn is polynomial for any (z1, . . . , zm) ∈
Cm1 × · · · × Cmk .

If f̃ restricts to a map f : S2m1 ×· · ·×S2ml ×S2ml+1−1×· · ·×S2mk−1 → Tn for l < k
and to a map f : S2m1 × · · · × S2ml × Rl−k → Tn for l ≥ k then

f(λ, z1, . . . , zk) = (α1z
j11
1 · · · zjk1

k , . . . , αnz
j1n
1 · · · zjkn

k )

for any (z1, . . . , zk) ∈ Cm1 × · · · × Cmk with some α1, . . . , αm ∈ C and non-negative
integers jst such that jst = 0 provided ms > 1 for s = 1, . . . ,m and t = 1, . . . , n. We
put z0 = 1 whenever z ∈ Cd with d ≥ 1.

Of course, in virtue of the same methods, similar results could be shown replacing
holomorphic maps by antiholomorphic ones.
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Facultad de Ciencias, Universidad de Málaga
Campus Universitario de Teatinos
29071 Málaga, España
e-mail: fgomez@agt.cie.uma.es


