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Abstract

Given a field K, all polynomial maps S™ (K) x --- x S™(K) — T"(K)
of generalized tori over K are studied. Furthermore, a full description of
holomorphic maps C™ — C™ x --- x C™ and C™* x --- x C™ — C"™ which
restrict to maps T — S?171 x ... x §2%~1 and $?™ 1 x ... x §2m—1  T7
respectively, is presented.

Introduction

In virtue of Wood [7] (see also [4, Chapter 13]) a necessary condition for the existence
of a non-constant polynomial map S™ — S" of spheres for m > n is that 28! >
m > n > 2¥ for some k > 0. It follows that all polynomial maps S™ — S"
are constant if m > 2n. In particular, any polynomial map S™ — S! is constant
for m > 1. If we replace the reals R by the complex numbers C the situation
is different. Write S™(C) for the complex sphere defined as the locus of complex
zeros in C™*1 of the polynomial Y7©, X? — 1. Given a complex polynomial map
f:S™(C) — C we get a non-constant one (f,if,1,0...,0) : S*(C) — S*(C) for
n > 2. Whence the only remaining cases for complex spheres to be considered are
polynomial maps S™(C) — S'(C). It was shown in [8] that from the homotopy point
of view nothing is lost by complexifying the problem of which homotopy classes of
maps of spheres contain a polynomial representative. Furthermore, in virtue of [5],
any complex polynomial self-map of S?(C) yields a regular self-map of the sphere
S? in a canonical way. Then Loday [6], using algebraic and topological K-theory,
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proved some results on polynomials maps into S™. For instance, every polynomial
map from the torus T" (as the n-th cartesian power of S!) to S is null-homotopic
if n > 1. For n even those results were extended in [1, 2] to regular and then in [4]
to polynomial maps S™ x --- x §" — S§" with n =ny + --- 4+ n; odd.

This paper grew out of our attempt to describe all polynomial self-maps of the
real and complex circle as well. This was accomplished by some analytic methods
and then some purely algebraic ideas came to simplify our investigations. We tend
to transfer some results from [6, 7, 8] on spheres and their polynomial maps into
spheres over any field. Given a field K, the m-sphere S™(K) C K™ over K is
defined as the locus of zeros in K™ of the polynomial >"7, X7 — 1. Write T"(K)
for the n-th cartesian power of S'(K) for any n > 1 called the n-torus over K.

If K is the field of real or complex numbers then any continuous map S"!(K) x
<o x 8™ (K) — T™(K) is obviously null-homotopic provided my,...,m; > 1. On
the other hand, those polynomial maps are worth to be studied from the algebraic
point of view. Section 1 takes up the systematic study of polynomial maps S" (K') x
-~ x S™(K) — T™(K) for any field K. We make use of the abelian group structure
on the sphere S'(K) to show

Theorem 1.4. Let K be a field and f : SY(K) — SY(K) a polynomial self-map.
Then:
(1) if K is of characteristic two, f = (fo, 1+ fo);
(2) if K is finite, any set self-map of SY(K) is a polynomial one;
(3) if K is an infinite field of characteristic different from two, f(z) = az® for
any z € SY(K) with some a € SY(K) and an integer k.

However, any self-map S!'(K) — S'(K) is polynomial for a finite field K. Then,
we observe that S"(K) and K™ are birationally equivalent to assert

Theorem 1.7. Let K be a field, f: S"(K) — SYK) a polynomial map and n > 2.
Then:

(1) if K is of characteristic two, f = (fo, 1+ fo);

(2) of K is finite, any set map S"(K) — SY(K) is a polynomial one;

(3) if K is an infinite field of characteristic different from two, f is constant.

A full description of all polynomial maps S™ (K) x --- x S (K) — T"(K) is
derived in
Corollary 1.8. Let K be an infinite field and f = (f1,..., fn) : S™(K) X --- X
S™(K) — T™(K) a polynomial map with my,...,my > 1. Then:

(1) fi = (f}, f; +1), where f} is a polynomial function on the sphere S™i (K) for

j=1,....n provided K is of characteristic two;
(2)
fi(zy, .. ) = ajxlfj . -xifj
for any point (x1,...,25) € S™(K) X -+ x S™(K) and j = 1,...,n with some
ai,...,a, € SYK) and integers ly, such that 1, = 0 provided m, > 1 for u =

1,....,k,v=1,...,n and K is of characteristic different from two. We put 2° =1
whenever x € SUK) with d > 1 and identify points of SY(K) with elements of the
group U(K).

Section 2 ends the paper with purely topological investigations. Holomorphic
maps C"™ — C™ x --- x C"™ and C"™ x .- x C™ — C" which restrict to T™ —
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S?lx. . xSl and Sl xSl T respectively, are then considered.

It follows that any map T™ — S?™~! x ... x §?®~1 ig null-homotopic through a
complex polynomial homotopy provided nq,...,ny > 1 (see [1, 3, 6] for the real
case).

1 Tori over fields and their maps

Let K be a field. The affine set
S"(K) = VK<ZX,§ - 1>
k=0

in K", given by the zeros of the polynomial 37_, X7 — 1, is called the n-sphere
over the field K for n > 0. We say that a map f = (fo,..., fn) : S™(K) — S"(K) is
polynomial if there exist polynomials Fy, ..., F, € K[Xy, ..., X,,] such that fi(x) =
Fy(z) and 3} fu(x)? = 1 for all z € S™(K). If characteristic of K is two then
SMK) = Vk(Xh_o Xx +1). Whence any polynomials Fi,..., F, € K[Xo,..., X,
with Fy = 1+ Y}_, F) determine a polynomial map f = (fy,..., fn) : S"(K) —
S™(K).

Write now U(K) for the multiplicative group of K.

Proposition 1.1. Let K be an algebraically closed field and f : U(K) — U(K) a
self-map given by a Laurent polynomial F € K[X, X~ ']. Then, there exist « € U(K)
and an integer k such that f(r) = ar® for all r € U(K).

Proof. Let F(X) = X "G(X) for some natural number n, where G(X) € K[X].
Since F(r) # 0 for all r € U(K) and K is an algebraically closed so we have
G(X) = aX™ with a # 0 and some m > 0. Thus f(r) = ar™™" for any r € U(K).

"

Observe that on the 1-sphere S'(K) called also a circle there is an abelian group
structure defined by (zg,z1) o (z(, ]) = (xoxy — 212, X2} + 212() for any points
(z0, 1), (x4, ;) € S'(K). On the other hand, consider for convenience the quotient
ring K = K[X]/(X?+1) and denote by I the class of X in K. Whence any element
of K is uniquely written as r + s/ with 7,5 € K. Then, the circle SY(K) might be
identified with the subgroup of units U(K) of the ring K given by elements xq+ 211
with zg, 21 € K and z3 + 27 = 1.

Suppose first that K is a field of characteristic different from two and there is
an element i € K with i2 = —1. Be aware that I # i and observe that K always
has zero divisors because (I +1)(/ — i) = 0. It is clear that the map

p:SYK) — U(K)

given by p(zg + x11) = ¢ + x1i for zg + 211 € S'(K) is an isomorphism of groups
with the inverse

pU(K) — SY(K)
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given by p~1(r) = % + @I for r € U(K). Furthermore, any polynomial

self-map f = (fo, f1) : S'(K) — SYK) is given by f(z) = fo(}=,1520) +
fl(“gzz 5211 for any 2 € SY(K) using the identification of S'(K) as a subgroup
of U(K).

Corollary 1.2. Let K be an algebraically closed field of characteristic different from
two. Then for any polynomial self-map f : SY(K) — S'(K) there exist 3 € S'(K)
and an integer k such that f(z) = B3zF for any z € SY(K) C K.

Proof. Given a polynomial self-map f = (fy, f1) : S'(K) — S'(K) consider
the Laurent polynomial map g : U(K) — U(K) defined by g(r) = p(f(p~(r)) =
Fo(H22 =24y 4 fy (M2 12 4)i for € U(K). Then Proposition 1.1 says that there

2r 7 2r 2r 0 2r
are a € U(K) and an integer k such that g(r) = ar® for all r € U(K) and so taking
z=pL(r) and B = p~1(a) we get f(z) = Bz* for all z € S{(K). "

Now, for a field K of characteristic different from two, let Vi = VK(XO —
L,Yr  X2) and SPYK) = V(X0 X? + 1) be affine sets in K™ and K",
spectively. Then, the rational function ®,(K) = (1i()1(0, R X ) (determlned by
the familiar stereographic projection) yields the bijection

On(K) : S"(E)\Vix — K"\S]7(K)

with the inverse
Un(K) : KM\S]TH(EK) — S"(K)\Vi
determined by the inverse ¥, (K) = 1+Z e (Cr_, X2 —1,2X4,...,2X,) to the

stereographic projection. Whence, S™(K) and K ™ are birationally equivalent for any
n > 0 and we are in a position to state

Proposition 1.3. Let K be an infinite field of characteristic different from two.
Then S*(K) = S*(K) for n > 0, where K denotes the algebraic closure of K and
S"(K) the Zariski closure of S*(K) in K"

Proof. Obviously, S%(K) = S°%K). If now n > 1 and a polynomial F €
K[Xy, ..., X,] vanishes on S*(K) then FV, (K) vanishes on K"*\S?(K). Because
the field K is infinite, K™ is dense in K™ (with respect to the Zariski topology on K™)
and consequently K™\S? !(K) is dense in K™\S! '(K) as well. The regular func-
tion FW,(K) vanishes on K™\S!'(K) whence F¥,(K) vanishes on K"\S! *(K).
Consequently, the polynomial F vanishes on the non-empty open subset S"(K)\Vx.
Because the principal ideal (3-7_, X? —1) is prime so the sphere S*(K) is irreducible
and hence the open set S*(K)\V is dense in S*(K). Thus, F vanishes on the whole
sphere S*(K), and the proof follows. [

Now, we can state our first result.

Theorem 1.4. Let K be a field and f : SY(K) — SYK) a polynomial self-map.
Then:
(1) if K is of characteristic two, f = (fo, 1+ fo);
(2) if K is finite, any set self-map of SY(K) is a polynomial one;
(3) if K is an infinite field of characteristic different from two, f(z) = az® for
any z € SY(K) with some a € SY(K) and an integer k.
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Proof. The cases (1) and (2) are straightforward.

(3) By Proposition 1.3, the map f : S!(K) — S!(K) can be extended to a poly-
nomial map f’: SY(K) — SY(K), where K is the algebraic closure of K. Corollary
1.2 says that there is o € S'(K) and an integer k such that f/(z) = az* for all
z € SY(K). Taking z € S}(K) we deduce that o € S'(K) and the proof follows. m

Now, we move to the study of polynomial maps from n-spheres over any field
with n > 1. But before we need

Lemma 1.5. Let K be an algebraically closed field of characteristic different from
two. Then any polynomial map f : S*(K) — SY(K) with a finite image is necessarily
constant.

Proof. Let ay,...,a,, be all the points in the image of f : S*(K) — S!(K)
and consider the map po f : S*(K) — U(K), where p : SH(K) — U(K) is the
isomorphism described above.

The polynomial map F' = (po f — p(a1))---(po f — p(ay,)) obviously vanishes
on S?*(K) and so F is a multiple of the polynomial X? + X? + X2 — 1. Thus for
some 7, the polynomial po f — p(«a;) is a multiple of X3 + X7 + X3 — 1 because the
principal ideal (Xg + X7 + X3 — 1) is prime. Therefore p(f(xo, x1,22)) = p(c;)) for
all (xg, x1,22) € S*(K) and so f(zg, 21, 72) = a; for all (zg, z1,22) € S*(K). .

Next, we show

Lemma 1.6. If K is an algebraically closed field of characteristic different from two
then any polynomial map f : S*(K) — SY(K) is constant.

Proof. First we show that any two orthogonal vectors u, v € S*(K) (for the form
23 + 22 + x3) differ only by multiplication with a power of I.

In fact, consider the polynomial self-map g of S'(K) given by g(z,y) = f(xu+yv)
for any (z,y) € S'. By Theorem 1.4 there exist o € U(K) and an integer k such
that g(x,y) = a(z,y)*. Therefore, f(u) = a, f(v) = al* and so f(v) = f(u)I*.

Now, given z € S?, by Witt Theorem there exists y € S? orthogonal to the
vectors x and ey = (1,0,0). By means of the above, there are integers k and [ such
that f(y) = f(eo)I* and f(y) = f(x)I'. Therefore, f(x) = f(eo)I*~! and the image
of f is finite. Thus, by Lemma 1.5 the result follows. n

Whence, we are in a position to show our next main result.

Theorem 1.7. Let K be a field, f: S*(K) — SY(K) a polynomial map and n > 2.
Then:

(1) if K is of characteristic two, f = (fo, 1+ fo);

(2) if K is finite, any set map S"(K) — SY(K) is a polynomial one;

(3) if K is an infinite field of characteristic different from two, f is constant.

Proof. The cases (1) and (2) are straightforward.
(3) In the light of Proposition 1.3 we can assume that K is algebraically closed.
Let (zo,...,%,) € S"(K) with 27 4+ 27 # 1 for some couple of indexes i, j such that
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0 < i < j < n. Choose one of the two square roots of 1 — z? — x? and define
t:S*K) — S*(K) by
Y2 &
(Yo, Y1, Y2) = Yoei + Yrej + T TCk,
1 - xz - xj k=0
v k4,5
where eq, . .., e,41 denote vectors of the standard basis in K™*!.
Using now Lemma 1.6, we know that f¢ is constant. In particular
flei) = f(e(1,0,0)) = f(c(0,1,0)) = f(e;) =
fzy, @y, (/1 — 22 — x?)) = f(zo,...,Ty).
Therefore, by taking as (zo, . .., z,) the points eq, ..., e, respectively, we deduce
that f(ep) = f(e1) =--- = f(en) = f(xo,...,x,) for any (xg,...,z,) € S*(K) with
the possible exception of those (zo,...,z,) such that 22 = --- = 22 and 222 = 1.

Therefore f is constant with a possible exception of a finite number of points in
S™(K). But since K is infinite, being an algebraically closed field, we derive that f
is constant. ]

Let now Sy, S5, S3 be any sets and f : 57 x S5 — S3 a map. It is obvious that f is
constant provided the maps f(—,s2) : Sy — S5 and f(s1, —) : S — S3 are constant
for any s; € Sy and sy € Sy. Write T"(K) for the n-th cartesian power of S'(K) for
any n > 1 called the n-torus over K. Then, the results above lead to

Corollary 1.8. Let K be an infinite field and f = (fi,..., fn) : S™(K) X -+ %
S™(K) — T™(K) a polynomial map with myq,...,my > 1. Then:

(1) f5 = (f}, f; +1), where f} is a polynomial function on the sphere S™i(K) for
j=1,...,n provided K is of characteristic two,

(2)

fi(xr, .. ay) = ajxlfj . -xifj

for any point (xq,...,x5) € S™(K) x --- x S™(K) and j = 1,...,n with some
ai,...,a, € SYK) and integers ly, such that l,, = 0 provided m, > 1 for u =
1,....k,v=1,....n and K is of characteristic different from two. We put 2° = 1
whenever x € SYK) with d > 1 and identify points of SY(K) with elements of the

group U(K).

For the field R of reals by [7] (see also [4, Chapter 13]) any polynomial map
S*(R) — S""1(R) of spheres is constant provided n is a power of 2. It follows that
all polynomial maps S™(R) — S"(R) are constant if m > 2n. On the other hand, if
K is a field with i € K then any polynomial F' € K|[Xy, ..., X,,] determines the non-
constant polynomial map (f,if,1,0,...,0) : S™(K) — S"(K) provided n > 2, where
f(z) = F(x) for any x € S™(K). In particular, for the field of complex numbers C
and any positive integers m,n with n > 2 there are non-constant polynomial maps
S™(C) — S*(C).
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2 Maps of tori over reals

Throughout of this section the n-sphere S"(R) (resp. the n-torus T"(R)) over the
reals R will be denoted simply by S™ (resp. T") for n > 0. Observe that any poly-
nomial F'(X) € C[X] yields two polynomials Fy(Xo, X1), F1(Xo, X1) € R[Xo, X4,
where F(Xo +iX1) = Fo(Xo, X1) + iF1(Xo, X1). If the associated polynomial self-
map R? — R? restricts to such a map f : S! — S* then by Theorem 1.4 there are
a € S! and a non-negative integer k with f(z) = az* for any z € S! and conse-
quently F(X) = aX*. Whence, given a polynomial F(Xi,...,X,) € C[X,...,X,]
restricting to a map T — S' we get F(X1,...,X,,) = aX}'--- Xk for some a € S
and non-negative integers ki, ..., k,.

We aim to state a more general result. Then, write D = {z € C; |2| < 1} for
the closed disc in the complex plane C.

Proposition 2.1. The following conditions are equivalent for a continuous map
f: St — St

(1) f is the restriction of a meromorphic map f: U — C on some neighbourhood
U of St;

(2) there exist a, zq, ..., 2, € C such that |a] =1, |zx| <1 fork=1,...,n and
f is the restriction of the rational map f given by

f(z)zak:1<z_zk>k

Zrz — 1

with e, = 1 and k=1,...,n;

(3) f is the restriction of a rational map f;

(4) there exists an integer ng such that either a,, = 0 for alln > ng or a, =0 for
all n < ng, the radius of convergence of 3, .o a,z~" in the first case and the radius
of convergence of Y_,<oan2" in the second case is greater than one, where

1
27

2 . .
/ f(ezt)e—zntdt
0

are the Fourier coefficient of f for all integers n.

Qn

Proof. The implications (2) = (3) = (4) = (1) are clear and so why we
only check (1) = (2).

Let zq,..., 2z, be the zeroes or poles of f on D, where we count each zero or pole
as many times as indicated by its order. We consider then the rational map

where ¢, = 1 if 2z is a zero and ¢, = —1 if z; is a pole.

It is clear that g restricts to a map S' — S! and it has exactly the same zeros
and poles on D as the meromorphic map f. By the lifting homotopy property there
exists a holomorphic map 6 defined on a neighbourhood of D such that g =ef.

But |z| = 1 implies \§E§)| = 1. Whence, |e®®)| =1 provided |z| = 1. If e/ would
be non-constant then by the maximum-modulus principle:
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(a) |z| < 1 implies || < 1;

(b) because ¢’*) #£ 0 for any z € D so there is z, € S* with |e?(*0)| = 1 as the
minimum of the map |e’|.
This contradiction shows that e’ must be constant and of course |¢| = 1. Hence

for any z € C with o € S*. n

In particular, if a holomorphic map f : C — C restricts to a map f : S! — S
then all its possible zeros on the disc D coincide with 0 and so by (2) in Proposition
2.1 we get a € S! and a non-negative integer k with f(z) = azF for any z € S! and
consequently f(z) = az* for any z € C.

More generally, observe first that

St = {(z9,...,2,) € C"; Z |ze|* =1}

k=0

for any n > 1 and

Sn:{(Aﬂzl7--.,Z%)€RX C%7)\2+Z|Zk|2:1}

k=1

for n even. If now a holomorphic map f : (fl, e ,fn) : C — C" restricts to a map
f:S' — §?! then by the maximum-modulus principle we get that |f;(z)| < 1 for
any 2 € D and j = 1,...,n. Then as above we derive that there are a; € C and
non-negative integers k; such that f;(z) = a;2% for any 2 € Cand j =1,...,n.

Corollary 2.2. If a map f : T" — S?=1 with m,n > 1 is the restriction of a
holomorphic map f = (f1,..., fn) : C™ — C" then

f(z1, o zm) = (uaft e gfm ot g
for any (21, ..., 2m) € C™ with some (ay, ..., a,) € S ! and non-negative integers

kg fors=1,...,mandt=1,... n.

Now, let f: T™ — S?1=1 x ... x §?™~L with m, ny,...,n, > 1 be the restriction
of a holomorphic map f : C™ — C™ x---xC™. Then it might be easily derived from
the result above. In particular, any complex polynomial T™ — S~ 1x...xS?» 1 g
fully described. Obviously it follows that any such a map is null-homotopic through
a complex polynomial homotopy provided ny,...,n; > 1 (see [1, 3, 6] for the real
case).

Furthermore, the following result holds.

Corollary 2.3. (1) Let f' : C™ — C be a holomorphic map with m > 1. If f’
restricts to a map S*™~t — S! then f' is constant.

(2) Let f” : R x C™ — C be a map such that f"(A\,—) : C™ — C is holo-
morphic for any A € R and f"(—,z1,...,2m) : R — C is a polynomial map for
any (z1,...,2m) € C™ with m > 1. If f" restricts to a map S*™ — S' then f" is
constant.
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Proof. (1) For a fixed point € S*™~! consider the map
fi:C—C

given by f;(z) = f'(zz) for any 2 € C. Then f; restricts to a map fr.st - st
with Brouwer degree zero. By Corollary 2.2, the map f! is constant on the whole C
and so f'(zx) = f'(x) = f'(0) for any z € C. Now, for y € C™ with y # 0 we get
f'ly) = f’(|]y||H—zH) = f’(HyTH) = f’(0) and consequently f’ is constant.

(2) For a fixed point (\,z) € S*™ consider the map

f('f\x) :C—C

given by f(, ,y(2) = f"(A, zz) for any 2 € C. Then f{}  restricts to a map S' — S!
with Brouwer degree zero. By means of Corollary 2.2, we conclude as above that
f'\ zz) = f"(\ x) = f"(\,0) for any z € C. Now, for any y € C™ with y # 0 and
A< 1 we get f"(\y) = f"(\ (L) (Y=2y)) = £7(X,0) because (A, Yi=2y) €
S?™. Therefore there are ao, ..., a; € C with a; # 0 and such that

f//(/\vy) = f//(/\vo) = ak)\k + o +a1)\+a0

for any y € C™ provided |\ < 1. Because f”(\,y) € S*™ and f"(S*") C S! so
(apAF + -+ a1\ + ag)(@pA\* + -+ - + i\ + dg) = 1 for any A < 1, where — denotes
the conjugation in C. Whence k£ = 0 and the polynomial map f”(—,y) is constant
for any y € C™. Finally we derive that f” is a constant map. [

Because any complex polynomial map R! — S! is constant for [ > 0 so the
following complex version of Corollary 1.8 arises.

Proposition 2.4. Let f ‘RIXC™ x ... xC™ — C™ be a map withmq, ..., my > 1,
[ >0 and such that:

(1) the map f()\,—,--~ ,—) : C™ x ... x C™ — C" is holomorphic for any
A e R

(2) the map f(—,zl, oy Zm) » RE — C" s polynomial for any (21,...,%nm) €
Cm x ... x Cmk
If f restricts to a map f : ST™ x « -« x §2M x §2u+1—L s Sl T for | <
and to a map f:SP™ x - x §?™ x RF = T" for 1 > k then

FO 21, 2) = (g2 - -zi’“l, Ry zik")
for any (z1,...,2,) € C™ x -+ x C™ with some ay, ..., a, € C and non-negative
integers jg such that jg = 0 provided mg > 1 fors=1,... mandt=1,... , n. We

put 2° = 1 whenever z € C* with d > 1.

Of course, in virtue of the same methods, similar results could be shown replacing
holomorphic maps by antiholomorphic ones.



148 M. Golasinski — F. Gémez Ruiz

References

[1] J. Bochnak, W. Kucharz, Realization of homotopy classes by algebraic mappings,
J. Reine Angew. Math. 377 (1987), 159-169.

[2] J. Bochnak, On real algebraic morphisms into even-dimensional spheres, Ann.
of Math. 128 (1988), 415-433.

[3] J. Bochnak, W. Kucharz, Polynomial mappings from products of algebraic sets
into spheres, J. Reine Angew. Math. 417 (1991), 135-139.

[4] J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Erg. der Math. 36,
Springer-Verlag, Berlin-Heidelberg-New York (1998).

[5] M. Golasiiski, F. Gémez Ruiz, Polynomial and regular maps into Grassmanni-
ans, K-Theory 26 (2002), 51-68.

[6] J.-L. Loday, Applications algébriques du tore dans la sphere et de SP x S, in
Algebraic K-theory II, Lect. Notes in Math. 342 (1973), 79-91.

[7] R. Wood, Polynomial maps from spheres to spheres, Invent. Math. 5 (1968),
163-168.

[8] R. Wood, Polynomial maps of affine quadrics, Bull. London Math. Soc. 25
(1993), 491-497.

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
87-100 Toruri, Chopina 12/18; Poland

e-mail: marek@mat.uni.torun.pl

Departamento de Algebra, Geometria y Topologia
Facultad de Ciencias, Universidad de Mélaga
Campus Universitario de Teatinos

29071 Mélaga, Espana

e-mail: fgomez@agt.cie.uma.es



