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Abstract

In this note, we introduce and briefly study a non-binary analogue of the
“classical” Walsh transform. It is shown that this transform allows to rewrite
the definition of normalized epistasis in terms of generalized Walsh coefficients,
in a way which is both practical and elegant. Some examples are included,
aiming to give a first indication of the strength of this approach.

Introduction

The classical genetic algorithm (GA) starts from a fitness function f , i.e., a positive
real-valued function f on Ω = {0, 1}` (the set of all length ` strings s = s`−1 . . . s0),
and aims to find its maximum (or minimum). There are many factors which may
make a fitness function hard to optimize by a genetic algorithm, one of them being
the existence of relations or links between separate bits, cf. [2], for example. In [7]
Rawlins compares this phenomenon to a similar situation in genetics, where a gene
at some locus in the chromosome may hide the (phenotypical) effect of another gene
at a different locus, cf. [8]. When this phenomenon occurs, one refers to the first
gene as being epistatic to the second one.

Adapting this idea to the framework of GAs, Rawlins speaks of minimal epistasis
when every bit in a string is independent of any other one, i.e., when the fitness
function f may basically be given as a linear combination of functions, each of
which only depends upon a single bit. At the other extreme, we have maximal
epistasis, if no proper subset of genes is independent of any other gene, and this
situation corresponds to f essentially being a random function.
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The quantification of these ideas considered in [9, 10, 11] extends ideas of Davidor
[1], and consists in associating to any fitness function f on {0, 1}` a positive value
ε(f) in such a way that ε(f) = 0 corresponds to minimal epistasis. In [5], these
ideas are generalized to more general, not necessarily binary alphabets and fitness
functions with minimal resp. maximal epistasis are explicitly described.

In the first section of the present note, we recall how previous definitions of
epistasis [1, 7] may be reshaped into a more precise, algebraic form and we introduce,
in particular, the notion of “normalized epistasis” ε∗(f) of a fitness function f acting
on strings over a not necessary binary alphabet. In the second section, we define
generalized (complex) Walsh transforms and show how these, and their “classical”
counterpart, allow for an easier calculation of normalized epistasis. We illustrate
this, in the third section, by applying our methods to particular instances of fitness
functions, like ordinary and generalized unitation functions as well as some other
elementary examples.

1 Epistasis

1.1 Throughout this text, we work over a fixed alphabet A of cardinality n, which
we usually identify with the set of integers {0, ..., n− 1}. The set A` consisting of
all length ` strings s = s`−1 · · · s0 over A will be denoted by Ω. Let R+ denote the
set of all positive real numbers. Fitness functions are maps f : Ω −→ R+, (which
we want to optimize!). Mimicking ideas due to Davidor [1] in the binary case, the
epistasis ε(s) of a string s in a population P ⊆ Ω may be defined as follows.

Denote by

fP =
1

|P |
∑
s∈P

f(s)

the average fitness of f over P and for any 0 ≤ i < ` and a ∈ A by

fP (a,i) =
1

|P (a, i)|
∑

s∈P (a,i)

f(s)

the average fitness over P (a, i), the sub-population consisting of all strings s`−1 · · · s0 ∈
P with si = a. The epistasis of a string s over a population P is defined as

εP (s) = f(s)−
`−1∑
i=0

1

|P (si, i)|
∑

t∈P (si,i)

f(t) +
`− 1

|P |
∑
t∈P

f(t).

In this note, we will only be working with the full search space Ω, so |P | = n` and
the previous formula simplifies to

ε(s) = f(s)−
`−1∑
i=0

1

n`−1

∑
t∈Ω(si,i)

f(t) +
`− 1

n`

∑
t∈Ω

f(t),

where Ω(a, i) now consists, for any a ∈ A, of all strings in Ω having value a at the
ith position. In this case, the global epistasis of f is defined to be

εn,`(f) =
√∑

s∈Ω

ε2(s).
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1.2 As in [5, 9], the previous definition may be rewritten in a more elegant form.
Indeed, consider the vectors

e =


ε(0 . . . 00)
ε(0 . . . 01)

...
ε((n− 1)(`))

 resp. f =


f0
...

fn`−1

 ,

where (n − 1)(`) is the length ` string all of whose components have value (n − 1),
and where we write f0, . . . , fn`−1 for f(0 . . . 00), . . . , f((n− 1)(`)).

For any positive integers 0 ≤ i, j ≤ n` − 1, let us put

eij =
1

n`
((n− 1)`+ 1− ndij),

where dij (or dn
ij, if ambiguity may arise) is the (n-ary) Hamming distance between i

and j, i.e., the number of “bits” in which the n-ary representations of i and j differ.
For example, d3

16,24 = 2, since, in ternary notation, 16 = 121 and 24 = 220. Putting
En,` = (eij) ∈ Mn`(Q), the square matrices of dimension n with rational entries, it
is easy to see that

e = f − En,` f .

This allows us to define the global epistasis of f to be

εn,`(f) = ‖e‖ = ‖f − En,` f‖ .

Usually, one prefers to work with the integer matrix Gn,` = n`En,` with entries
gij = (n− 1)` + 1− ndij for all 0 ≤ i, j ≤ n` − 1. This matrix may also be defined
inductively by

G` =


G`−1 + (n− 1)U`−1 G`−1 −U`−1 · · · G`−1 −U`−1

G`−1 −U`−1 G`−1 + (n− 1)U`−1 · · · G`−1 −U`−1
...

...
. . .

...
G`−1 −U`−1 G`−1 −U`−1 · · · Gn,`−1 + (n− 1)U`−1

 ,

where we wrote G` for Gn,` and where, for any positive integer k, the nk-dimensional
matrix Uk = Un,k is given by

Un,k =


1 · · · 1
...

. . .
...

1 · · · 1

 .
A straightforward induction argument, using the previous recursive formula, shows
that G2

n,` = n`Gn,`, hence that En,` is idempotent. Using this and the fact that En,`

is symmetric, it follows that ε2
n,`(f) = tf(In,`−En,`)f , where In,` is the n`-dimensional

identity matrix.
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1.3 It is obvious that for any positive real number r ∈ R, we have εn,`(rf) =
rεn,`(f), whereas the epistasis of f and rf , viewed as expressing linkage between
different “bits”, should be the same. This leads one to define the normalized epistasis
of a fitness function f as

ε∗n,`(f) = ε2
n,`

(
f

‖f‖

)
=
ε2

n,`(f)

‖f‖2 =
tf(In,` − En,`)f

tf f
,

and, as En,` is an orthogonal projection, it thus follows that

0 ≤ ε∗n,`(f) ≤ 1.

Actually, one may show that ε∗n,`(f) = 0 is equivalent to f having minimal epistasis,
in the sense of Rawlins [7]. On the other hand, it has been proved in [5] that the
maximal value of ε∗n,`(f) that may be reached by a positive valued fitness function
f is 1 − 1

n`−1 . In fact, this value is reached precisely by the fitness functions which
are zero everywhere, except for n points at maximal Hamming distance and with
equal fitness value. In particular, in the binary case (n = 2) the maximal value for
the normalized epistasis, 1 − 1

2`−1 , is reached by so-called “camel functions”, i.e.,

fitness functions f with the property that there exists some t ∈ {0, 1}` with binary
complement t̂ and some positive real number α such that f(t) = f(t̂) = α and
f(s) = 0 for s 6= t, t̂.

2 The Generalized Walsh Transform

2.1 In this section, we define the generalized (complex) Walsh transform and we
show how it may be used as a tool which allows for an easier calculation of the
epistasis of a fitness function. Although our ideas are inspired by those of Goldberg
[3], who successfully applied Walsh analysis to calculate schema averages, we will
use a slightly different terminology.

Let r be a primitive root of unity. i.e., r = e
2π
n

i = cos(2π
n

) + i sin(2π
n

). We define
the set of complex vectors {v0,v1, . . .vn−1} by

vk = t
(
1, rk, r2k, . . . , r(n−1)k

)
∈ Cn

for all 0 ≤ k ≤ n− 1.
Let us denote by Vn,1 the (symmetric!) n-dimensional complex matrix given by

Vn,1 = (v0v1 · · ·vn−1) .

For small values of n, we have V1,1 = (1) and

V2,1 =

(
1 1
1 −1

)
∈M2(C) resp. V3,1 =

 1 1 1
1 r r2

1 r2 r

 ∈M3(C)

where r = −1
2

+ i
√

3
2
.
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Let us take a moment to recall that the Kronecker product (or tensor product)
A⊗B of any pair of matrices A = (aij) ∈ Rm×n and B = (bkl) ∈ Rp×q, is the matrix
(aijB)ij ∈ Rmp×nq, i.e.,

A⊗B =


a11B . . . a1nB

...
. . .

...
am1B . . . amnB

 .
In particular, we may thus put A⊗m = A ⊗ . . . ⊗ A (m copies). Note that,
obviously,t(A⊗B) = tA ⊗ tB and (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), for all
A,C ∈ Rm×m and B,D ∈ Rp×p. For any complex matrices A ∈ Cm×m and B ∈ Cp×p

we also have that A⊗B = A⊗B.
With these definitions, let us put Vn,` = V⊗`

n,1, for any positive integer `.

Lemma. 2.2 For any positive integer `, we have

Vn,`Vn,` = n`In,`

where Vn,` denotes the adjoint complex matrix of Vn,`.

Proof. The assertion is true for ` = 1 because

(Vn,1Vn,1)ij =
n−1∑
k=0

rn−ikrjk =
n−1∑
k=0

rk(j−i) =

{
n if i = j
0 if i 6= j.

The general case follows from a straightforward induction argument on `, using the
previous result:

Vn,`Vn,` = V⊗`
n,1V

⊗`
n,1 =

(
V
⊗(`−1)
n,1 ⊗Vn,1

) (
V
⊗(`−1)
n,1 ⊗Vn,1

)
=

(
Vn,`−1 ⊗Vn,1

)
(Vn,`−1 ⊗Vn,1)

=
(
Vn,`−1Vn,`−1

)
⊗
(
Vn,1Vn,1

)
= n`−1In,`−1 ⊗ nIn,1 = n`In,`.

In order to prepare for the calculation of normalized epistasis in terms of generalized
Walsh coefficients, let us first prove:

Lemma. 2.3 For any positive integer `, we have

Vn,`Un,`Vn,` = n2`


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .
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Proof. Let us again argue by induction on `. The statement holds true for
` = 1, because

Vn,1Un,1Vn,1 =


1 1 · · · 1
1 rn−1 · · · r
...

...
. . .

...
1 r · · · rn−1




1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1




1 1 · · · 1
1 r · · · rn−1

...
...

. . .
...

1 rn−1 · · · r(n−1)2



=


n2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .

Now, assume the assertion is true up to `− 1 and let us prove it for `. Then,

Vn,`Un,`Vn,` = (V⊗`
n,1)Un,`(V

⊗`
n,1)

=
(
V
⊗(`−1)
n,1 ⊗Vn,1

)
(Un,`−1 ⊗Un,1)

(
V
⊗(`−1)
n,1 ⊗Vn,1

)
=

(
Vn,`−1Un,`−1Vn,`−1

)
⊗
(
Vn,1Un,1Vn,1

)

= n2(`−1)


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⊗ n2


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0



= n2`


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .

We may now prove:

Lemma. 2.4 With notations as before, we have:

Vn,`Gn,`Vn,` = Dn,`,

where Dn,` is the diagonal matrix whose only non-zero diagonal entries dii have value
n2` and are situated at i = knj, for values 0 ≤ k < n and 0 ≤ j < `.

Proof. Using the recursive description of Gn,` given before, one easily deduces
that

Gn,` = Un,1 ⊗Gn,`−1 + (Gn,1 −Un,1)⊗Un,`−1.

It thus follows that
Vn,`Gn,`Vn,` = A + B
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where
A = Vn,` (Un,1 ⊗Gn,`−1)Vn,`

resp.
B = Vn,` ((Gn,1 −Un,1)⊗Un,`−1)Vn,`.

Let us now calculate these matrices A and B. First, using the fact that

Vn,` = Vn,1 ⊗Vn,`−1,

let us note that

A =
(
Vn,1 ⊗Vn,`−1

)
(Un,1 ⊗Gn,`−1) (Vn,1 ⊗Vn,`−1)

=
(
Vn,1Un,1Vn,1

)
⊗
(
Vn,`−1Gn,`−1Vn,`−1

)

= n2


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⊗
(
Vn,`−1Gn,`−1Vn,`−1

)

= n2


Vn,`−1Gn,`−1Vn,`−1 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .

On the other hand,

B =
(
Vn,1 ⊗Vn,`−1

)
((Gn,1 −Un,1)⊗Un,`−1) (Vn,1 ⊗Vn,`−1)

=
(
Vn,1(Gn,1 −Un,1)Vn,1

)
⊗
(
Vn,`−1Un,`−1Vn,`−1

)
=

(
nVn,1Vn,1 −Vn,1Un,1Vn,1

)
⊗
(
Vn,`−1Un,`−1Vn,`−1

)

=

n2In,1 −


n2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


⊗ n2(`−1)


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0



= n2`


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⊗


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .

Using this, another straightforward induction argument finishes the proof.

2.5 By analogy with the binary case (see [3, 6] for example), we define the (gen-

eralized) Walsh transform w of f by w = Wn,`f , with Wn,` = n
−`
2 Vn,`. The

(complex!) components wi = wi(f) of w will be called generalized Walsh coeffi-
cients of f . These coefficients, of course, easily permit to recover f , since it follows
from Wn,`Wn,` = In,` that

f = Wn,`(Wn,`f) = Wn,`w.
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We may now prove:

Proposition. 2.6 If w0, . . . , wn`−1 are the generalized Walsh coefficients of the fit-
ness function f , then the normalized epistasis ε∗n,`(f) of f is given by

ε∗n,`(f) = 1−
|w0|2 +

`−1∑
i=0

n−1∑
k=1

|wk·ni|2

n`−1∑
i=0

|wi|2
.

Proof. Since f = Wn,`w = Wn,`w, we obtain that

tf f = t(Wn,`w)Wn,`w = twWn,`Wn,`w = tww,

as Wn,` is symmetric and Wn,`Wn,` = In,`. On the other hand,

tf En,`f = n−` t(Wn,`w)Gn,`Wn,`w = n−2` twDn,`w.

It thus follows that

ε∗n,`(f) = 1−
tf En,`f

tf f
= 1−

twDn,`w

n2` tww

and this equals 1−
|w0|2 +

`−1∑
i=0

n−1∑
k=1

|wkni|2

n`−1∑
i=0

|wi|2
, indeed.

2.7 Let us now briefly consider the particular case n = 2. In this case, Ω = {0, 1}`,
the space of binary strings of length `, and r = −1. It follows that V2,` (or just V`)
is given by V` = V⊗`

1 , where

V1 =

(
1 1
1 −1

)
∈M2(Z).

So V` may inductively be constructed by

V` =

(
V`−1 V`−1

V`−1 −V`−1

)
∈M2`(Z).

The Walsh function ψt over {0, 1}` have been considered in [6] and are defined as

ψt(s) =
`−1∏
i=0

(−1)siti

for any s = s`−1 · · · s0 ∈ Ω. It follows that ψt essentially counts for any string s the
number of ones situated at loci where t also has value one. If s · t denotes the bitwise
product of s and t, it is clear that ψt(s) = (−1)s·t. So, the Walsh functions may be
represented by the matrix

(ψt(s))s,t∈Ω = V`.
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Moreover, in [6] the authors define the Walsh transform w = w(f) of f by its
associated vector w = W`f , where W` is the idempotent matrix given by W` =
2−

`
2V` (see [6] for further details). As the Walsh functions form a basis for the

vector space of real valued functions on {0, 1}` , the components wi = wi(f) of w,
the Walsh coefficients of f , are (up to a factor 2−`/2) the coordinates of f with
respect to the basis {ψt; t ∈ Ω}. The Walsh coefficients of f easily permit to recover
f ; in fact

f = W`(W`f) = W`w.

Moreover, in [6] it has been proved that W`E`W` = D̃` where D̃` (or 2−2`D2,` with
our notation) is the diagonal matrix, whose only non-zero diagonal entries dii have
value 1 and are situated at i = 0 and i = 2j, for 0 ≤ j ≤ `− 1.

The general result above thus yields:

Proposition. 2.8 If w0, . . . , w2`−1 are the Walsh coefficients of the fitness function
f , then the normalized epistasis ε∗2,`(f) of f is given by

ε∗2,`(f) = 1−
w2

0 +
`−1∑
i=0

w2
2i

2`−1∑
j=0

w2
j

.

3 Some Examples

In this section, we describe some examples which illustrate how the previous results
may be applied in order to effectively calculate the epistasis of some given fitness
function.

3.1 As we pointed out in Section 1, it has been proved in [9] (in the binary case)
and in [5] (in the general case) that a fitness function f has ε∗(f) = 0 if and only if
f has minimal epistasis in the sense of [7], i.e., if f may be written in the form

f(s) =
`−1∑
i=0

gi(s)

for some fitness functions gi over R, which only depend on the i-th bit.

Let us show how our approach allows for an easy proof of this result.

From the expression of normalized epistasis in terms of generalized Walsh coeffi-
cients, it follows that ε∗n,`(f) = 0 is equivalent to wj = 0 for all j 6= 0, kni (1 ≤ k < n,
0 ≤ i < `).

Here, w0 = n
−`
2
∑

s∈Ω f(s), the average fitness value of f , just as in the binary
case. As for the other terms, first note that Vn,` can also be given as (rs.t)s,t∈Ω,
where we denote by s · t the bitwise product of s and t modulo n, in accordance with



64 M. T. Iglesias – C. Vidal – A. Verschoren

the binary case. So,

wkni = n
−`
2

∑
t∈Ω

rkni·tf(t) = n
−`
2

∑
t∈Ω

rk·tif(t)

= n
−`
2

 ∑
t∈Ω(i,0)

f(t) +
∑

t∈Ω(i,1)

rkf(t) + · · ·+
∑

t∈Ω(i,n−1)

rk(n−1)f(t)


= n

`
2
−1

n−1∑
j=0

rkjf(i,j)

where f(i,j) = 1
n`−1

∑
t∈Ω(i,j) f(t), for all j ∈ {0, 1, . . . , n− 1}.

It thus follows that ε∗n,`(f) = 0 is equivalent to

f(s) =
(
Wn,`w

)
s
= n

−`
2

(
Vn,`w

)
s
= n

−`
2

∑
t∈Ω

r−s·twt

= n
−`
2 w0 + n

−`
2

`−1∑
i=0

n−1∑
k=1

r−s·kni

wkni = n
−`
2

(
w0 +

`−1∑
i=0

n−1∑
k=1

r−ksiwkni

)

= n
−`
2

`−1∑
i=0

(
w0

`
+

n−1∑
k=1

r−ksiwkni

)
=

`−1∑
i=0

hi(s),

where hi(s) = n
−`
2

(
w0

`
+
∑n−1

k=1 r
−ksiwkni

)
∈ C, for all i. Actually,

f(s) =
`−1∑
i=0

hi(s) =
`−1∑
i=0

hi(s) ∈ R,

so, f(s) =
∑`−1

i=0 gi(s), with

gi(s) =
1

2

(
hi(s) + hi(s)

)
= n

−`
2

[
w0

`
+

1

2

n−1∑
k=1

(
r−ksiwkni + rksiwkni

)]

= n
−`
2
w0

`
+

1

2n

n−1∑
k=1

n−1∑
j=0

(
rk(j−si) + rk(si−j)

)
f(i,j)


= n

−`
2
w0

`
+

1

n

n−1∑
k=1

n−1∑
j=0

(
cos

2k(j − si)π

n

)
f(i,j),

which clearly belongs to R.

3.2 As another example, let us start by considering the set of vectors {e0, . . . , en−1}
in Rn`

, with ek = t(0 · · · 010 . . . 0) where 1 appears as k n`−1
n−1

-th coordinate, for 0 ≤
k < n. If we inductively define the set of complex vectors

{
v0,`, . . . ,vn`−1,`

}
in Cn`

by putting vk,0 = 1 for all k and, inductively,

vk,` = t
(

tvk,`−1, r
k tvk,`−1, r

2k tvk,`−1, · · · , r(n−1)k tvk,`−1

)
,

then Vn,`ek = v
k n`−1

n−1
,`
, for all 0 ≤ k < n.
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Let us now consider “generalized camel” functions, i.e., fitness functions defined
by f(s) = 0 for all s ∈ Ω, different from a chosen set of strings c0, c1, . . . , cn−1

in Ω which are pairwise at Hamming distance `, and with f(c0) = f(c1) = · · · =
f(cn−1) = 1. In order to calculate their normalized epistasis, we may assume c0 = 0

and so, ck = k n`−1
n−1

, (1 ≤ k < n). Then, the vector associated to f is
∑n−1

k=0 ek. The
generalized Walsh coefficients of f are thus given by

w = Wn,`f = Wn,`

n−1∑
k=0

ek = n
−`
2

n−1∑
k=0

Vn,`ek = n
−`
2

n−1∑
k=0

v
k n`−1

n−1
,`
.

It follows that

tww =

(
n
−`
2

n−1∑
k=0

tv
k n`−1

n−1
,`

)n−`
2

n−1∑
j=0

v
j n`−1

n−1
,`


= n−`

n−1∑
k=0

∣∣∣∣vk n`−1
n−1

,`

∣∣∣∣2 + 2
∑
k<j

tv
k n`−1

n−1
,`
v

j n`−1
n−1

,`

 .
But, |v

k n`−1
n−1

,`
|2 = n`, for all 0 ≤ k < n. In fact, as v

k n`−1
n−1

,0
= (1), a straightforward

induction argument on `, proves that:∣∣∣∣vk n`−1
n−1

,`

∣∣∣∣2 = tv
k n`−1

n−1
,`
v

k n`−1
n−1

,`
=

n−1∑
i=0

(
r−ik n`−1

n−1 tv
k n`−1

n−1
,`−1

ri·k n`−1
n−1 v

k n`−1
n−1

,`−1

)

=
n−1∑
i=0

tv
k n`−1

n−1
,`−1

v
k n`−1

n−1
,`−1

= n
∣∣∣∣vk n`−1

n−1
,`

∣∣∣∣2 = n · n`−1 = n`.

On the other hand, a similar argument as above shows that

tv
k n`−1

n−1
,`
v

j n`−1
n−1

,`
= tv

k n`−1
n−1

,`−1
v

j n`−1
n−1

,`−1

n−1∑
i=0

ri(j−k)n`−1
n−1 = 0,

if k 6= j. It now easily follows that tww = n.
Moreover, one may verify, for example through an induction argument, that

wkni = 0 for all 1 ≤ k < n and 0 ≤ i < ` and, as w0 = n
−`
2

+1, we finally have that

ε∗n,`(f) = 1− 1

n`−1

in accordance with the remarks made in Section 1.

3.3 As a final example, we consider so-called generalized unitation functions. These
are fitness functions f with the property that there exist some functions gi on {0, . . . ,
` − 1}, (i = 0, . . . , n − 1), with the property that f(s) =

∑n−1
i=0 gi(ui(s)) where, for

any s ∈ Ω, we denote by ui(s) the number of i’s in the n-ary representation of s,
i.e., ui(s) = # {j; sj = i}. In the particular case n = 2, we can rewrite f as

f(s) = g0(u0(s)) + g1(u1(s))

= g0(`− u1(s)) + g1(u1(s))

= g(u(s))
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with g(α) = g0(`−α)+g1(α) and u(s) = u1(s) is the unitation of s, i.e., the number
of ones in the binary representation of s — for further details we refer to [4].

Let us fix some unitation function f , and denote by w0, . . . , wn`−1 the associ-
ated generalized Walsh coefficients. Since for any permutation σ(s) of s we ob-
viously have f(s) = f(σ(s)), it is clear that f(i,j) is independent of i, and as

wkni = n
`
2
−1∑n−1

j=0 r
kjf(i,j), with notations as in 3.1, for each k ∈ {0, . . . , n− 1},

we have
wk = wkn = wkn2 = · · · = wkn`−1 = βk.

In order to write a general expression of f(i,j), let us consider the case n = 3 and
then deduce the formula for the general case. Let us start with

f(i,0) =
1

3`−1

∑
s∈Ω(0,0)

f(s) =
1

3`−1

∑
s∈Ω(0,0)

(
g0(u0) + g1(u1) + g2(u2)

)

with ui = ui(s), for i = 0, 1, 2.
If we take any 0 ≤ a ≤ ` and 0 ≤ b ≤ ` − a, then it is clear that there are(

`−1
a−1

)(
`−a

b

)
strings in Ω(0, 0) with u0 = a, u1 = b and u2 = ` − a − b. This yields

that

f(i,0) =
1

3`−1

∑
s∈Ω(0,0)

f(s)

=
1

3`−1

∑
u0,u1,u2

u0+u1+u2=`

(
`− 1

u0 − 1

)(
`− u0

u1

)
(g0(u0) + g1(u1) + g2(u2)) .

Of course, the same argument shows that

f(i,1) =
1

3`−1

∑
s∈Ω(0,1)

f(s)

=
1

3`−1

∑
u0,u1,u2

u0+u1+u2=`

(
`− 1

u1 − 1

)(
`− u1

u2

)
(g0(u0) + g1(u1) + g2(u2))

and

f(i,2) =
1

3`−1

∑
s∈Ω(0,2)

f(s)

=
1

3`−1

∑
u0,u1,u2

u0+u1+u2=`

(
`− 1

u2 − 1

)(
`− u2

u0

)
(g0(u0) + g1(u1) + g2(u2)) .

So, if 1 ≤ k ≤ 2, we have that

wk3i = 3−`/2
∑

u0,u1,u2
u0+u1+u2=`

{(
`− 1

u0 − 1

)(
`− u0

u1

)
+ rk

(
`− 1

u1 − 1

)(
`− u1

u2

)

+r2k

(
`− 1

u2 − 1

)(
`− u2

u0

)}
(g0(u0) + g1(u1) + g2(u2)) .
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In the general case, we find

wkni = n−
`
2

∑
u0,··· ,un−1

u0+···+un−1=`

αk
u0...un−1

n−1∑
i=0

gp(up)

with

αk
u0...un−1

=
n−1∑
i=0

rki

(
`− 1

ui − 1

)(
`− ui

ui+1

)
· · ·

(
`− ui − ui+1 − · · · − ui+n−3

ui+n−2

)
,

where all coefficients are modulo `.
On the other hand, note that

w0 = n−
`
2

∑
s∈Ω

f(s) = n−
`
2

∑
u0,··· ,un−1

u0+···+un−1=`

∑
s∈Ω

∀i:ui(s)=ui

f(s).

Since f is a unitation function,

w0 = n−
`
2

∑
u0,··· ,un−1

u0+···+un−1=`

(
`

u0

)(
`− u0

u1

)
· · ·

(
`− u0 − · · · − un−3

un−2

)
n−1∑
i=0

gi(ui).

The normalized epistasis of f is thus finally given by

ε∗n,`(f) = 1−
|w0|2 + `

n−1∑
k=1

|wk|2

n`−1∑
i=0

|wi|2
,

with coefficients as above.
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Campus de Elviña s/n, C. P. 15071
A Coruña, Spain.
totero@udc.es,eicovima@udc.es

A. Verschoren
University of Antwerp
Department of Mathematics and Computer Science
Middelheimlaan 1, B-2020
Antwerpen, Belgium.
alain.verschoren@ua.ac.be


