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Abstract

It is known that every lax projective embedding e : Γ → PG(V ) of a point-
line geometry Γ admits a hull, namely a projective embedding ẽ : Γ → PG(Ṽ )
uniquely determined up to isomorphisms by the following property: V and Ṽ

are defined over the same skewfield, say K, there is morphism of embeddings
f̃ : ẽ → e and, for every embedding e′ : Γ → PG(V ′) with V ′ defined over
K, if there is a morphism g : e′ → e then a morphism f : ẽ → e′ also exists
such that f̃ = gf . If e = ẽ then we say that e is dominant. Clearly, hulls are
dominant. Let now Γ be a non-degenerate polar space of rank n ≥ 3. We
shall prove the following: A lax embedding e : Γ → PG(V ) is dominant if and
only if, for every geometric hyperplane H of Γ, e(H) spans a hyperplane of
PG(V ). We shall also give some applications of the above result.

1 Introduction

In the first part of this introduction we will recall the essentials on embeddings, their
morphisms and hulls. In the second part, we shall state our main results.

1.1 Basics on embeddings and their morphims

A projective embedding of a connected point-line geometry Γ = (P,L) is an injective
mapping e from the point-set P of Γ to the point-set of a desarguesian projective
space Σ such that

(E1) the image e(P ) of P spans Σ,

(E2) for every line L of Γ, e(L) spans a line of Σ,
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(E3) no two distinct lines of Γ are mapped by e into the same line of Σ.

If moreover e(L) is a line of Σ for every line L of Γ, then e is said to be full. If e is
non-full, or we don’t know if it is full or we don’t care of that, then we say that e is
lax.

By assumption, Σ is desarguesian, namely Σ = PG(V ) for a vector space V . The
underlying skewfield K of V will be called the underlying skewfield of e. We also say
that e is defined over K, also that e is a K-embedding, for short. As all embeddings
considered in this paper are projective, henceforth we simply call them embeddings,
omitting the word “projective”.

Given a subskewfield K0 of K, a K-embedding e : Γ → PG(V ) and a K0-
embedding e0 : Γ → PG(V0), a morphism from e0 to e is a semilinear mapping f :
V0 → V , where V is regarded as a K0-vector space and f is such that e = PG(f) ·e0,
where PG(f) stands for the mapping from PG(V0)\Ker(f) to PG(V ) induced by f .
Note that f is uniquely determined modulo the choice of a scalar and an embedding
of K0 in K (Granai [3, section 2.4]; compare [5, proposition 9]).

If the morphism f is injective and sends K0-bases of V0 to K-bases of V , then
we say that f is a scalar extension. On the other hand, when K0 = K then f is
surjective, by property (E1) of embeddings and the equality e = PG(f) · e0. In this
case we call f a projection, also saying that e is a projection of e0. An isomorphism
of embeddings is a bijective projection.

Every morphism f : e0 → e splits as the composition f = fprojfext of a scalar
extension fext : e0 → e1 and a projection fproj : e1 → e. The intermediate em-
bedding e1 is uniquely determined up to isomorphisms. Accordingly, both fext and
fproj are uniquely determined, modulo isomorphisms.

By [4, Section 3] (see also Ronan [6]), for every K-embedding e of Γ there exists
a K-embedding ẽ of Γ such that e is a projection of ẽ and, for every K-embedding
e′ of Γ, if e is a projection of e′ then e′ is a projection of ẽ. The embedding ẽ
is uniquely determined up to isomorphisms and is called the hull of e. Following
Tits [14, 8.5.2], we say that e is dominant if it is its own hull. (Some authors call
dominant embeddings ‘relatively universal’; see Shult [8], for instance.)

In the literature (see Shult [8], for instance) a full embedding ẽ0 of Γ is said to be
absolutely universal if every full embedding e0 of Γ is a projection of ẽ0. However,
in this paper we prefer to call these embeddings universal full embeddings, giving
the words “absolutely universal” a stronger meaning: We say that a lax embedding
ẽ0 of Γ is absolutely universal if every embedding e of Γ is a projection of a scalar
extension of ẽ0. Clearly, absolutely universal embeddings, when they exist, are
uniquely determined up to isomorphisms. Also, the absolutely universal embedding
(if it exists) is dominant, but not all dominant embeddings are absolutely universal.
Moreover, if Γ admits the absolutely universal embedding ẽ0 and also admits a full
embedding, then ẽ0 is full (whence it is the universal full embedding). However, it
might happen that Γ admits the universal full embedding but no absolutely universal
embedding.
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1.2 Main results

All polar spaces to consider in this paper are assumed to be non-degenerate and
with at least three points on each line. We recall that a geometric hyperplane of
a polar space Γ = (P,L) is a proper subspace H of Γ such that L ∩ H 6= ∅ for
every line L ∈ L (hence either |H ∩ L| = 1 or L ⊆ H). We also recall that a polar
space is said to be classical if it arises from a non-degenerate sesquilinear or non-
singular pseudoquadratic form. Every classical polar space Γ admits a universal full
embedding e : Γ → Σ = PG(V ), and the image e(Γ) := (e(P ), {e(L)}L∈L) of Γ is
the system of 1- and 2-dimensional linear subspaces of V that are totally isotropic
(or totally singular) for a suitable sesquilinear (pseudoquadratic) form of V (Tits
[14, chapter 8]).

The following has been proved by Cohen and Shult [1]: given a classical polar
space Γ of rank n ≥ 3, let e : Γ → Σ be the universal full embedding of Γ. Then
e(H) spans a hyperplane of Σ, for every geometric hyperplane H of Γ. In this paper
we generalize that result, proving the following:

Theorem 1.1. Given a polar space Γ of rank n ≥ 3 and a lax projective embedding
e : Γ → Σ, the embedding e is dominant if and only if:

(H) For every geometric hyperplane H of Γ, e(H) spans a hyperplane of Σ.

We shall prove this theorem in Section 2. We will prove its “only if” part first.
Next, we shall show that the “only if” part of Theorem 1.1 implies the following:

Corollary 1.2. A polar space Γ of rank n ≥ 3 admits a lax embedding only if it is
classical.

With the help of this corollary and a few lemmas on subspaces of a classical
polar space (to be stated in Section 2), we will be able to prove the “if” part of
Theorem 1.1, thus finishing the proof of that theorem. Moreover, by combining our
Theorem 1.1 with Theorem 5.1.1 of Steinbach and Van Maldeghem [9] and recalling
that all classical polar spaces admit the universal full embedding, one easily obtains
the following (see Section 3):

Theorem 1.3. Every classical polar space of rank n ≥ 3 admits the absolutely
universal embedding.

As we will notice in Section 3, the following can also be obtained from the proof
of the “if” part of Theorem 1.1, as a byproduct:

Theorem 1.4. Let Γ be a classical generalized quadrangle and e : Γ → Σ be a lax
projective embedding of Γ. If e satisfies condition (H) of Theorem 1.1, then e is
dominant.

Remarks. The converse of Theorem 1.4 is false in general. Universal full embed-
dings of classical generalized quadrangles admitting non-classical ovoids (as H(3, q2)
and Q(4, 22h+1), h ≥ 1) are obvious counterxamples. More counterexamples can be
found among exceptional embeddings of generalized quadrangles. For instance, the
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generalized quadrangles Q−(5, 2), Q(4, 3) and H(3, 22) admit exceptional embed-
dings, respectively in PG(5, p) (p odd prime), PG(4, q) (q ≡ 1 mod 3) and PG(3, p)
(p > 5, prime), which are dominant but do not satisfy condition (H) of Theorem
1.1 (see Thas and Van Maldeghem [12], [13]). Needless to say, the above mentioned
dominant embeddings have nothing to do with the natural (universal) full embed-
dings of Q−(5, 2), Q(4, 3) and H(3, 22). So, these generalized quadrangles do not
admit the absolutely universal embedding. (This makes it clear that the assumption
n ≥ 3 cannot be dropped from Theorem 1.3.)

The case of W (2) is possibly even more interesting. It is well known that W (2)
can be embedded in PG(2, 4) as the geometry of exterior points and secant lines
of a hyperoval of PG(2, 4). This embedding is dominant (Van Maldeghem [16]),
but (H) clearly fails to hold for it. Moreover, W (2) admits a dominant embedding
in PG(4, K), for any skewfield K of characteristic 6= 2 (Thas and Van Maldeghem
[11], [12]), but these embeddings do not satisfy (H) (Van Maldeghem [16]). Clearly,
the above mentioned lax embedding of W (2) cannot arise from the universal full
embedding of W (2) (in PG(4, 2)). So, W (2) does not admit the absolutely universal
embedding.

2 Proof of Theorem 1.1 and Corollary 1.2

2.1 Proof of the “only if” part of Theorem 1.1

This subsection is devoted to the proof of the following proposition, corresponding
to the “only if” part of Theorem 1.1

Proposition 2.1. Let Γ = (P,L) be a non-degenerate polar space of rank n ≥ 3,
where all lines have at least three points. Given a lax projective embedding e : Γ → Σ
of Γ, suppose that e is dominant. Then e satisfies condition (H) of Theorem 1.1.

We recall that the hyperplanes of Γ are maximal subspaces of Γ (Shult [7]).
Therefore, given a lax embedding e : Γ → Σ and a hyperplane H of Γ, e(H) spans
either a hyperplane of Σ or all of Σ. By way of contradiction, suppose that e is
dominant but e(H) spans Σ, for a hyperplane H of Γ. Denoted by V the underlying
vector space of Σ and given a point x0 ∈ P \ H , put V0 := e(x0) (a 1-dimensional
linear subspace of V ) and ̂Σ = PG( ̂V ) where ̂V = V ⊕ ̂V0 for a 1-dimensional vector
space ̂V0 defined over the same skewfield as V . The linear subspaces V0 and ̂V0,
regarded as points of ̂Σ, will be denoted by p0 and p̂0, respectively. Let V1 be a
complement of V0 in V0 ⊕ ̂V0, different from ̂V0 and π be the natural projection of ̂V
onto ̂V /V1 with Ker(π) = V1. Clearly, ̂V /V1

∼= V and we can chose an isomorphism
f : ̂V /V1 → V in such a way that f(v + V1) = v for every vector v ∈ V . Thus,
ϕ := fπ is a surjective morphism from ̂V to V inducing the identity on V and
mapping V̂0 onto V0. In the sequel, we also denote by ϕ the mapping from ̂Σ \ {p1}
to Σ induced by ϕ, where p1 stands for the point of ̂Σ corresponding to V1. Thus,
regarded Σ as a hyperplane of ̂Σ (as we may, as V is a hyperplane of ̂V ), we have
p0 = ϕ(p0) = ϕ(p̂0). We shall define an embedding ê : Γ → ̂Σ such that ϕê = e and
ê(x0) = p̂0, thus contradicting the assumption that e = ẽ.

Regarded Σ as a hyperplane of ̂Σ, we first put ê(x) = e(x) for every x ∈ H . Next
we extend ê to x⊥

0 as follows:
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1) ê(x0) = p̂0.
2) Given x ∈ x⊥

0 \{x0}, let L be the line of Γ through x and x0 and put xH := L∩H .
Let ̂L be the line of ̂Σ spanned by the points p̂0 and e(xH) (∈ Σ ⊂ ̂Σ). As e(xH) 6= p0,
the line ̂L does not contain the point p1. Hence ϕ induces a bijection between ̂L an
the line ˜L of Σ containing the image e(L) of L. We denote by ê(x) the point of ̂L
mapped onto e(x) by ϕ.

So far, we have only defined ê on the set P0 := H∪x⊥
0 . Let Π be the subgeometry

induced by Γ on P0.

Lemma 2.2. The mapping ê is a lax embedding of Π in ̂Σ.

Proof. Obviously, ê is injective and ê(P0) spans ̂Σ. It remains to prove the
following:

(i) for every line L of Γ, ê(L ∩ P0) is contained in a line of ̂Σ.

(ii) if L and M are distinct lines of Γ each of which meets P0 in at least two points,
then ê(L ∩ P0) and ê(M ∩ P0) span different lines of ̂Σ.

We prove (i) first. Let L be a line of Γ meeting P0 in at least two points. If x0 ∈ L
then (i) holds by the definition of ê. On the other hand, if L ∩ P0 is not contained
in x⊥

0 then, according to the definition of P0, either L ⊆ H or |L ∩ P0| = 2. In
the first case (i) follows from that fact that ê induces e on P0. In the latter case,
there is nothing to prove. So, we may assume that x0 6∈ L and L ⊂ x⊥

0 . For every
x ∈ L, let xH be the point of H collinear with x and x0 and put LH = {xH}x∈L. As
L ⊆ x⊥

0 , L∪ {x0} spans a singular plane α of Γ. Moreover, LH = α∩H . Hence LH

is a line of Γ. Therefore ê(LH) = e(LH) spans a line ̂LH of ̂Σ, which is also a line
of Σ. Morever, ê(L) is contained in the plane α̂ of ̂Σ spanned by {p̂0} ∪ ̂L whereas
e(α) is contained in the plane α̃ of Σ spanned by {p0} ∪ ̂LH . Clearly, ϕ induces an
isomorphism from α̂ to α̃. Moreover, e(L) is contained in a line of α̃. Hence ê(L),
being the preimage of e(L) by ϕ, is contained in a line of α̂. Claim (i) is proved.
Claim (ii) follows from the definition of ê and the fact that the property analogous
of (ii) holds for e. �

Our next step is to define ê on the subset P1 ⊂ P formed by the points x 6∈ P0 =
H ∪ x⊥

0 such that x⊥ ∩ H 6= x⊥
0 ∩ H . For such a point x, let S(x) be the set of

singular planes α of Γ such that x ∈ α and α ∩ H 6= α ∩ x⊥
0 . Given α ∈ S(x), it

follows from Lemma 2.2 that the set ê(α∩P0) = ê(α∩H)∪ ê(α∩x⊥
0 ) spans a plane

α̂ of ̂Σ. On the other hand, the set e(α ∩ P0) = e(α ∩H) ∪ e(α ∩ x⊥
0 ) spans a plane

α̃ of ̂Σ, we have e(α) ⊆ α̃ and ϕ induces an isomorphism from α̂ to α̃. We denote
by êα(x) the unique point of α̂ mapped onto e(x) by ϕ.

Lemma 2.3. For every x ∈ P1, we have êα(x) = êβ(x) for any two planes α, β ∈
S(x).

Proof. Define a graph S on S(x) by stating that two planes α and β of S(x)
are adjacent in S when they meet in a line. Note that S is isomorphic to the graph
G the vertices of which are the lines of H ∩ x⊥ not contained in x⊥

0 , two such lines
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being adjacent precisely when they meet in a point. The polar space H ∩x⊥ is non-
degenerate of rank n − 1 ≥ 2 (indeed, it is isomorphic to the residue of x in Γ) and
x⊥

0 meets it in a hyperplane. As proved by Shult [7], every hyperplane complement
in a non-degenerate polar space of rank n− 1 ≥ 2 is connected. So, (H ∩x⊥) \x⊥

0 is
connected. Accordingly, the graph G is also connected. Hence S is connected, too.
Suppose now that α, β ∈ S(x) are adjacent in S. Then êα(x) = êβ(x), as they are

preimages of e(x) by the mapping induced by ϕ on α̂ ∩ β̂. �

For x ∈ P1, we put ê(x) = êα(x) for α ∈ S(x). By Lemma 2.3, this definition does
not depend on the particular choice of α ∈ S(x).

Lemma 2.4. For x ∈ P1 and every singular plane α of Γ on x, possibly α 6∈ S(x),
let L := α ∩H, α̃ be the plane of Σ spanned by e(L) ∪ {e(x)} and α̂ be the plane of
̂Σ spanned by ê(L) = e(L) and ê(x). Then ϕ induces an isomorphism ϕα from α̂ to
α̃. Moreover, ϕα maps ê(x) onto e(x) and induces the identity mapping on the line
spanned by ê(L) = e(L).

(Obvious, by considering a plane β ∈ S(x) meeting α in a line.)

Lemma 2.5. Let Π′ be the geometry induced by Γ on P0 ∪ P1. Then ê is a lax
embedding of Π′ in ̂Σ.

Proof. As ê(P0) already spans ̂Σ, ê(P0∪P1) also spans ̂Σ. Moreover, by definition,
ϕê is equal to the restriction e|P0∪P1

of e to P0 ∪ P1. Hence ê is injective, as such is
e. So, the followings remain to be proved:

(i) for every line L of Γ, ê(L ∩ (P0 ∪ P1)) is contained in a line of ̂Σ.

(ii) if L and M are distinct lines of Γ each of which meets P0 ∪ P1 in at least two
points, then ê(L ∩ (P0 ∪ P1)) and ê(M ∩ (P0 ∪ P1)) span different lines of ̂Σ.

Claim (ii) follows from the analogous property of e and the equality ϕê = e|P0∪P1
.

We shall prove (i). Let L be a line of Γ with at least two (hence, all but at most
one) points in P0 ∪ P1. In view of Lemma 2.2, we may assume that L 6⊆ P0. Given
a plane α on L, the conclusion immediately follows from Lemma 2.4 on α. �

Put L0 := (H ∩ x⊥
0 )⊥ and P2 := L0 \ (L0 ∩ (P0 ∪ P1)). If P2 = ∅ then Π′ = Γ and

ê is an embedding of Γ in ̂Σ such that ϕê = e, which is a contradiction with the
hypothesis that e is relatively universal. So, P2 6= ∅.

Let x ∈ P2. Note that L0 is either a set of mutually non-collinear points (in fact,
a hyperbolic line of Γ) or a line of Γ. In the first case we denote by L(x) the set of
lines of Γ through x. In the second case, L(x) stands for the set of lines of Γ through
x different from L0. In any case, given L ∈ L(x), we have L ∩ P2 = {x}. Hence
L contains at least two points y, z ∈ P0 ∪ P1. As ê(y) and ê(z) have already been
defined, and ê(y) 6= ê(z), we can consider the line ̂L of ̂Σ spanned by {ê(y), ê(z)}
and the line ˜L of Σ spanned by {e(y), e(z)}. Clearly, ˜L does not depend on the
particular choice of y, z ∈ L ∩ (P0 ∪ P1). In view of Lemma 2.5, the line ̂L neither
depends on that choice. By definition of ê, ϕ maps ̂L onto ˜L, hence it induces a
bijection from ̂L onto ˜L. We denote by êL(x) the preimage of e(x) by that bijection.
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Lemma 2.6. For every x ∈ P2, we have êL(x) = êM (x) for any two lines L, M ∈
L(x).

Proof. Let L be the graph with L(x) as the set of vertices, where two lines
L, M ∈ L(x) are adjacent when they are coplanar in Γ. Clearly, L is connected. So,
in the statement of the lemma, we may assume that L and M are coplanar, and let
α be the plane of Γ containing L and M . Then either α ∩ L0 = {x} or L0 ⊂ α, the
latter case occurring only if L0 is a line of Γ. In any case, α ∩ (P0 ∪ P1) contains at
least one non-collinear triple of points and, exploiting Lemma 2.5, we see that α\P2

is mapped by ê into a plane α̂ of ̂Σ which, in its turn, is isomorphically mapped by
ϕ onto a plane α̃ of Σ containing e(α). Therefore, both êL(x) and êM(x) are equal
to the preimage of e(x) by the restriction of ϕ to α̂. In particular, êL(x) = êM(x). �

For x ∈ P2, we put ê(x) = êL(x) for L ∈ L(x). By Lemma 2.6, this definition does
not depend on the particular choice of L ∈ L(x). Thus, we have defined ê over the
whole point-set P of Γ.

Lemma 2.7. The mapping ê is an embedding of Γ in ̂Σ.

Proof. For every x ∈ P2 and L ∈ L(x), all points of L \ {x} belong to P0 ∪ P1.
Hence ê(L) spans a line of ̂Σ, by Lemma 2.5 and the definition of ê(x). If no two
points of L0 are collinear, the above is sufficient to prove that ê is an embedding.
Suppose that L0 is a line of Γ. Then it remains to prove that ê(L0) spans a line
of ̂Σ. We choose two planes α and β on L0. Arguing as in the proof of Lemma
2.6, ê(α) and ê(β) span planes α̂ and β̂ of ̂Σ such that α̂ ∩ β̂ ⊇ ê(L0). By way
of contradiction, suppose that no line of ̂Σ contains ê(L0). Then ê(L0) contains a
non-collinear triple of points and, consequently, α̂ = β̂. However, denoted by α̃ and
β̃ the planes of Σ spanned by e(α) and e(β), ϕ induces an isomorphism from α̂ to
α̃ as well as an isomorphism from β̂ to β̃. The equality α̂ = β̂ forces α̃ = β̃. Let
ϕα be the isomorphism induced by ϕ from α̂ (= β̂) to α̃ (= β̃). By definition of ê,
ϕα maps ê(L0) onto e(L0). However, ê(L0) spans α̃ whereas e(L0) spans a line of Σ.
This forces ϕα(α̃) to be a line of Σ. We have reached a contradiction. �

The conclusion of Lemma 2.7 is in contradiction with the hypothesis that e is dom-
inant. Proposition 2.1 is proved.

2.2 Proof of Corollary 1.2

A proof of Corollary 1.2 can be found in [2], but we prefer to recall its main steps
here. By contradiction, let Γ be a non-classical polar space of rank n = 3 admitting
a lax embedding e : Γ → Σ. Then, as proved by Ferrara Dentice, Marino and Pasini
[2, Section 6], Σ is a plane and Γ is isomorphic to the grassmannian of lines of Σ0,
for a 3-dimensional projective space Σ0 defined over a suitable non-commutative
subskewfield of the (non-commutative) underlying skewfield of Σ. However, as every
embedding admits a hull, we may assume that e is dominant. Then, by Proposition
2.1, e satisfies condition (H) of Theorem 1.1. This contradicts the fact that Σ is a
plane.
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2.3 On subspaces of classical polar spaces

This subsection is devoted to the proof of the following proposition, which will be
used later to prove the “if” part of Theorem 1.1:

Proposition 2.8. Let Γ = (P,L) be a classical non-degenerate polar space of rank
n ≥ 2. Then every proper subspace of Γ of rank at least 2 is contained in a hyperplane
of Γ.

In order to prove Proposition 2.8, we need a couple of lemmas on proportionality
between sesquilinear or pseudoquadratic forms (Lemmas 2.9 and 2.11 in the sequel).
We presume these two lemmas are well known to everybody who is familiar with
sesquilinear and pseudoquadratic forms. Nevertheless, as we have not found any
explicit reference to them in the literature in the form we need, we shall prove them
here. In either of these lemmas V is a right vector space over a given skewfield K,
σ1 and σ2 are antiautomorphisms of K and ε1, ε2 are elements of K such that

εσ1

1 = ε−1
1 , tσ

2

1 = ε1tε
−1
1 for all t ∈ K;

εσ2

2 = ε−1
2 , tσ

2

2 = ε2tε
−1
2 for all t ∈ K.

Lemma 2.9. For i = 1, 2, let fi be a reflexive (σi, εi)-sesquilinear form over V ,
possibly degenerate. Suppose that the set of f1-isotropic vectors of V contains a
subset W with the following properties:
(A) W spans V ;
(B) the totally f1-isotropic subspaces of V contained in W form a non-degenerate
polar space of rank at least 2 and, for any two vectors v, w ∈ W (possibly, v = w),
if f1(v, w) = 0 then 〈v, w〉 ⊆ W ;
(C) for any two vectors v, w ∈ W (possibly, v = w), if f1(v, w) = 0 then f2(v, w) = 0;

Then f2 = λf1 for a suitable scalar λ ∈ K. Moreover,

(∗) λt = εσ2

1 tσ1σ2λσ2ε2

for every t ∈ K.

Proof. In the sequel we denote by ⊥ the ortogonality relation with respect to
f1. We first prove that, for any three vectors u, v1, v2 ∈ W such that v1 ⊥ v2 but
f1(u, v2) 6= 0, we have

(1) f2(u, x) = λu;v1,v2
f1(u, x) for any x ∈ 〈v1, v2〉

where λu;v1,v2
:= f2(u, v2)f1(u, v2)

−1. Indeed, f1(u, v1 + v2t) = 0 for t = −f1(u, v2)
−1

f1(u, v1). By (C), we also have f2(u, v1 +v2t) = 0. That is, f2(u, v1)+f2(u, v2)t = 0.
More explicitly,

f2(u, v1) − f2(u, v2)f1(u, v2)
−1f1(u, v1) = 0

which is (1) with x = v1. Clearly, (1) holds for x = v2, too. By the right-linearity of
f2 and f1, (1) holds for any x ∈ 〈v1, v2〉. By (B), the graph induced by ⊥ on W \u⊥
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is connected. Therefore, λu;v1,v2
= λu;w1,w2

for any two edges {v1, v2} and {w1, w2}
of that graph. Hence λu;v1,v2

only depends on u. Accordingly,

(2) f2(u, x) = λuf1(u, x)

for a suitable scalar λu ∈ K and for any x ∈ W . By (A) and the right-linearity
of f1 and f2, (2) holds for any x ∈ V . Given u1, u2 ∈ W with u1 ⊥ u2, we have
u1 + u2 ∈ W by (B). So, we can apply (2) with u = u1 + u2, and we obtain
λu1+u2

(f1(u1, x) + f1(u2, x)) = λu1+u2
f1(u1 + u2, x) = f2(u1 + u2, x) = f2(u1, x) +

f2(u2, x) = λu1
f1(u1, x) + λu2

f1(u2, x). Hence,

(3) λu1+u2
(f1(u1, x) + f1(u2, x)) = λu1

f1(u1, x) + λu2
f1(u2, x).

In (3) we can choose x such that f1(u1, x) 6= 0 = f1(u2, x). Thus, we obtain λu1+u2
=

λu1
. Similarly, λu1+u2

= λu2
. Consequently, λu1

= λu2
when u1 ⊥ u2. However, by

(B), the graph induced by ⊥ on W \ {0} is connected. It follows that λu does not
depend on the choice of u ∈ W . So far,

(4) f2(y, x) = λf1(y, x)

for every x ∈ V and every y ∈ W . We still must extend (4) to y ∈ V \W . However,
before that, we shall prove that λ satisfies (∗). By (4) with x, y ∈ W we obtain the
following:

λf1(y, x) = f2(y, x) = f2(x, y)σ2ε2 = (λf1(x, y))σ2ε2 =
f1(x, y)σ2λσ2ε2 = (f(y, x)σ1ε1)

σ2λσ2ε2 = εσ2

1 f1(y, x)σ1σ2λσ2ε2.

Hence

(5) λf1(y, x) = εσ2

1 f1(y, x)σ1σ2λσ2ε2.

However, if f1(y, x) 6= 0, by multiplying x for arbitrary scalars we can force f(y, x)
to take any value. So, (5) entails (∗). Suppose now y ∈ V \ W . Then f2(x, y) =
λf1(x, y) for any x ∈ W . Therefore:

f2(y, x) = f2(x, y)σ2ε2 = (λf1(x, y))σ2ε2 = f1(x, y)σ2λσ2ε2 =
(f1(y, x)σ1ε1)

σ2λσ2ε2 = εσ1

1 f1(y, x)σ1σ2λσ2ε2 = λf1(y, x).

(The last equality follows from (∗).) So, (4) holds for any y ∈ V . �

Lemma 2.10. If λ 6= 0 then condition (∗) of Lemma 2.9 is equivalent to the following
pair of conditions:

(1) λε1 = λσ2ε2,

(2) tσ2 = λtσ1λ−1 for all t ∈ K.

Moreover, if λ satisfies the above two conditions (1) and (2), then

(3) λtσ1st = tσ2λst for all s, t ∈ K,

(4) λ(t − tσ1ε1) = (λt) − (λt)σ2ε2 for all t ∈ K.
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The proof of this lemma is straightforward. We leave it to the reader. Note that,
in view of the above conditions (3) and (4), if q1 is a (σ1, ε1)-pseudoquadratic form
and λ satisfies (1) and (2) of Lemma 2.10, then the product λq1 is defined and it is
a (σ2, ε2)-pseudoquadratic form.

Lemma 2.11. For i = 1, 2, let qi be a non-singular (σi, εi)-pseudoquadratic form
over V and suppose that every q1-singular vector of V is also q2-singular. Then
q2 = λq1 for a scalar λ 6= 0 satisfying conditions (1) and (2) of Lemma 2.10.

Proof. For i = 1, 2, let fi be the sesquilinearization of qi and let W be the set
of q1-singular vectors of V . Then W , f1 and f2 are as in the hypotheses of Lemma
2.9. Therefore f2 = λf1 for a scalar λ 6= 0 (note that f2 is not the null form, as q2

is non-singular by assumption). So, modulo replacing q1 with λq1, we may assume
that q2 and q1 have the same sesquilinearization f = f1 = f2. Also, σ2 = σ1 = σ and
ε2 = ε1 = ε, say. Clearly, the difference q2−q1 of q2 and q1 is a (σ, ε)-pseudoquadratic
form and its sesquilinearization is the null form f2 − f1 = f − f . Let x and y be any
two q1-singular vectors of V . By assumption, x and y are q2-singular, too. Hence
they are singular for q2 − q1. Therefore x + y is also singular for q2 − q1, as the
sesquilinearization of q2 − q1 is the null form. It follows that any linear combination
of q1-singular vectors is singular for q2 − q1. However, the set of q1-singular vectors
spans V . Hence q2 − q1 is the null form. Consequently, q2 = q1. �

Corollary 2.12. Let Γ = (P,L) be a classical non-degenerate polar space of rank
n ≥ 2 and S be a subspace of Γ such that the polar space induced by Γ on S is
non-degenerate of rank at least 2. Let e : Γ → Σ be the universal full embedding of
Γ and suppose that e(S) spans Σ. Then S = P (the improper subspace of Γ).

Proof. Denoted by V the underlying vector space of Σ, let q be the non-singular
pseudoquadratic form of V that defines the image e(Γ) of Γ in Σ and, denoted by Γ1

the polar space induced by Γ on S, let e1 : Γ1 → Σ be the full embedding induced by
e on Γ1. Assume first that e1 is universal. Then e(Γ1) (= e1(Γ1)) is also defined by a
non-singular pseudoquadratic form q1 on V and all vectors of V that are q1-singular
are q-singular, too. By Lemma 2.11, q1 and q are proportional. Hence e(Γ1) = e(Γ),
namely Γ1 = Γ.

We shall now prove that the hypothesis that e1 is non-universal leads to a contra-
diction, thus finishing the proof Corollary 2.12. Assuming that e1 is not universal,
let ẽ1 : Γ1 → PG( ˜V ) be the universal full embedding of Γ1 (which is well known to
exist). Then ẽ1(Γ) is defined by a non-singular (σ, ε)-pseudoquadratic form q̃1 on ˜V
and we have e1 = pẽ1 for a suitable projection p : ˜V → V . Put R := Ker(p) and
let f̃1 be the sesquilinearization of q̃1. Then R ⊆ Rad(f̃1). Thus, we can define the
projection f1 of f̃1 onto V , and we have f1(p(x), p(y)) = f̃1(x, y) for any two vectors
x, y ∈ ˜V . Denoted by f the sesquilinearization of q, we can apply Lemma 2.9 to f1

and f , taking as W the set of all vectors of V representing points of e(Γ1) or equal
to 0. We obtain that f = λf1 for a scalar λ 6= 0. Thus, modulo replacing q with
λq, we may assume that f1 = f . Accordingly, q is (σ, ε)-pseudoquadratic, for the
same choice of σ and ε as for q̃1. This allows us to ‘lift’ q to ˜V , as follows: given a
complement U of R in ˜V , for x ∈ V let xR and xU be the component of x in R and
U , namely x = xR + xU . We put q̃(x) := q̃1(xR) + q(p(x)) (= q̃1(xR) + q(p(xU))) for
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every x ∈ ˜V . As the projection f1 of f̃1 onto V is equal to the sesquilinearization f
of q, q̃ is indeed a non-singular (σ, ε)-pseudoquadratic form with the same sesquilin-
earization f̃1 as q̃1. Therefore q̃ = q̃1, by Lemma 2.11. Consequently, if q̃1(x) = 0
then q̃(x) = 0, for every vector x ∈ ˜V . On the other hand, if q̃1(x) = 0 and x 6= 0
then p(x) spans a point of e(Γ1) and, as e(Γ1) ⊆ e(Γ), we also have q(p(x)) = 0. This
and the equality q̃(x) = 0 imply q̃1(xR) = 0. Hence xR = 0, as q̃1 is non-degenerate.
It follows that all q̃1-singular vectors belong to U . However, the q̃1-singular vectors
span ˜V . Hence R = 0. Accordingly, ẽ1 = e1, contrary to the hypothesis that e1 is
non-universal. �

Proof of Proposition 2.8. We are now ready to prove Proposition 2.8. Let S be a
proper subspace of Γ such that the polar space Γ1 induced by Γ on it has rank at
least 2. If Γ1 is non-degenerate, then S is contained in the hyperplane p⊥, for every
point p ∈ Rad(Γ1). In this case, we are done. Suppose that Γ1 is non-degenerate.
Then we can apply Corollary 2.12 to the universal full embedding e : Γ → Σ of Γ,
obtaining that e(S) does not span Σ. Therefore e(S) is contained in a hyperplane
H of Σ. Accordingly, S is contained in the hyperplane H = e−1(H ∩ e(Γ)) of Γ.

2.4 End of the proof of Theorem 1.1

The “if” part of Theorem 1.1 remains to be proved. Given a non-degenerate polar
space Γ = (P,L) of rank at least 3, let e : Γ → Σ = PG(V ) be a lax projective
embedding of Γ satisfying condition (H) of Theorem 1.1 and ẽ : Γ → ˜Σ = PG( ˜V ) be
the hull of e. Then e = f ẽ for a semilinear mapping f : ˜V → V . Put R := Ker(f).
We shall prove that R = 0, thus obtaining that e = ẽ.

Suppose that R 6= 0 and let [R] be the subspace of ˜Σ corresponding to R. Then
[R] ∩ ẽ(L) = ∅ for every line L of Γ. Hence, given a line L of Γ, we can choose
a complement U of R in ˜V such that the subspace [U ] of ˜Σ corresponding to U
contains ẽ(L). Put S := ẽ−1([U ] ∩ ẽ(P )). Then S is a proper subspace of Γ and the
polar space induced by Γ on S has rank at least 2, as it contains L. On the other
hand, Γ is classical by Corollary 1.2. (Note that we are free to apply that corollary,
since only the “only if” part of Theorem 1.1 has been exploited in its proof.) Hence
Proposition 2.8 can be applied and we obtain that S is contained in a hyperplane
H of Γ. However, e(S) spans Σ, as U + R = ˜V . Hence e(H) also spans Σ, contrary
to the hypothesis that e satisfies (H). Theorem 1.1 is proved.

3 Proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Let Γ be a classical polar space of rank n ≥ 3. Then Γ
is embeddable and admits the universal full embedding ẽ0 : Γ → ˜Σ0. Every lax
embedding e : Γ → Σ admits a hull ẽ : Γ → ˜Σ. By Theorem 1.1, ẽ is weak in the
sense of [9]. By Steinbach and Van Maldeghem [9, 5.1.1], ẽ is a scalar extension of
ẽ0.

Proof of Theorem 1.4. The “only if” part of the proof of Theorem 1.1 remains
valid if Γ is a classical generalized quadrangle. Indeed, in that part of the proof, the
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hypothesis n ≥ 3 has been exploited only when using Corollary 1.2 to conclude that
Γ is classical.
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