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Abstract

Using Grundhöfer’s construction of the Figueroa planes from Pappian
planes which have an order three planar collineation α̂, we show that any
Figueroa plane (finite or infinite) of characteristic not two cannot have a Fano
subplane which includes an α̂ invariant triangle.

A class of non-Desarguesian, proper, finite projective planes of orders q3 for
prime powers q 6≡ 1 (mod 3) and q > 2 were defined by Figueroa [4] in 1982. This
construction was generalized to all prime powers q > 2 by Hering and Schaeffer [6]
later in the same year. We [1] gave a group-coset description of these finite Figueroa
planes in 1983. The construction was extended to include infinite planes in 1984 by
Dempwolff [3]. These constructions were all algebraic in the sense that they made
essential use of collineation groups and coordinates. In 1986 Grundhöfer [5] gave a
beautiful synthetic construction which included all these Figueroa planes.

The question of what projective subplanes a given projective plane possesses is
always of interest and usually is not trivial for non-Desarguesian planes. The Fano
plane is the smallest projective plane (having order two and exactly seven points
and seven lines). Hanna Neumann has conjectured that all finite non-Desarguesian
planes have a Fano subplane (see [7] for some of her early work on the subject).
We show that many Figueroa planes do not possess a Fano subplane of a certain
particular nice type.

We remind readers of Theo Grundhöfer’s elegant synthetic definition of the
Figueroa planes. Consider a Pappian plane which has an order 3 planar collinear α̂.
The point set (line set) of the Figueroa plane is the same as the point set (line set)
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of the Pappian plane, but incidence is changed. Letting IP and IF denote Pappian
and Figueroa incidence, respectively, IF is defined in terms of IP as follows: if either
P <α̂> or ℓ<α̂> is not a proper triangle, then P IF ℓ ⇔ P IP ℓ; if both P <α̂> and
ℓ<α̂> are proper triangles, then P IF ℓ ⇔ the “vertex” opposite ℓ in ℓ<α̂> IP the
“side” opposite P in P <α̂>.

The map α̂ which is a planar collineation of the Pappian plane remains a planar
collineation of the Figueroa plane. Any collineation or polarity of the Pappian
plane which commutes with α̂ remains a collineation or polarity, respectively, of
the Figueroa plane. Letting α denote the field automorphism associated with the
planar automorphism α̂, the Figueroa plane inherits a collineation group isomorphic
to PGL(3, Fix(α)). We describe the orbits of this group.

The set of points P for which P 〈α̂〉 is a single point is an orbit. We call points in
this orbit type I. The set of points P for which P 〈α̂〉 is three collinear points is an
orbit. We call points in this orbit type II. The set of points P for which P 〈α̂〉 is a
proper triangle is an orbit. We call points in this orbit type III. Line orbits have
dual descriptions and types of lines have dual definitions. Figueroa incidence induces
on the orbits of type I points and lines the structure of a subplane isomorphic to
PG(2, Fix(α)).

In general, collinearity of three points (concurrency of three lines) may be dif-

ferent with respect to IF and to IP . But for {P, P α̂, P α̂2

} (for {ℓ, ℓα̂, ℓα̂2

}) it is the
same. So the above definition of types is unambiguous. In what follows Pappian
collinearity, Pappian concurrency, Pappian incidence, etc. will be with respect to
IP . “Unmodified” collinearity, concurrency, incidence, etc. will be with respect to
IF . Note that a point (line) of type III can never be incident with a line (point) of
type I.

If the Pappian plane has an α̂ invariant subplane on which the restriction of
α̂ is an order three planar collineation, the Figueroa plane constructed using the
subplane and the restriction of α̂ to the subplane is a Figueroa subplane of the
(first) big Figueroa plane. From this it follows that the Figueroa plane of order
q3 is a subplane of the Figueroa plane of order q3r for any prime power q and any
r ≡ 1 or 2 (mod 3).

We define the characteristic of a Figueroa plane to be the the characteristic of
the field which coordinatises the Pappian plane from which the Figueroa plane is
constructed.

We use Grundhöfer’s construction together with homogeneous coordinates to
show the following

THEOREM: Every (finite or infinite) Figueroa plane, of characteristic not two,
cannot have a Fano subplane which includes an α̂-invariant proper triangle.

Remark: The only other existence or nonexistence result, known to the author,
about Fano subplanes of a Figueroa plane of characteristic not two derive from the
Fano subplane of the Figueroa plane of order 27 which was discovered by Cherowitzo
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[2]. (This construction was not self dual so Cherowitzo discovered two embedded
Fano subplanes up to equivalence under collineations.) Thus there exist Fano sub-
planes in any “super”plane of the Figueroa plane of order 27. This includes Figueroa
planes of order 33r for any r ≡ 1 or 2 (mod 3).

Proof:

A Fano plane is the incidence geometry PG(2, 2). It has exactly seven points
and seven lines. We denote the point set by {V1, V2, V3, M1, M2, M3, C} and the line
set by {s1, s2, s3, m1, m2, m3, c} where s2 I V1, V3, M2; s1 I V3, V2, M1; m2 I V2, M2, C;
c I M2, M1, M3; m1 I M1, C, V1; m3 I C, M3, V3; s3 I M3, V1, V2.

We will call the points V1, V2, V3 vertices and suggest that the reader imagine
a picture of the Fano plane with these three points as the vertices of the “outer
triangle”. The lines s1, s2, s3 then become the sides of the “outer triangle” and
we call these lines sides. The nonvertex points M1, M2, M3 on the sides s1, s2, s3,
respectively, will be called median points . The nonside lines m1, m2, m3 through
the vertices V1, V2, V3, respectively, will be called median lines . Median point–
median line flags Mi-mi will be called median flags. The “interior” point C will
be called the centre point. The “circular” line c will be called the circle line.

Let α be an order three automorphism of the field coordinatising the Pappian
plane from which our Figueroa plane is constructed. We choose as our planar au-
tomorphism the map α̂ which acts on points as 〈(x, y, z)〉 7→ 〈(zα, xα, yα)〉 and

on lines as

〈


d
e
f





〉

7→

〈


fα

dα

eα





〉

. A point P = 〈(x, y, z)〉 is of type III ⇔

det




x y z
zα xα yα

yα2

zα2

xα2



 6= 0. A dual (and transpose) statement holds for lines. The

point action of the PGL group acting on this representation of the Figueroa plane

becomes the group of all invertible matrices




a b c
cα aα bα

bα2

cα2

aα2



 (acting by right matrix

multiplication on the point coordinates) modulo the invertible Fix(〈α〉)-multiples of
the identity matrix. The group induced by all matrices of this form with b = c = 0

will be used very often and will be denoted G. The map π : 〈(x, y, z)〉 ↔

〈


x
y
z





〉

is

a polarity of this Figueroa plane. Duality under π will be called π-duality.

Assume there is a Fano subplane of the type described.

Because points of type III form an orbit and 〈(1, 0, 0)〉 is of type III, we may
assume that the vertices of the α̂-invariant triangle in the Fano subplane have co-
ordinates 〈(1, 0, 0)〉, 〈(0, 1, 0)〉, 〈(0, 0, 1)〉. Because of well known symmetries of the
Fano plane, we may assume that the vertices V1, V2, V3 have these coordinates, re-
spectively. Note that the triangle with vertices V1, V2, V3 and sides s1 = V2V3, s2 =
V3V1, s3 = V1V2 is invariant under 〈π〉 and that π : Vi ↔ si.
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Non-vertex points on side s3 = V1V2 =

〈


0
0
1





〉

are 〈(a, 1, 0)〉 with N(a) =

aaαaα2

= −1 (each of these points is of type II) and 〈(xα2+α, 1,−xα)〉 with N(x) 6=

0,−1 (each of these points is of type III and has “opposite side”

〈


x
1
0





〉

). (The

function N is the usual (multiplicative) relative norm function.)

Non-side lines through point V3 = s1s2 are

〈


d
1
0





〉

with N(d) = −1 (each of

these lines is of type II) and

〈


yα2+α

1
−yα





〉

with N(y) 6= 0,−1 (each of these lines is

of type III and has “opposite vertex” < (y, 1, 0) >).

Using Grundhöfer’s definition of incidence to determine all possible M3-m3 me-
dian flags, we learn the following. There are no M3-m3 median flags of type II-II
(because ad = −1 is impossible for N(a) = N(d) = −1). There are possible M3-m3

median flags of type II-III: 〈(a, 1, 0)〉 -

〈


aα2+α

1
aα





〉

where N(a) = −1. There are pos-

sible M3-m3 median flags of type III-II: 〈(dα2+α, 1, dα)〉 -

〈


d
1
0





〉

where N(d) = −1.

There are possible M3-m3 median flags of type III-III: 〈(xα+1, 1,−x)〉 -

〈


1

xα+1

xα





〉

where N(x) 6= 0 ± 1.

So the types of M3-m3 median flags are II-III, III-II, and III-III.

By the action of 〈α̂〉, the same statement holds for M1-m1 and M2-m2 median
flags. The form of these M1-m1 and M2-m2 median flags for various types may be
found by applying 〈α̂〉.

We shall determine all Fano subplanes for each possible case of median flag types.

LEMMA 1: A Fano subplane of the type described in the theorem cannot
have two or more median flags of type II-III. A Fano subplane of the type described
in the theorem cannot have two or more two median flags of type III-II.

Proof of Lemma: By π-duality it is sufficient to prove the first claim. Suppose
the first claim is false. By the action of 〈α̂〉 we may assume that median flags M1-m1

and M3-m3 are of type II-III. Also, using the action of the group G, we may assume
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that the M3-m3 median flag is 〈(−1, 1, 0)〉 -

〈


1
1
−1





〉

and that the M1-m1 median

flag is 〈(0, b, 1)〉 -

〈


bα+1

−1
b





〉

with N(b) = −1. These flags are both of type II-III.

By Grundhöfer’s construction (because the points M1 and M3 are of type II),

the line M1M3 is

〈


1
1
−b





〉

and the point 〈(b, 0, 1)〉 is of type II and is on M1M3 and

on s2. Therefore the M2-m2 flag must be 〈(b, 0, 1)〉 -

〈


−1

bα2+1

b





〉

which is of type

II-III.

We now introduce the notations T (b) = b + bα + bα2

and B(b) = bα+1 + bα2+α +
b1+α2

. ( The function T is the usual (additive) relative trace function. The function
B has been called bitrace for degree three extensions by Sherk [8].)

The median lines m1, m2, m3, all of which are of type III, cannot be concur-
rent in a point of type III because the opposite vertex points are, respectively,
〈(0, b,−1)〉, 〈(1, 0, bα2+α)〉, 〈(1, 1, 0)〉 and these points cannot be Pappian collinear
because 2 6= 0. If the median lines are concurrent in a point of type II then
m1m3 = 〈(1 − b, b(1 + bα), bα+1 + 1)〉 must be a point of type II. This is equivalent
to T (b) = 1. We must also have m1m3I

Fm2 ⇔ m1m3I
Pm2 which is equivalent to

B(b) = −1. Thus b is a root of the polynomial X3 − T (b)X2 + B(b)X − N(b) =
X3 − X2 − X + 1 = (X − 1)2(X + 1). So b = ±1. Both of these values contradict
B(b) = −1 for 2 6= 0.

This proves Lemma 1.

LEMMA 2 : A Fano plane of the type described in the Theorem cannot have
exactly one median flag of type II-III and exactly one median flag of type III-II.

Proof of Lemma 2: Suppose this Lemma is false.

By π-duality and the actions of the groups 〈α̂〉 and G we may assume that the me-

dian flags are M3-m3 = 〈(−1, 1, 0〉 -

〈


1
1
−1





〉

of type II-III, M1-m1 = 〈(bα+1,−1, b)〉-

〈


0
b
1





〉

with N(b) = −1 of type III-II and M2-m2 = 〈(1,−z, zα+1)〉 -

〈


zα+1

zα

1





〉

with N(z) 6= 0,±1 of type III-III.
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Note that M2 has opposite side

〈


1
0

zα2





〉

, M1 has opposite side

〈


0
b
−1





〉

and

m2 has opposite vertex 〈(zα2

, 0,−1)〉.

If B(b) + T (b) 6= −1 then the line M1M3 is

〈


bα2+1 + b + 1

bα2+1 + b + 1

−(b1+α + bα+α2

+ bα + bα2

)





〉

which is of type III and has opposite vertex 〈(b1+α + bα + 1, bα+α2

+ bα2

+ 1, bα2+1 +

b−1)〉. Because M2 has opposite side

〈


1
0

zα2





〉

, for M2 to be on this potential circle

line, it is necessary that zα2

= − bα+1+bα+1

b(bα+α2+bα2+1)
. Thus 1 6= N(z) = N(−1)N(b−1) = 1.

Contradiction.

If B(b)+T (b) 6= 1 then the point m1m3 is 〈(bα+α2

+ bα2+1 + b+ bα2

, bα+α2

− bα2

−

1, bα2+1+b+1)〉 which is of type III and has opposite side

〈


bα2+1 − b − 1

−bα2+1 + b + 1

bα2+1 + b − 1





〉

. For

m2 to be through this potential centre point, it is necesary that zα2

= bα
2
+1+b−1

b(bα+α2+bα2−1)
.

Thus −1 6= N(z) = N(b−1) = −1. Contradiction.

This proves Lemma 2.

LEMMA 3: There cannot be a Fano subplane of the type described in the
Theorem with exactly two median flags of type III-III.

Proof of the Lemma 3: Suppose this Lemma is false.

By π-duality and the actions of the groups 〈α̂〉 and G, we may assume that the
median flags are

M1-m1 = 〈(−y, yα+1, 1)〉 −

〈


yα

1
yα+1





〉

of type III-III, M2-m2 = 〈(1, 0,−1)〉 −

〈


1
−1
1





〉

of type II-III and M3-m3 = 〈(xα+1, 1,−x)〉 −

〈


1

xα+1

xα





〉

of type III-III

with N(y), N(x) 6= 0,±1.

First suppose the centre point is of type III, i.e. the median lines m1, m2, m3 are
concurrent in a point of III . This means that the vertices opposite these median
lines, respectively, 〈(0,−1, yα2

)〉, 〈(1, 0, 1)〉, 〈(1,−xα2

, 0)〉 are Pappian collinear in a
type III line. This is equivalent to xy = −1 and B(x) 6= −1. If the circle line is of
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type II, then Pappian collinearity of M1, M2, M3 implies (using y = −x−1) 0 = xα+x
which is impossible for x 6= 0 and 2 6= 0. If the circle line is of type III then the point
of Pappian intersection of the sides opposite M1 and M3 is 〈(−1, xα2

, 1, )〉. So the

line M1M3 is

〈


1 − x

1 + xα+1

1 + xα





〉

. But then M2I
FM1M3 ⇔ M2I

PM1M3 ⇔ 0 = xα + x

which again is a contradiction.

Now suppose the centre point is of type II, i.e. the median lines are con-
current in a point of type II. Then m3m2 is not of type III which implies that
the line which is Pappian incident with the points opposite m3 and m2 is not of

type III which is equivalent to

〈


xα2

1

−xα2





〉

is not of type III which is equiva-

lent to B(x) = −1. Similarly m1m2 is not of type III implies T (y) = −N(y).
Also concurrency of m1, m2, m3 implies Pappian concurrency of m1, m2, m3 implies
xα+1yα+1 − xαyα + yα+1 − xα+1yα − xα + 1 = 0 (we will call this the “centre II”
equation).

If the circle line is of type III (as well as the centre point is of type II) then the

point opposite M1M3 is 〈(1,−xα2

, (xy)α2

)〉 and the line M1M3 is

〈


1 + xα+1yα

xα+1 − xy
xα+1yα+1 + xα





〉

.

The other median point M2 is on this line ⇔ xα+1yα+1 − xα+1yα + xα − 1 = 0.

Adding this equation to the centre II equation and solving for y yields y =
xα(2x+1)
2xα+1+1

. (Note that B(x) = −1 implies 2x1+α + 1 6= 0.) Substituting this in the

last equation gives (xα−1)
(2xα+1+1)α+1

(
6N(x)xα + N(x) + 2xα2+α + 2x1+α + 1

)
= 0. Thus

0 = (6N(x)x+N(x)+2xα+1+2xα2+1+1)−(6N(x)x+N(x)+2xα+1+2xα2+1+1)α =
2(x − xα)(3N(x) + xα2

). From this it follows that xα = x and thus yα = y.

Now −1 = B(x) = 3x2 (so 3 6= 0) and 3y = T (y) = −N(y) = −y3 so y2 = −3

and x2 = −1/3. Thus y = 2x2+x
2x2+1

= −2/3+x
−2/3+1

= 3x−2. Thus 0 = −3−y2 = 12(x−1/3).

Thus x = 1/3. This contradicts x2 = −1/3 for 2 6= 0.

If the circle line is of type II (as well as the centre point is of type II) then the

line M2M3 is

〈


1

x − xα+1

1





〉

and this line is of type II ⇔ (using B(x) = −1)

0 = (N(x) + 1)(Nx) + T (x) − 1) so T (x) = 1 − N(x). Analogous considerations
of the line M1M2 (using T (y) = −N(y)) shows B(y) = N(y) − 1. Finally the fact

that M1 is on M2M3 yields xα+1yα+1 − xyα+1 = 1 − y. Thus xα+1 − x = yα
2
−yα

2
+1

N(y)
.

So N(x)−2 = B(x)−T (x) = T (y)−B(y)
N(y)

= −N(y)−(N(y)−1)
N(y)

= −2+ 1
N(y)

so N(y) = 1
N(x)

.

Define a polynomial r by r(Z) = Z3−T (x)Z2+B(x)Z−N(x) = −N(x)Z3

(
Z−3−
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T (y)Z−2+B(y)Z−1−N(y)
)
. We have shown that the set of roots of r is {x, xα, xα2

}

= {y−1, y−α, y−α2

}. Thus y = x−αi

for some i. Substituting this in the equation
xα+1yα+1−xyα+1 = 1−y we get xα+1−x = xαi+1+αi

−xαi+1

. For i = 0 or 2 this (using
α3 = 1) leads directly to xα = x. For i = 1 this becomes x(xα − 1) = xα2

(xα − 1)
which (using x 6= 1) again leads to xα = x. This gives 3x2 = B(x) = −1 so
3 6= 0, x2 = −1/3 and y = x−αi

= x−1. Using these in the centre II equation gives
0 = 1 − 1 − 3 − x − x + 1 = −2x − 2 so x = −1 which contradicts N(x) 6= −1.

This proves Lemma 3.

LEMMA 4: There cannot be a Fano subplane of the type described in the
Theorem with three median flags of type III-III.

Proof of the Lemma: Suppose the Lemma is false.

We may assume that the median flags are M1-m1 = 〈(−y, yα+1, 1)〉−

〈


yα

1
yα+1





〉

,

M2-m2 = 〈(1,−z, zα+1)〉−

〈


zα+1

zα

1





〉

, and M3-m3 = 〈(xα+1, 1,−x)〉−

〈


1

xα+1

xα





〉

all of type III-III with N(y), N(x), N(z) 6= 0,±1.

The sides opposite M1, M2, M3 are

〈


0

yα2

1





〉

,

〈


1
0

zα2





〉

,

〈


xα2

1
0





〉

respectively.

The vertices opposite m1, m2, m3 are 〈(0,−1, yα2

)〉, 〈(zα2

, 0,−1)〉, 〈(−1, xα2

, 0)〉 re-
spectively.

If the circle line is of type III then xyz = −1. If the centre point is of type III
then xyz = 1. These cannot both occur in the same example because 2 6= 0.

Consider the case where the circle line is of type III (so that z = −(xy)−1) and the
centre point is of type II. The points m1m3 and m2m1 are 〈(xα(xyα+1 − 1), yα(xα −
y), 1−xα+1yα)〉 and 〈(1−yα+1zα, yα(yzα+1−1), zα(yα−z))〉; the conditions that these
points are of type II are 0 = N(xy)+N(y)+1−T (xy1+α) and 0 = N(yz)+N(z)+1−

T (yz1+α) = (using z = −x−1y−1) N(z)
(
N(y)+1−N(xy)+T (xα2

yα2+1)
)

which are

equivalent to 0 = N(xy)+N(y)+1−T (xy1+α) and 0 = N(y)+1−N(xy)+T (xy1+α),
respectively. Adding these last two equations gives 0 = 2(N(y)+1) which contradicts
2 6= 0 and N(y) 6= −1.

By π-duality, the only remaining case is where the circle line is of type II and
the centre point is of type II. Applying the determinant condition for the Pappian
collinearity of M1, M2, M3 and the Pappian concurrency of the lines m1, m2, m3 gives
the equations:

c = 0 where c = xyz(xyz)α + 1 − xyz + xyyα + yzzα + zxxα
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d = 0 where d = 1 + (xyz)α + xyz(xyz)α − x(xy)α − y(yz)α − z(zx)α

Note that, as above, the conditions that m3m1, m1m2, m2m3 are points of type
II are equivalent to T (xy1+α) = N(xy) + N(y) + 1, T (yz1+α) = N(yz) + N(z) +
1, T (zx1+α) = N(zx) + N(x) + 1.

Also note that the conditions that M3M1, M1M2 , M2M3 are lines of type II are
equivalent to T (x1+αyα) = −N(xy) + N(x) − 1, T (y1+αzα) = −N(yz) + N(y) −
1, T (z1+αxα) = −N(zx) + N(z) − 1.

Thus

T (c) = B(xyz) + 3 − T (xyz) +
(
N(xy) + N(yz) + N(zx)

)
+

(
N(x) + N(y) +

N(z)
)

+ 3,

T (d) = B(xyz) + 3 + T (xyz) +
(
N(xy) + N(yz) + N(zx)

)
−

(
N(x) + N(y) +

N(z)
)

+ 3,

T ((xyz)α2

c + cα2

) = 6N(xyz) + 2(N(xy) + N(yz) + N(zx)) + 2(N(x) + N(y) +
N(z)) + 6. and

T ((xyz)α2

d − dα) = 6N(xyz) − 2(N(xy) + N(yz) + N(zx)) + 2(N(x) + N(y) +
N(z)) − 6.

We can deduce four useful facts:

0 = T (c) + T (d) implies B(xyz) = −(N(xy) + N(yz) + N(zx)) − 6

0 = T (c) − T (d) implies T (xyz) = N(x) + N(y) + N(z)

0 = T ((xyz)α2

d − dα − (xyz)α2

c − cα2

) implies N(xy) + N(yz) + N(zx) = −3

0 = T ((xyz)α2

d−dα +(xyz)α2

c+ cα2

) implies N(x)+N(y)+N(z) = −3N(xyz).

Thus B(xyz) = −(−3) − 6 = −3 = N(x)N(y) + N(y)N(z) + N(z)N(x).

Thus {xyz, (xyz)α, (xyz)α2

} is the set of roots of the polynoimial p where p(W ) =

W 3 − T (xyz)W 2 + B(xyz)W − N(xyz) = W 3 −
(
N(x) + N(y) + N(z)

)
W 2 +

(
N(x)N(y) + N(y)N(z) + N(z)N(x)

)
W − N(x)N(y)N(z) =

(
W − N(x)

)(
W −

N(y)
)(

W −N(z)
)

whose set of roots is {N(x), N(y), N(z)}. Thus xyz is fixed by

α. So p has only the root xyz (but with multiplicity 3) and thus xyz = N(x) =
N(y) = N(z).

Now N(x) = N(y) implies x = φyα2

for some φ with N(φ) = 1. Then N(y) =
xyz = φyα2

yz implies z = φ−1yα. Substituting these expressions for x, y, z in c and
T (xy1+α) gives N(y)2 +N(y)+1 = T (xy1+α) = N(y)T (φ) = c−N(y)2 +N(y)−1 =
−N(y)2 + N(y) − 1. So 2(N(y)2 + 1) = 0. Because 2 6= 0, N(y)2 = −1.

Then N(y)T (φ) = T (xy1+α) = N(y)2 + N(y) + 1 = N(y) so T (φ) = 1. Also
N(y)T (φ1+α) = T (x1+αyα)) = −N(x)2 + N(x) − 1 = N(y) so T (φ1+α) = B(φ) = 1.
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So φ is a root of q(W ) = W 3 − W 2 + W − 1 = (W − 1)(W 2 + 1). If φ = 1,
then 3 = T (φ) = 1 which is impossible for 2 6= 0. If φ2 = −1 then (φα = φ and)
−3 = B(φ) = 1 which also is impossible for 2 6= 0.

This proves Lemma 4.

The author would like to thank Gary Ebert, Chris Fisher, Norm Johnson, Tim
Penttila, and Alex Rosa for help with some of the references.

References

[1] J.M.N. Brown. On constructing finite projective planes from groups. Ars Com-

binatoria 16-A, pp. 61-85, 1983.

[2] W.E. Cherowitzo. Private communication, 1989.

[3] U. Dempwolff. A note on the Figueroa planes. Arch. Math 43, pp. 285-289, 1984.

[4] R. Figueroa. A family of not (V, ℓ)-transitive projective planes of order q3, q 6≡
1 (mod 3) and q > 2. Math. Z. 181, pp. 471-479, 1982.
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