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Abstract

We construct a BN-pair for subgroups of Chevalley groups, which are fixed
under some distinguished automorphisms. This generalizes the standard ap-
proach for the twisted groups of type 2A`, 2D` and 2E6 to groups which are
not necessarily quasi-split.

Introduction

For root systems and Weyl groups, we refer to Bourbaki [3], Carter [4] and Steinberg
[8]. Let Φ be a root system of type A`, . . . , G2 with fundamental system Π and
underlying Euclidean space V . The associated Weyl group, W say, is the group
generated by the fundamental reflections wα, α ∈ Π (in the hyperplane orthogonal
to α). For Φ of type A`, D` or E6, let τ be the diagram symmetry of order 2. For
J ⊆ Π, we denote by WJ the subgroup of W generated by the wα, α ∈ J , and by
wJ

0 the longest element in WJ .
We fix a subset J of Π, J 6= Π, and set ΦJ = Φ ∩ 〈J〉. Let σ be one of the

following permutations of Φ: either wJ
0 or τwJ

0 , provided that τ(J) = J in the
second case. For α ∈ Π \ J , we set Oα := {α}, when σ = wJ

0 , and Oα := {α, τ(α)},
when σ = τwJ

0 . This partitions Π \ J into subsets of size at most 2. We define
Ṽ := CV (σ) ∩ J⊥. For v ∈ V , ṽ denotes the orthogonal projection of v onto Ṽ .
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Proposition. In the above notation, we assume that wJ∪Oα
0 (Oα) = −Oα, for all

α ∈ Π \ J . Then Φ̃ := {r̃ | r ∈ Φ \ ΦJ} is a (possibly non-reduced) root system on
Ṽ .

We refer to Lemma 1.5 for equivalent formulations of the assumption in the propo-
sition. For Φ of type A3, for example, the assumption is only satisfied for J = ∅ and
for J = {α1, α3} (in the notation of Bourbaki [3]) in either case for both choices of
σ.

For the definition and properties of Chevalley groups as well as for the standard
facts on groups with a BN-pair and their parabolic subgroups, we refer to Carter
[4], [5], Steinberg [8] and Bourbaki [3].

For a field K, we denote by Φ(K) the corresponding universal Chevalley group,
defined by the Steinberg generators and relations; see Carter [4, (12.1.1)]. The
associated standard root subgroups are Xr ' (K, +), r ∈ Φ. The group Φ(K) has
a BN-pair (B, N) with N/H = W = 〈wα | α ∈ Π〉, where H = B ∩N . For J ⊆ Π,
we denote by UJ the subgroup generated by all Xr, where r is a positive root not
contained in ΦJ . We also define LJ to be the subgroup generated by H and all Xr,
r ∈ ΦJ , and PJ := UJLJ .

Next, we assume that J and σ satisfy the assumption of the proposition. Let
ησ be an automorphism of G := Φ(K) such that the following holds (we give an
example after the statement of the main theorem):

(0) We have ησ(Xr) = Xσ(r), for r ∈ Φ. Furthermore, N is invariant under ησ.
If nH = w, then ησ(n)H = σwσ−1.

(1) If P is a parabolic subgroup of LJ , which is ησ-invariant, then P = LJ .
(2) For α ∈ Π \ J , we have 〈Xr | r ∈ Φ−

J∪Oα
\ ΦJ〉 ∩ Fix(ησ) 6= 1.

We define G1 := 〈UJ ∩ Fix(ησ), U−
J ∩ Fix(ησ)〉, as well as B1 := PJ ∩ G1 and

N1 := 〈nJ∪Oα
0 , LJ | α ∈ Π \ J〉 ∩ G1, H1 := LJ ∩ G1. Here nJ∪Oα

0 ∈ N with
nJ∪Oα

0 H = wJ∪Oα
0 , for α ∈ Π \ J .

Main Theorem. In the above notation, we assume that the assumption of the
proposition and (0), (1) and (2) holds. Furthermore, we suppose that the root system
Φ̃ is of type A`, . . . , G2 or BC`.

Then (B1, N1) is a BN-pair for G1 with Weyl group N1/H1 = 〈wα̃ | α ∈ Π\J〉 ≤
O(Ṽ ). Moreover, when G1 is perfect, then it is quasi-simple.

We call the group G1 a twisted variant of the Chevalley group G. The present paper
is inspired by the construction of a BN-pair for the ‘ordinary’ twisted groups of type
2A`,

2D` and 2E6 (Steinberg variations) in Carter [4] or Steinberg [8]. These are the
special cases where J = ∅ and σ = τ .

We remark that Borel and Tits [2], see also Borel [1] or Springer [7], construct
a BN-pair for the group Gk of k-rational points of a connected reductive algebraic
group G defined over an arbitrary field k.

Next, we give an example satisfying the assumption of the main theorem. Let Φ be
the root system of type A5 and choose J := Π \ {α1, α5}, σ := τwJ

0 (in the notation
of Bourbaki [3]). Then the assumption of the proposition is satisfied and the root
system Φ̃ is of type BC1. Let K be the field C of complex numbers with complex
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conjugation c 7→ c. The associated Chevalley group G := Φ(K) is SL6(C), the group
of 6 × 6-matrices with entries from C and determinant 1, and has the well known
BN-pair. The root elements are elementary matrices (i.e. with main diagonal 1 and
one further non-zero entry). By I we denote the 4 × 4-identity matrix and by M
the 6× 6 matrix with entries 1, I, 1 in the (block) diagonal from lower left to upper
right and all other entries zero. The automorphism

ησ : SL6(C) → SL6(C) with g 7→ M−1(gT )−1M

satisfies the assumption of the main theorem. Note that the group of elements fixed
under ησ is a unitary group of rank 1 (as the standard hermitian form is anisotropic
over C).

The main theorem stated above contributes to the study of the subgroups of Cheval-
ley groups which are fixed under some group of automorphisms. My aim is to in-
vestigate the groups with a Tits diagram (we refer to (1.6) below) as subgroups of
Chevalley groups, fixed under suitable automorphisms which permute the root sub-
groups Xr, r ∈ Φ. (In Mühlherr and Van Maldeghem [6], the corresponding result
has been achieved for the Moufang quadrangles of type F4.) The automorphisms
in question do not necessarily fix the unipotent subgroup of the Chevalley group,
but a proper parabolic subgroup. The intended strategy is to give explicit auto-
morphisms for which the main theorem above applies. In addition to the various
classical groups also forms of exceptional groups will arise. In particular for these
groups, a description and complete understanding in the framework of Chevalley
groups and groups with BN-pairs seems worth-wile.

The content of the present paper is as follows. Section 1 is devoted to the proof of
the proposition. From the assumption of the proposition we deduce in (1.14) below
that the restriction of wJ∪Oα

0 to Ṽ is wα̃, for α ∈ Π \ J . Thus the wα̃ permute Φ̃.
The latter holds for all wr̃, r ∈ Φ \ΦJ , as we show that wr̃ is the restriction to Ṽ of

a conjugate under the group generated by the w
J∪Oβ

0 , β ∈ Π\J , of some wJ∪Oα
0 (see

(1.17) below). Furthermore, we prove in (1.16) that for α ∈ Π \ J and r ∈ Φ \ ΦJ ,
the vector r̃ is a positive multiple of α̃, if and only if r ∈ Φ+

J∪Oα
\ ΦJ .

In Section 1 we also remark that the Tits diagrams listed in [9] yield examples
for our setup and we give further examples.

We construct the BN-pair for G1 in Section 2. For this the BN-pair (B, N)
for G and Assumption (0) for the automorphism ησ are indispensable. We use the
unique BNB-decomposition in G as well as some unique PJNPJ -decomposition
deduced from it (see (2.2) below). Furthermore the distinguished (double) coset
representatives defined in (1.2) are an important tool in the proof.

In our proof in (2.9) below that N1/H1 is isomorphic to the subgroup of O(Ṽ )
generated by the wα̃, α ∈ Π\J , Assumption (2) is used via the definition of suitable
elements nα̃. Assumption (1) (on the fixed point free action of ησ on the LJ -building)
is used in (2.5), where we investigate the double coset PJgPJ for a parabolic subgroup
gPJ invariant under ησ. From the above and the assumption that Φ̃ is of type
A`, . . . , G2 or BC`, we deduce in (2.10) that any element in G1 may we written as
a product with factors in B1, N1 and B1. Next we verify the BN-pair axioms and
we finally investigate whether G1 is quasi-simple. This proves the main theorem.
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1 The root system Φ̃

In this section, we prove the proposition stated in the introduction. For root systems
and Weyl groups, we refer to Bourbaki [3], Carter [4] and Steinberg [8].

1.1. Notation. Let Φ be an indecomposable, spherical root system satisfying the
cristallographic condition (and whence of type A`, . . . , G2). Let Π be a fundamental
system for Φ, spanning the Euclidean space V with standard scalar product (, ).
The associated Weyl group is W := 〈wα | α ∈ Π〉 ≤ O(V ). Here wα is a reflection
with wα : v 7→ v − 2(v, α)/(α, α) · α, for v ∈ V .

For J ⊆ Π, we define WJ , ΦJ , Φ+
J , Φ−

J as usual. The longest element in W is
denoted by w0. We have w0(Π) = −Π and w2

0 = id. Similarly, we define wJ
0 in WJ .

1.2. Distinguished (double) coset representatives. For the following, we refer
to Carter [4, (2.5.9)] and [5, (2.7.3)]. Let W be a (finite) Weyl group with root
system Φ and fundamental reflections wα, α ∈ Π. We fix J ⊆ Π.

Every left coset of WJ in W contains a unique element, w say, of minimal length.
This element is characterized by w(J) ⊆ Φ+.

Similarly, every double coset of WJ in W contains a unique element, w say, of
minimal length. This element is characterized by w(J) ⊆ Φ+ and w−1(J) ⊆ Φ+.

1.3. Diagram symmetries. For Φ of type A`, D` or E6, we denote by τ the
diagram symmetry of order 2. Then τ gives rise to an isometry of V (also denoted
by τ) which permutes Φ and preserves Φ+ and Φ−.

For J ⊆ Π with τ(J) = J , we have τWJτ−1 = WJ and τwJ
0 τ−1 = wJ

0 . In
particular, τwJ

0 = wJ
0 τ .

1.4. Notation. Let Φ, Π, V , τ , J , W , WJ , σ and Oα be as defined in the intro-
duction. We consider σ as isometry of V , which permutes Φ. We set

CV (σ) = {v ∈ V | σ(v) = v}, CW (σ) = {w ∈ W | σwσ−1 = w},
Stab(ΦJ) = {w ∈ W | w(ΦJ) = ΦJ}, W 1 := 〈wJ∪Oα

0 | α ∈ Π \ J〉.

We define Ṽ and ṽ as in the introduction and set W̃ := 〈wα̃ | α ∈ Π \ J〉 ≤ O(Ṽ ),
Φ̃ := {r̃ | r ∈ Φ \ ΦJ} and Π̃ := {α̃ | α ∈ Π \ J}.

We recall the assumption of the proposition stated in the introduction:

(H) wJ∪Oα
0 (Oα) = −Oα, for α ∈ Π \ J .

The aim is to show that Φ̃ is a root system (with fundamental system Π̃ and Weyl
group W̃ ). Possibly, Φ̃ is non-reduced (and for some root in Φ̃ also a proper positive
multiple is a root).

Next, we give equivalent formulations of (H).

1.5. Lemma. Let α ∈ Π \ J . The following conditions are equivalent:
(a) wJ

0 and wJ∪Oα
0 commute. (b) wJ∪Oα

0 ∈ CW (σ)
(c) wJ∪Oα

0 (J) = −J (d) wJ∪Oα
0 ∈ Stab(ΦJ)

(e) wJ∪Oα
0 (Oα) = −Oα
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Proof. First, we note that (a) and (b) are equivalent. Indeed, either σ = wJ
0 or

σ = τwJ
0 . In the latter case, wJ∪Oα

0 commutes with τ by (1.3). Since wJ∪Oα
0 switches

J ∪ Oα and −(J ∪ Oα), also (c), (d), (e) are equivalent.
Furthermore, (a) implies (e). For this, we assume that wJ∪Oα

0 (α) ∈ −J . Then
wJ

0 (α) = wJ∪Oα
0 wJ

0 wJ∪Oα
0 (α) is contained in−(J∪Oα) and in α+〈J〉, a contradiction.

Finally, (c) and (e) imply (a). Indeed, w := wJ
0 wJ∪Oα

0 wJ
0 is in WJ∪Oα and switches

Φ+
J and Φ−

J and also Φ+
J∪Oα

\ ΦJ and Φ−
J∪Oα

\ ΦJ ; whence w = wJ∪Oα
0 . �

1.6. A connection with Tits diagrams. For Tits diagrams, we refer to Tits [9],
Van Maldeghem [12]. In [9] there is a list of Dynkin diagrams with some additional
information which describes the algebraic semisimple groups over arbitrary fields.
Every such Tits diagram yields a choice of J and σ such that the assumption of the
proposition is satisfied. Indeed, the subset J is the part of Π that is not encircled,
the so-called anisotropic kernel. We choose σ := wJ

0 and σ := τwJ
0 depending on

whether the Tits diagram is straight or bended (so-called inner and outer forms,
respectively). The set Oα, α ∈ Π \ J , is the so-called (distinguished orbit or)
isotropic orbit containing α. It is in the encircled part of the Tits diagram. For
outer forms, the Tits diagram is invariant under the diagram symmetry.

When J = ∅ in (1.4), then wJ
0 = id and σ is trivial or a diagram symmetry. This

leads to split and quasi-split forms, that is to Chevalley groups or ‘ordinary’ twisted
variants (Steinberg variations).

1.7. Example. We remark that there exists subsets J which do not arise in the
list of diagrams in [9] (as explained in (1.6)), but satisfy the hypotheses of the
proposition. For example for Φ of type E7, we could take J = Π \ {α4, α6} in the
notation of Bourbaki [3]. Then we obtain the fundamental roots α̃4 = 1

6
(2α1 +3α2 +

4α3 + 6α4 + 3α5) and α̃6 = 1
2
(α5 + 2α6 + α7). The angle between the two roots is

5π/6 and α̃6 is
√

3 times as long as α̃4, as in root systems of type G2. Inspection
of the root system of type E7 shows that there are 9 positive roots such that α4

or α6 have a non-zero coefficient. The possible values for these pairs of coefficients
are (0, 1), (3, 1), (3, 2), (1, 0), (1, 1), (2, 1) and (2, 0), (2, 2), (4, 2). Note that the last
three pairs are the middle ones multiplied by 2. Thus the non-reduced root system
Φ̃ consists of the 12 roots of a root system of type G2 together with doubles of the
short roots, the phenomenon which also arises in root systems of type BC2.

We remark that a similar case is Φ of type E8 and J = Π \ {α1, α6} in the
notation of Bourbaki [3].

In the following, we prove the proposition. We will use Hypothesis (H) in (1.14) and
below.

1.8. Lemma. For σ as in (1.4), we have σ2 = id and σWσ−1 = W . Furthermore,
σ switches Φ+

J and Φ−
J , but leaves Φ+ \ ΦJ invariant. �

1.9. Lemma. The kernel of the projection onto Ṽ is Ṽ ⊥ = 〈J, v − σ(v) | v ∈ V 〉 =

〈J, α − τ(α) | |Oα| = 2〉. In particular, α̃ = ˜τ(α), if |Oα| = 2, and r ∈ ΦJ , when
r ∈ Φ with r̃ = 0.
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Proof. We have Ṽ ⊥ = 〈J〉 + CV (σ)⊥. Since CV (σ)⊥ = 〈v − σ(v) | v ∈ V 〉, the first
equality holds. For the proof of the second equality, we first note that

(∗) v + 〈J〉 = wJ
0 (v) + 〈J〉, for v ∈ V .

Using (∗) twice, we obtain that the right hand side is contained in the left hand side
(as for α with |Oα| = 2, necessarily σ = wJ

0 τ and α− τ(α) ∈ wJ
0 (α− τ(α)) + 〈J〉 =

α − σ(α) + 〈J〉). For the other inclusion, it suffices to consider the basis Π of V .
When σ = wJ

0 , (∗) yields that α − σ(α) ∈ 〈J〉, as desired. When σ = wJ
0 τ , then

α− σ(α) ∈ α− τ(α) + 〈J〉 by (∗). As α− τ(α) is in 〈J〉, for α ∈ J or |Oα| = 1, the
second equality holds.

The next statement follows, as α−τ(α) is contained in the kernel of the projection
on Ṽ , for |Oα| = 2. Finally, let r ∈ Φ with r̃ = 0. By the above we may express
r as a linear combination of vectors in J and vectors α − τ(α) with α ∈ Π \ J . As
every root is positive or negative, we deduce that r ∈ ΦJ . �

We remark that ṽ = w̃(v) for all v ∈ V and w ∈ WJ , as v − w(v) is a linear
combination of vectors from J . Hence WJ acts trivially on Ṽ (even on J⊥).

1.10. Lemma. We denote by Oα1 , . . . ,Oαn the distinct Oα. Then α̃1, . . . , α̃n is a
basis of Ṽ .

Proof. By (1.9) α̃1, . . . , α̃n span Ṽ and are linearly independent. �

The following characterization of the projection onto Ṽ is sometimes useful for
explicit calculations.

1.11. Lemma. For v ∈ V , the vector ṽ is the projection of 1
2
(v + σ(v)) onto J⊥.

Proof. We write 1
2
(v + σ(v)) = x + y with x ∈ 〈J〉, y ∈ J⊥. Then v − y =

x + 1
2
(v − σ(v)). Whence v − y is contained in Ṽ ⊥ by (1.9), as desired. �

1.12. Lemma. The space Ṽ is invariant under CW (σ) ∩ Stab(ΦJ). In particular,

w̃(r) = w(r̃), for w ∈ CW (σ) ∩ Stab(ΦJ) and r ∈ Φ. �

1.13. Lemma. The kernel of the action of CW (σ) ∩ Stab(ΦJ) on Ṽ is CWJ
(σ).

Proof. By (1.12), CW (σ)∩Stab(ΦJ) acts on Ṽ . By the remark after (1.9), CWJ
(σ) is

contained in the kernel of the action. For the converse, let w1 ∈ CW (σ)∩ Stab(ΦJ),
w1 6∈ WJ . We write w1 = wg, where w is the shortest element in wWJ and g ∈ WJ .
Then w(J) ⊆ Φ+, w 6= 1. Furthermore, w stabilizes 〈J〉 (as the latter holds for w1

and g). Whence w̃(x) = 0 by (1.9), for x ∈ 〈J〉.
As w 6= 1, there exists β ∈ Π \ J with w(β) ∈ Φ−. Then β̃ 6= 0 by (1.9).

As g ∈ WJ , we have g(β) = β + x with x ∈ 〈J〉 . We obtain w1(β̃) = w̃1(β) =

w̃(β) + w̃(x) = w̃(β) 6= β̃ and w1 is not in the kernel of the action. �
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1.14. Lemma. We have wJ∪Oα
0 |

Ṽ
= wα̃, α ∈ Π \ J . In particular, wα̃(r̃) ∈ Φ̃, for

r ∈ Φ \ ΦJ .

Proof. Let α ∈ Π \ J . We have wJ∪Oα
0 (α̃) = −α̃ by (H) and (1.12). If v ∈ Ṽ with

(v, α̃) = 0, then (v, α) = 0 and also (v, τ(α)) = 0 (as α̃ − α, α̃ − τ(α) ∈ Ṽ ⊥). Thus
v ∈ (J ∪Oα)⊥ and v is centralized by WJ∪Oα . This yields the first claim and (1.14)
follows. �

1.15. Notation. For α ∈ Π \ J and w ∈ CW (σ) ∩ Stab(ΦJ), we define

S(w, α) := w(Φ+
J∪Oα

\ ΦJ) ⊆ Φ.

Then −S(w, α) = S(wwJ∪Oα
0 , α). We call any such S(w,α) a part, compare Stein-

berg [8, p. 174].

1.16. Lemma. For α ∈ Π \ J and r ∈ Φ \ ΦJ , we have r̃ = µα̃ with µ > 0, if and
only if r ∈ S(id, α).

Proof. Let r ∈ S(id, α). If Oα = {α}, then r ∈ µα + 〈J〉 and r̃ = µα̃ with µ > 0. If
|Oα| = 2, then r ∈ µ1α + µ2τ(α) + 〈J〉 and r̃ = (µ1 + µ2)α̃ with µ := µ1 + µ2 > 0.

Conversely, let α ∈ Π \ J , r ∈ Φ \ ΦJ such that r̃ = µα̃ with µ > 0. Then
r − µα is contained in the kernel of the projection onto Ṽ . With (1.9) we deduce
r ∈ Φ+

J∪Oα
\ ΦJ , as desired. �

We remark that in the examples of Tits [9], we have µ = 1 or µ = 2. In our setup
we could take Φ of type E6, J = Π \ {α4} and σ := wJ

0 in the notation of Bourbaki
[3], for example. Then the assumption of the proposition is satisfied and Π̃ = {α̃4}.
For the roots r := α2 + α3 + 2α4 + α5 and s := α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6, we
have r̃ = 2α̃4 and s̃ = 3α̃4.

For the following lemma, compare Carter [4, (13.2.1), (2.1.8)]. The group W 1

was defined in (1.4).

1.17. Lemma. For r ∈ Φ \ ΦJ , there exist w ∈ W 1 and α ∈ Π \ J such that
r ∈ S(w, α). In particular, wwJ∪Oα

0 w−1 |
Ṽ
= wr̃ and wr̃(s̃) ∈ Φ̃, for s ∈ Φ− ΦJ .

Proof. Let r ∈ Φ+ \ ΦJ . By (1.10), there exist integers ci ≥ 0 with r̃ =
∑n

i=1 ciα̃i.
We proceed by induction on H(r) :=

∑n
i=1 ci > 0. If H(r) = 1, then r̃ = α̃ with

α ∈ Π \ J ; whence r ∈ S(id, α) by (1.16). Next, let H(r) > 1. Since r̃ 6= 0, there
exists α ∈ Π \ J with (r̃, α̃) > 0. (Otherwise (r̃, α̃) ≤ 0, for all α ∈ Π \ J . Whence
(r̃, r̃) =

∑n
i=1(r̃, α̃i) ≤ 0, a contradiction.) We may assume that r 6∈ S(id, α).

With (1.12) and (1.14) we obtain s := wJ∪Oα
0 (r) ∈ Φ+ \ ΦJ and s̃ = wJ∪Oα

0 (r̃) =
wα̃(r̃) = r̃ − µα̃ with µ := 2(r̃, α̃)/(α̃, α̃) > 0. Thus H(s) = H(r) − µ < H(r).
By induction, there exist w ∈ W 1 and β ∈ Π \ J with s ∈ S(w, β). This yields
r = wJ∪Oα

0 (s) ∈ S(wJ∪Oα
0 w, β), as desired.

We have shown that any r ∈ Φ+ \ ΦJ is contained in an S(w, α). In this case,
−r ∈ S(wwJ∪Oα

0 , α). This proves the first claim and (1.17) follows. �
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1.18. We define r ≈ s, if and only if r̃ = µs̃ with 0 < µ ∈ R. Then ≈ is an
equivalence relation on Φ \ ΦJ . By (1.16) and (1.17), the parts S(w, α) are the
equivalence classes of ≈. This yields that distinct ‘parts’ are disjoint.

Proof of the proposition. By (1.9) Φ̃ is a finite set of non-zero vectors which
generates Ṽ . For s ∈ Φ− ΦJ , we have wr̃(s̃) ∈ Φ̃ by (1.17). �

1.19. Remark. The groups W 1 generated by the wJ∪Oα
0 , α ∈ Π \ J , and CW (σ) ∩

Stab(ΦJ) are not necessarily equal. This is easily verified for Φ of type A3, J =
Π \ {α2} and σ := wJ

0 in the notation of Bourbaki [3].
The restriction to Ṽ is a surjective homomorphism from W 1 to W̃ , the subgroup

of O(Ṽ ) generated by the wα̃, α ∈ Π \ J . Thus the Weyl group of Φ̃ is finite.

2 Construction of a BN-pair

For the definition and properties of Chevalley groups as well as for the standard
facts on groups with a BN-pair and their parabolic subgroups, we refer to Carter
[4], [5], Steinberg [8] and Bourbaki [3]. We continue with the setting of Section 1.
In addition, we use the assumption that the root system Φ̃ is of type A`, . . . , G2 or
BC` in (2.10) below.

2.1. Universal Chevalley groups. Let K be a field and Φ a root system as in
(1.1). By Φ(K) we denote the corresponding universal Chevalley group, defined by
the Steinberg generators and relations; see Carter [4, (12.1.1)]. This group has a
BN-pair (B, N) with H := B ∩N and H/N = W .

For S ⊆ Φ, we define XS := 〈Xr | r ∈ S〉. Here Xr ' (K, +) is the root subgroup
corresponding to the root r.

2.2. Unique PJNPJ-decomposition. Let x ∈ G = Φ(K). We assume that
PJxPJ = PJnPJ , where n ∈ N with nH = w ∈ Stab(ΦJ).

Then x may be expressed as a product x = ulnu′ with u ∈ UJ , l ∈ LJ and
u′ ∈ U−

w,J := 〈Xr | r ∈ Φ+ \ ΦJ , w(r) ∈ Φ−〉. Indeed, the other factors in u′ ∈
UJ switch to the left. (We remark, that U−

w,J is not a standard notation.) This
decomposition with a given n is unique. Indeed, let p1nu1 = p2nu2 with p1, p2 ∈ PJ

and u1, u2 ∈ U−
w,J . Then nu1u

−1
2 n−1 = p−1

1 p2 ∈ U−
J ∩ PJ = 1. Whence u1 = u2 and

p1 = p2.

2.3. Notation. Let Φ, Π, J and σ : Φ → Φ be as in (1.4). We consider the group
G := Φ(K) as defined in (2.1). Let ησ : G → G be an automorphism of G satisfying
(0), (1) and (2) of the introduction.

The groups UJ , U−
J are invariant under ησ, as well as the parabolic subgroups

PJ = N(UJ) and P−
J = N(U−

J ) and the Levi complement LJ = PJ ∩P−
J . The action

of ησ on the building of LJ is fixed point free.
Assumption (0) is satisfied for any automorphism ησ of G = Φ(K) with ησ :

xr(t) 7→ xσ(r)(crt), for r ∈ Φ, t ∈ K. Here 0 6= cr ∈ K, r ∈ Φ, and the map
t 7→ t, is an automorphism of K. Such automorphisms exist for an arbitrary choice
of fundamental coefficients cα, α ∈ Π.
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We define

U1 := UJ ∩ Fix(ησ), V 1 := U−
J ∩ Fix(ησ),

G1 := 〈U1, V 1〉, B1 := PJ ∩G1, H1 := LJ ∩G1.

Note that B1 = U1H1 with nilpotent normal subgroup U1.

The aim is to construct a BN-pair for G1. For this, we exhibit a suitable group N1

first. We use the distinguished representatives of double cosets WJwWJ , see (1.2).
We recall from (2.3) that PJ is invariant under ησ.

2.4. Lemma. Let g ∈ G with ησ(g) ∈ PJgPJ . We write PJgPJ = PJnPJ , where
n ∈ N with nH = w, w the shortest element in WJwWJ . Then w ∈ CW (σ).

Proof. We have PJnPJ = BNJnNJB by Carter [5, (2.8.1)]. Since PJgPJ is invariant
under ησ, we obtain BNJnNJB = BNJησ(n)NJB with ησ(n) ∈ N . By Assump-
tion (0), ησ(n)H = σwσ−1. Thus σwσ−1 ∈ WJwWJ with the same (minimal) length
as w, whence σwσ−1 = w. �

In the following lemma, we use Assumption (1) on the fixed point free action on
the LJ -building. We write a left conjugate by an upper index to the left, i. e. gPJ

means gPJg−1 and so on.

2.5. Lemma. Let g ∈ G with gPJ invariant under ησ. We write PJgPJ = PJnPJ ,
where n ∈ N with nH = w, w the shortest element in WJwWJ . Then w(J) = J .
In particular, w ∈ CW (σ) ∩ Stab(ΦJ).

Proof. We write g = pnp′ with p, p′ ∈ PJ . For K := J ∩ w(J), we have PK =
UJ(PJ∩ nPJ) by Carter [5, (2.8.4)]. Conjugation by p yields that pPK = UJ(PJ∩ gPJ)
is invariant under σ. We write p = lu with l ∈ LJ and u ∈ UJ . By Carter [5, (2.6.6)],
l(LJ ∩ PK) is a parabolic subgroup of LJ . With u ∈ UJ ⊆ UK ⊆ PK , we see that
l(LJ∩PK) = LJ∩ pPK is invariant under σ. Thus l(LJ∩PK) = LJ by Assumption (1)
and PJ = UJLJ ⊆ PK . We obtain J ⊆ K ⊆ w(J), whence w(J) = J .

For the last assertion, we note that g−1ησ(g) ∈ N(PJ) = PJ , whence ησ(g) ∈ gPJ .
Now (2.4) applies. �

2.6. Lemma. Let 1 6= w ∈ WJ∪Oα with w ∈ CW (σ) and w(Φ+
J ) = Φ+

J . Then
wJ

0 w = wJ∪Oα
0 .

Proof. The element wJ
0 w ∈ WJ∪Oα maps Φ+

J to Φ−
J . Since w 6= 1, we have w(α) ∈

−S(id, α) (as defined in (1.15)). Thus wJ
0 w ∈ WJ∪Oα maps S(id, α) to −S(id, α).

We deduce that wJ
0 w = wJ∪Oα

0 . �

2.7. Lemma. Let α ∈ Π \ J and nJ∪Oα
0 ∈ N with nJ∪Oα

0 H = wJ∪Oα
0 . Then there

exists nα̃ ∈ (nJ∪Oα
0 LJ) ∩G1.
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Proof. By Assumption (2) there is 1 6= x ∈ X−S(id,α)∩G1. Then x ∈ nJ∪Oα
0 XS(id,α) ⊆

nJ∪Oα
0 B ⊆ BNJ∪OαB (with the BN-pair axioms in G).

We write PJxPJ = PJnPJ where n ∈ N with nH = w, w the shortest element
in WJwWJ . Because of BNJnNJB = PJnPJ = PJxPJ ⊆ BNJ∪OαB, we obtain
w ∈ WJ∪Oα . Furthermore w 6= 1, since otherwise x ∈ PJ ∩ U−

J = 1.
Since ησ(x) = x, we may apply (2.5). This yields that w(J) = J and w ∈ CW (σ).

With (2.6) we deduce that wJ
0 w = wJ∪Oα

0 .
Thus PJxPJ = PJnPJ = PJnJ∪Oα

0 PJ . There is a unique expression x = ulnJ∪Oα
0 u′

with u ∈ UJ , l ∈ LJ and u′ ∈ U−
wJ∪Oα

0 ,J
by (2.2).

Since ησ(x) = x, comparing factors yields that ησ(u) = u and ησ(u′) = u′. Thus
u−1x(u′)−1 = lnJ∪Oα

0 ∈ G1, as desired (as LJnJ∪Oα
0 = nJ∪Oα

0 LJ). �

2.8. The subgroup N1. We define nα̃ as in (2.7). The existence of nα̃ is indepen-
dent of the particular choice of the preimage nJ∪Oα

0 ∈ N . Notice that nα̃ is unique
modulo H1.

We set N1 := 〈nJ∪Oα
0 , LJ | α ∈ Π \ J〉 ∩ G1. Every nα̃ normalizes LJ . Whence

N1 = 〈nα̃ | α ∈ Π \ J〉H1 and H1 is a normal subgroup of N1.

Next, we verify that N1/H1 ' W̃ , where W̃ was defined in (1.4).

2.9. Lemma. Let n1 ∈ N1. We write n1LJ = nLJ , where n ∈ N with nH = w, w
the shortest element in wWJ . Then w ∈ CW (σ) ∩ Stab(ΦJ) and w |

Ṽ
∈ W̃ .

Thus ϕ : N1/H1 → W̃ with ϕ : n1H1 7→ w |
Ṽ

is well-defined and yields an
isomorphism.

Proof. Because of ησ(n1) = n1, we have nLJ = ησ(n)LJ , where ησ(n) ∈ N with
ησ(n)H = σwσ−1. Thus σwσ−1 ∈ wWJ with same length as w; i.e. σwσ−1 = w.
Furthermore, since n1 ∈ N1, we deduce that w ∈ 〈wJ∪Oα

0 , WJ | α ∈ Π \ J〉 ⊆
Stab(ΦJ). With (1.14) this yields the first claim.

We have shown that ϕ is a mapping. When wi is the shortest element in wiWJ

and wi ∈ Stab(ΦJ) (i = 1, 2), then w1w2 is the shortest element in w1w2WJ by (1.2).
Thus ϕ is a homomorphism.

By definition we have nα̃ ∈ N1 with nα̃LJ = nJ∪Oα
0 LJ . The shortest element

in wJ∪Oα
0 WJ is wJ∪Oα

0 wJ
0 . Note that wJ

0 is contained in CWJ
(σ), the kernel of the

action on Ṽ . With (1.14), we deduce that ϕ(nα̃H1) = wJ∪Oα
0 |

Ṽ
= wα̃. Whence ϕ

is surjective. Finally, ϕ is injective. Indeed, if n1H1 is in the kernel of ϕ, then the
associate w is contained in the kernel of the action on Ṽ . Now (1.13) yields that
w ∈ WJ and n1 ∈ LJ ∩G1 = H1. �
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2.10. B1N1B1-decomposition. Any g ∈ G1 may be written in the form g = bnb′

with b, b′ ∈ B1 and n ∈ N1.

Proof. Let g ∈ G1, whence ησ(g) = g. We write PJgPJ = PJnPJ , where n ∈ N
with nH = w, w the shortest element in WJwWJ . By (2.5), we have w ∈ CW (σ) ∩
Stab(ΦJ). Thus w |

Ṽ
permutes Φ̃. From this we deduce as follows that w |

Ṽ
∈ W̃ . As

Φ̃ is of type A`, . . . , G2 or BC`, we may write w |
Ṽ
= w̃d with w̃ ∈ W̃ and d a diagram

symmetry which preserves length. We suppose that d 6= 1. We write w̃ = w1 |
Ṽ

with w1 ∈ W 1. Then x := (w1)−1w ∈ CW (σ)∩Stab(ΦJ) and x |
Ṽ
= d 6= 1. Thus x is

not contained in the kernel of the action on Ṽ . As in the proof of (1.13) there exists
β ∈ Π \ J such that β̃ is made negative by x. But x acts as a diagram symmetry, a
contradiction.

By (2.9) there exists n1 ∈ N1 with ϕ(n1H1) = w |
Ṽ
. We write n1LJ = nLJ ,

where n ∈ N with nH = w, the shortest element in wWJ . Then w−1w ∈ CWJ
(σ),

the kernel of the action on Ṽ .
Thus n1LJ = nLJ = nLJ and PJgPJ = PJnPJ = PJn1PJ with n1 ∈ N1. By

(2.2) there is a unique expression x = uln1u′ with u ∈ UJ , l ∈ LJ and u′ ∈ U−
w,J .

Since ησ(x) = x, ησ(n1) = n1 and UJ , LJ and U−
w,J are invariant under ησ,

comparing factors yields that ησ(u) = u, ησ(u′) = u′ and ησ(l) = l. Thus g ∈
B1N1B1, as desired. �

2.11. Theorem. The subgroups B1 and N1 form a BN-pair for G1. The associated
Weyl group is N1/H1 = W̃ = 〈wα̃ | α ∈ Π \ J〉, where H1 = B1 ∩N1.

Proof. We verify the BN-pair axioms.

(BN1) By (2.10) G1 is generated by B1 and N1.

(BN2) We have B1 ∩ N1 ⊆ (PJ ∩ NLJ) ∩ G1 ⊆ LJ ∩ G1 = H1. Thus B1 ∩ N1

coincides with H1, whence is a normal subgroup of N1 by (2.8).

(BN3) By (2.9) we have N1/H1 = W̃ = 〈wα̃ | α ∈ Π \ J〉.
Let α ∈ Π \ J and nα̃ ∈ N1 with nα̃H1 = wα̃.

(BN4) We show that (B1nα̃B1)(B1n1B1) ⊆ B1nα̃n1B1 ∪B1n1B1, for n1 ∈ N1.
Indeed, we have B1nα̃B1 ⊆ PJnJ∪Oα

0 PJ . Thus the left hand side, A say, is con-
tained in (PJnJ∪Oα

0 PJ)(PJn1PJ). With (BN4) for G, we obtain A ⊆ PJNJ∪Oαn1PJ∩
G1. We write n1LJ = nLJ , where n ∈ N with nH = w, w the shortest element in
wWJ . Then w(J) ⊆ Φ+ by (1.2). Furthermore, w ∈ CW (σ) ∩ Stab(ΦJ) by (2.9).
Thus w(Φ+

J ) = Φ+
J .

Let x ∈ PJNJ∪Oαn1PJ ∩ G1. We write PJxPJ = PJn′nPJ , where n′ ∈ N with
n′H = w′, w′ the shortest element in WJw′. Then w′ ∈ WJ∪Oα ⊆ Stab(ΦJ). As
(w′)−1 is the shortest element in (w′)−1WJ , we have (w′)−1(J) ⊆ Φ+ by (1.2). Since
(w′)−1 stabilizes ΦJ , we obtain (w′)−1(Φ+

J ) = Φ+
J . This yields w′(Φ+

J ) = Φ+
J .

Together we obtain w′w(Φ+
J ) = Φ+

J and w′w is the shortest element in WJw′wWJ

by (1.2). By (2.4) we deduce w′w ∈ CW (σ). Since w ∈ CW (σ), this yields w′ ∈
CW (σ). By (2.6) we obtain w′ = 1 or w′ = wJ

0 wJ∪Oα
0 . Whence PJxPJ is one of

PJn1PJ or PJnJ∪Oα
0 nPJ = PJnα̃n1PJ . As at the end of the proof of (2.10), we

obtain that (BN4) holds in G1.

(BN5) We have nα̃B1 6= B1, as by Assumption (2) there is 1 6= x ∈ X−S(id,α) ∩G1 =
nα̃(XS(id,α)∩G1). Thus x is contained in nα̃B1, but not in B1 (since PJ ∩U−

J = 1). �
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2.12. Theorem. If G1 is perfect, then it is quasi-simple.

Proof. By (2.11) G1 has a BN-pair (B1, N1) with Weyl group W̃ . Furthermore, Π̃
is indecomposable by assumption. Also U1 is a nilpotent normal subgroup of B1.

Let ñ0 ∈ N1 with ñ0H
1 = w̃0, the longest element in W̃ . Then V 1 = ñ0U1 and

G1 = 〈U1, V 1〉 is generated by the conjugates of U1.
Now the criterion for the quasi-simplicity of groups with a BN-pair of Tits [10,

p.319], see also Bourbaki [3], applies. Thus any proper normal subgroup F of G1

is contained in B1. We obtain F ≤ B1 ∩ ñ0B1 ⊆ PJ ∩ P−
J = LJ , whence F ≤ H1.

But then [U1, F ] ≤ [U1, H1] ≤ U1 and [U1, F ] ≤ F ≤ H1. Therefore [U1, F ] ≤
U1 ∩H1 ≤ UJ ∩ LJ = 1 and F centralizes U1. This yields F ≤ Z(G). �

Note that (2.11) and (2.12) prove the main theorem.
We remark that by the standard argument the Weyl group W̃ is defined by the

standard generators and relations. From this we deduce that the action of W 1 on
Ṽ is faithful. Furthermore, the group CW (σ) ∩ Stab(ΦJ) is the semidirect product
of W 1 ' W̃ and the normal subgroup CWJ

(σ).

2.13. Root subgroups for G1. For α ∈ Π \ J , w ∈ CW (σ) ∩ Stab(ΦJ), we recall
the definition of the parts S(w, α) in (1.15). The parts are the equivalence classes
of ≈ by (1.18). Any root in Φ̃ is of the form r̃ with r ∈ Φ\ΦJ . Let Sr be the unique
part in Φ which contains r, see (1.18). This part is independent of the particular
choice of the preimage r.

We define the root subgroup of G1 associated to r̃ as

Ur̃ := XSr ∩G1 = 〈Xs | s̃ = µr̃ with µ > 0〉 ∩G1.

By Assumption (2) these root subgroups are non-trivial. Conjugation by nα̃ inter-
changes Uα̃ and U−α̃. Let S := S(w, α) be a part. Then S is invariant under σ
and WJ . Furthermore, for s, s′ ∈ S and r ∈ ΦJ with s + s′, s + r ∈ Φ, we have
s + s′, s + r ∈ S. We deduce that XS is invariant under ησ and under LJ .

As in Carter [4, (13.6.1), (13.6.5)], we obtain U1 =
∏

r̃∈Φ̃+ Ur̃ with uniqueness of
expression. Furthermore, G1 = 〈Uα̃, U−α̃ | α ∈ Π \ J〉. From this it may be deduced
that G1 satisfies the so-called Moufang condition as stated in Tits [11].

To verify that G1 perfect, it suffices to show that the root subgroups Uα̃ are vector
spaces over some ground field with scalar multiplication defined via the action of
diagonal elements; see Tits [10, p. 324].
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