Compact endomorphisms of certain analytic Lipschitz algebras

F. Behrouzi H. Mahyar

Abstract

Let X be a compact plane set. A(X) denotes the uniform algebra of all continuous complex-valued functions on X which are analytic on intX. For $0 < \alpha \leq 1$, Lipschitz algebra of order α , Lip (X, α) is the algebra of all complex-valued functions f on X for which $p_{\alpha}(f) = \sup\{\frac{|f(x)-f(y)|}{|x-y|^{\alpha}} : x, y \in X, x \neq y\} < \infty$. Let $\operatorname{Lip}_A(X, \alpha) = A(X) \cap \operatorname{Lip}(X, \alpha)$, and $\operatorname{Lip}^n(X, \alpha)$ be the algebra of complex-valued functions on X whose derivatives up to order n are in $\operatorname{Lip}(X, \alpha)$. Lip $_A(X, \alpha)$ under the norm $||f|| = ||f||_X + p_{\alpha}(f)$, and $\operatorname{Lip}^n(X, \alpha)$ for a certain plane set X under the norm $||f|| = \sum_{k=0}^n \frac{||f^{(k)}||_X + p_{\alpha}(f^{(k)})}{k!}$ are natural Banach function algebras, where $||f||_X = \sup_{x \in X} |f(x)|$.

In this note we study endomorphisms of algebras $\operatorname{Lip}_A(X, \alpha)$ and $\operatorname{Lip}^n(X, \alpha)$ and investigate necessary and sufficient conditions for which these endomorphisms to be compact. Finally, we determine the spectra of compact endomorphisms of these algebras.

1 Introduction and Preliminaries

Let *B* be a unital commutative semi-simple Banach algebra with a maximal ideal space $\mathcal{M}(B)$. If *T* is a nonzero bounded endomorphism of *B*, then there exists a map $\varphi : \mathcal{M}(B) \to \mathcal{M}(B)$ such that $\widehat{Tf} = \widehat{f} \circ \varphi$ for all $f \in B$. In fact φ is equal to the adjoint T^* restricted to $\mathcal{M}(B)$. If a Banach function algebra *B* on a compact

Bull. Belg. Math. Soc. 12 (2005), 301–312

Received by the editors $\,$ May 2003.

Communicated by R. Delanghe.

²⁰⁰⁰ Mathematics Subject Classification : Primary, 46J10 Secondary 46J15.

 $Key\ words\ and\ phrases\ :\ compact\ endomorphisms,\ Lipschitz\ algebras,\ analytic\ functions,\ spectra.$

Hausdorff space X is natural, meaning that its maximal ideal space is X, then every nonzero endomorphism T of B has the form $Tf = f \circ \varphi$ for some self-map φ of X. If X is a compact plane set and B contains the coordinate map Z, then obviously $\varphi \in B$. It is interesting to know that under what conditions such φ induce compact endomorphisms. H. Kamowitz in [6] showed that if T is an endomorphism of disc algebra $A(\mathbb{D})$, T is compact if and only if φ is constant or $\|\varphi\|_{\mathbb{D}} < 1$. H. Kamowitz and S. Scheinberg [8] showed that an endomorphism T of Lipschitz algebras induced by a map φ , is compact if and only if φ is supercontraction. In [1] it has been shown that an endomorphism of D^n , the algebra of functions on unit disc \mathbb{D} with continuous *n*th derivatives, is compact if and only if φ is constant or $\|\varphi\|_{\mathbb{D}} < 1$.

In this note we investigate compact endomorphisms of Banach function algebras $\operatorname{Lip}_A(X,\alpha) = A(X) \cap \operatorname{Lip}(X,\alpha), (0 < \alpha \leq 1)$ and $\operatorname{Lip}^n(X,\alpha)$ when X is a certain compact plane set. First we show that when X is a compact (perfect) plane set, a self-map $\varphi : X \to X$ in these algebras induces a compact endomorphism of them, if φ is constant or $\varphi(X) \subseteq \operatorname{int} X$, and in the case $\alpha = 1$ these conditions are also necessary for a certain compact plane set X. We then determine the spectra of compact endomorphisms of these algebras. In the former, we need some definitions and Julia-Caratheodory Theorem.

Definition 1.1. (a) A sector in $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ at a point $\omega \in \partial \mathbb{D}$ is the region between two straight lines in \mathbb{D} that meet at ω and are symmetric about the radius to ω .

(b) If f is a function defined on \mathbb{D} and $\omega \in \partial \mathbb{D}$, then $\angle \lim_{z \to \omega} f(z) = L$ means that $f(z) \to L$ as $z \to \omega$ through any sector at ω . When this happens, we say L is the angular (or non-tangential) limit of f at ω .

(c) An analytic map $\varphi : \mathbb{D} \to \mathbb{D}$ has an angular derivative at a point $\omega \in \partial \mathbb{D}$ if for some $\eta \in \mathbb{D}$,

$$\angle \lim_{z \to \omega} \frac{\eta - \varphi(z)}{\omega - z}$$

exists (finitely). We call the limit the angular derivative of φ at ω , and denote it by $\varphi'(\omega)$.

Theorem 1.2. (Julia-Caratheodory Theorem) Suppose $\varphi : \mathbb{D} \to \mathbb{D}$ is a non-constant analytic map and $\omega \in \partial \mathbb{D}$. Then the followings are equivalent:

- (i) $\liminf_{z \to \omega} (1 |\varphi(z)|) / (1 |z|) = \delta < \infty,$
- (*ii*) $\angle \lim_{z \to \omega} (\eta \varphi(z)) / (\omega z)$ exists for some $\eta \in \partial \mathbb{D}$,
- (iii) $\angle \lim_{z \to \omega} \varphi'(z)$ exists, and $\angle \lim_{z \to \omega} \varphi(z) = \eta \in \partial \mathbb{D}$.

The boundary point η in (ii) and (iii) are the same, and in (i) $\delta > 0$. Also, the limit of the difference quotient in (ii) coincides with the limit of the derivative in (iii), and both are equal to $\omega \bar{\eta} \delta$. For further details and proof see [10] and [2, Sections 295-300].

We also need some results about the algebras of continuously differentiable functions, which were introduced by Dales and Davie [3]. **Definition 1.3.** Let X be a perfect compact plane set. A complex-valued function f on X is called complex-differentiable at a point $a \in X$ if

$$f'(a) = \lim_{\substack{z \to a \\ z \in X}} \frac{f(z) - f(a)}{z - a}$$

exists. We call f'(a) the complex derivative of f at a. Let $D^1(X)$ be the algebra of continuously differentiable functions on X. Then $D^1(X)$ under the norm ||f|| = $||f||_X + ||f'||_X$ is a normed algebra which is not necessarily complete. However, under some conditions $D^1(X)$ is complete.

Definition 1.4. Let X be a compact plane set which is connected by rectifiable arcs, and let $\delta(z, w)$ be the geodesic metric on X, the infimum of the lengths of the arcs joining z and w.

- (i) X is called regular if for each $z_0 \in X$ there exists a constant C such that for all $z \in X$, $\delta(z, z_0) \leq C|z z_0|$.
- (ii) X is called uniformly regular if there exists a constant C such that for all $z, w \in X, \, \delta(z, w) \leq C|z w|$.

As proved in [4], $D^1(X)$ is complete if and only if for each $z_0 \in X$ there exists a constant C such that for every $z \in X$ and $f \in D^1(X)$,

$$|f(z) - f(z_0)| \le C|z - z_0|(||f||_X + ||f'||_X).$$

Moreover, Completeness of $D^1(X)$ is is concluded from the following condition which we use frequently, so it is called (*)-condition:

(*) There exists a constant C such that for every $z, w \in X$ and $f \in D^1(X)$,

$$|f(z) - f(w)| \le C|z - w|(||f||_X + ||f'||_X).$$

It is also shown in [9], that if X is a finite union of regular sets then $D^1(X)$ is complete.

The following lemma is easy to see but it is important and we will be using in the sequel.

Lemma 1.5. Let K, X be two compact plane sets and $K \subseteq int X$. Then there exists a finite union of uniformly regular sets in int X containing K, namely Y and then a constant C such that for every analytic function f in int X and any $z, w \in K$, $|f(z) - f(w)| \leq C|z - w|(||f||_Y + ||f'||_Y).$

Let X be a compact plane set with a nonempty interior and A(X) denote the uniform algebra of all continuous complex-valued functions on X which are analytic on intX. As a first application of Lemma 1.5, we give sufficient conditions for which endomorphisms of every natural uniform subalgebra B of A(X) to be compact. For this, let $\varphi : X \to X$ be a function in B. Obviously, constant φ induces a compact endomorphism of B. Let φ be non-constant and $\varphi(X) \subseteq \text{int}X$. We show that such φ induces a compact endomorphism of B. By Functional Calculus Theorem $f \circ \varphi \in B$, for all $f \in B$. Let T be an endomorphism with $Tf = f \circ \varphi$. For compactness of T, suppose $\{f_n\}$ is a bounded sequence in B with $||f_n||_X \leq 1$. Let Y be a compact set obtained from Lemma 1.5 such that $\varphi(X) \subseteq Y \subseteq \text{int} X$. By Montel Theorem, $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ which is uniformly convergent on every compact subset of int X, in particular on Y. So $||Tf_{n_k} - Tf_{n_j}||_X = ||f_{n_k} \circ \varphi - f_{n_j} \circ \varphi||_X \leq ||f_{n_k} - f_{n_j}||_Y \to 0$ as $k, j \to \infty$. By completeness of B, $Tf_{n_k} = f_{n_k} \circ \varphi$ is convergent in B. That is, Tis compact.

2 Compact Endomorphisms of $Lip_A(X, \alpha)$

Let X be a compact plane set and $0 < \alpha \leq 1$. Lipschitz algebra of order α , Lip (X, α) is the algebra of all complex-valued functions f on X for which

$$p_{\alpha}(f) = \sup\{\frac{|f(z) - f(w)|}{|z - w|^{\alpha}} : z, w \in X, z \neq w\} < \infty.$$

Let $\operatorname{Lip}_A(X, \alpha) = A(X) \cap \operatorname{Lip}(X, \alpha)$. Then $\operatorname{Lip}_A(X, \alpha)$ is a Banach function algebra on X, if equipped with the norm $||f|| = ||f||_X + p_\alpha(f)$. Jarosz [5] proved that for $0 < \alpha \leq 1$ the maximal ideal space of $\operatorname{Lip}_A(X, \alpha)$ is X. It is well known every analytic function in a neighborhood of X is in $\operatorname{Lip}(X, \alpha)$, so it is in $\operatorname{Lip}_A(X, \alpha)$.

In this section we discuss compact endomorphisms of $\operatorname{Lip}_A(X, \alpha)$. As we know if the interior of X is empty, then $\operatorname{Lip}_A(X, \alpha) = \operatorname{Lip}(X, \alpha)$, and the compact endomorphisms of $\operatorname{Lip}(X, \alpha)$ have been studied in [8]. Thus in this section we assume that X has a nonempty interior. We recall that for every endomorphism T of $\operatorname{Lip}_A(X, \alpha)$, there exists a self-map φ on X such that $Tf = f \circ \varphi$ and $\varphi \in \operatorname{Lip}_A(X, \alpha)$ since $\operatorname{Lip}_A(X, \alpha)$ contains the coordinate map Z. In the next theorem we consider sufficient conditions that φ induces a compact endomorphism.

Theorem 2.1. Let X be a compact plane set, let φ be a self-map on X which belongs to $\operatorname{Lip}_A(X, \alpha)$. If φ is constant or $\varphi(X) \subseteq \operatorname{int} X$, then φ induces a compact endomorphism of $\operatorname{Lip}_A(X, \alpha)$.

Proof. If φ is constant, it is clear. Let $\varphi(X) \subseteq \operatorname{int} X$, by Functional Calculus Theorem $f \circ \varphi \in \operatorname{Lip}_A(X, \alpha)$, for every $f \in \operatorname{Lip}_A(X, \alpha)$, so $Tf = f \circ \varphi$ is an endomorphism of $\operatorname{Lip}_A(X, \alpha)$. For compactness of T, we assume that $\{f_n\}$ is a bounded sequence in $\operatorname{Lip}_A(X, \alpha)$ with $||f_n|| = ||f_n||_X + p_\alpha(f_n) \leq 1$. Then $\{f_n\}$ is bounded and equicontinuous in C(X). By Arzela-Ascoli Theorem, $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that converges in C(X). Since A(X) is closed in C(X), $\{f_{n_k}\}$ is convergent in A(X). One can also by Montel Theorem say $\{f_{n_k}\}$ and their derivatives $\{f'_{n_k}\}$ are uniformly convergent in every compact subset of int X. We claim that $\{f_{n_k} \circ \varphi\}$ is convergent in $\operatorname{Lip}_A(X, \alpha)$. Using Lemma 1.5, for all $z, w \in X$, with $\varphi(z) \neq \varphi(w)$ and $k, j \in \mathbb{Z}_+$ we have

$$\frac{\left|(f_{n_k} \circ \varphi - f_{n_j} \circ \varphi)(w) - (f_{n_k} \circ \varphi - f_{n_j} \circ \varphi)(z)\right|}{|w - z|^{\alpha}}$$
$$= \frac{\left|\varphi(w) - \varphi(z)\right|}{|w - z|^{\alpha}} \frac{\left|(f_{n_k} - f_{n_j})(\varphi(w)) - (f_{n_k} - f_{n_j})(\varphi(z))\right|}{|\varphi(w) - \varphi(z)|}$$
$$\leq Cp_{\alpha}(\varphi)(\|f_{n_k} - f_{n_j}\|_Y + \|f_{n_k}' - f_{n_j}'\|_Y),$$

since each $f_{n_k} - f_{n_j}$ is analytic in intX. Therefore $\{f_{n_k} \circ \varphi\}$ is a Cauchy sequence in $\operatorname{Lip}_A(X, \alpha)$, hence T is compact.

We will show that the above conditions are also necessary, for $\alpha = 1$ and for certain plane sets X. For notational convenience, in the case $\alpha = 1$, we set $p(f) = p_1(f)$ and $\operatorname{Lip}_A(X) = \operatorname{Lip}_A(X, 1)$. We now introduce the type of plane sets which we shall consider.

Definition 2.2. A plane set X at $c \in \partial X$ has an internal circular tangent if there exists a disc D such that $c \in \partial D$ and $\overline{D} \setminus \{c\} \subseteq \text{int} X$. A plane set X has smooth boundary if it has an internal circular tangent at each point of its boundary.

Such sets include the closed unit disc \mathbb{D} and $D(z_0, r) \setminus \bigcup_{k=1}^n D(z_k, r_k)$ where closed discs $\overline{D}(z_k, r_k)$ are mutually disjoint in $D(z_0, r) = \{z \in \mathbb{C} : |z - z_0| < r\}.$

We say a compact plane set X has peak boundary with respect to $B \subseteq C(X)$ if for each $c \in \partial X$ there exists a non-constant function $h \in B$ such that $||h||_X = h(c) = 1$.

For example, the sets mentioned the above have peak boundaries with respect to the algebra of all analytic functions on a neighborhood of X, H(X). Since $H(X) \subseteq \operatorname{Lip}_A(X)$, those sets have peak boundaries with respect to $\operatorname{Lip}_A(X)$. In fact, if X is a compact plane set such that $\mathbb{C} \setminus X$ has smooth boundary, then X has peak boundary with respect to H(X) and hence with respect to every subset of C(X) which contains H(X). For this, suppose $c \in \partial X$. Then there exists a disc $D = D(z_0, r)$ such that $c \in \partial D$ and $\overline{D} \setminus \{c\} \subseteq \mathbb{C} \setminus X$. The function $h(z) = \frac{r}{z - z_0}$ satisfies the definition of peak boundary.

We now give the necessary conditions.

Theorem 2.3. Let Ω be a bounded domain in plane and $X = \overline{\Omega}$. Let B be a natural uniform algebra on X such that $B \subseteq A(X)$ and let X have peak boundary with respect to B. If T is a nonzero compact endomorphism of B induced by φ , then φ is constant or $\varphi(X) \subseteq intX$

Proof. Suppose that $\varphi(c) \in \partial X$ for some $c \in \partial X$. By hypothesis there exists a nonconstant function $h \in B$ such that $1 = h(\varphi(c)) = ||h||_X$. Define $f_n(z) = h^n(z)$. By the compactness of T, the bounded sequence $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $Tf_{n_k} = f_{n_k} \circ \varphi = (h \circ \varphi)^{n_k}$ converges to a function f in B. Since $h \circ \varphi(c) = 1$, f(c) = 1. If φ is not constant, the maximum modulus principle implies that $|h \circ \varphi(z)| < 1$ whenever $z \in \text{int} X$. So $h^{n_k}(\varphi(z)) \to 0$ when $z \in \text{int} X$. Therefore f(z) = 0 on intXand so on X. This is a contradiction to f(c) = 1.

Similar to Definition 1.1, one can define the angular derivative for a non-constant bounded analytic function φ on an open disc $D = D(z_0, r)$. By applying a suitable linear transformation to D, it can be shown that the existence of the angular derivative φ at $w \in \partial D$, according to Julia-Caratheodory Theorem, is equivalent to $\lim \inf_{z \to w} \frac{\|\varphi\|_D - |\varphi(z)|}{r - |z - z_0|} < \infty$. In this case, the angular derivative at ω also is nonzero.

Proposition 2.4. Let $D = D(z_0, r)$, $c \in \partial D$ and $\varphi \in \text{Lip}_A(D)$ be a non-constant function such that $|\varphi(c)| = ||\varphi||_D$. Then the angular derivative of φ at c exists and is nonzero.

Proof. Let $\Gamma = \{z \in D : \frac{|z-c|}{r-|z-z_0|} < 2\}$. For every $z \in \Gamma$ we have

$$\frac{\|\varphi\|_D - |\varphi(z)|}{r - |z - z_0|} = \frac{|\varphi(c)| - |\varphi(z)|}{r - |z - z_0|} \le \frac{|z - c|}{r - |z - z_0|} \frac{|\varphi(z) - \varphi(c)|}{|z - c|} < 2p(\varphi)$$

Then $\liminf_{z\to c} \frac{\|\varphi\|_D - |\varphi(z)|}{r - |z - z_0|} < \infty$, and by Julia-Caratheodory Theorem, the proof is complete.

Theorem 2.5. Let Ω be a bounded domain in plane and $X = \overline{\Omega}$ have smooth and peak boundary with respect to $\operatorname{Lip}_A(X)$. Let $0 \neq T$ be a compact endomorphism of $\operatorname{Lip}_A(X)$ induced by φ . Then φ is constant or $\varphi(X) \subseteq \operatorname{int} X$.

Proof. Let $0 \neq T$ be compact and there exists $c \in \partial X$ such that $\varphi(c) \in \partial X$. By hypothesis, there exists a non-constant function $h \in \operatorname{Lip}_A(X)$ such that $h(\varphi(c)) =$ $\|h\|_X = 1$. Let $F_n(z) = \frac{h^n(z)}{n}$, then $\|F_n\| \leq \frac{1}{n} + p(h)$. Therefore $\{F_n\}$ is a bounded sequence in $\operatorname{Lip}_A(X)$. By the compactness of T, there exists a subsequence $\{F_{n_k}\}$ such that $TF_{n_k} = F_{n_k} \circ \varphi$ is convergent in $\operatorname{Lip}_A(X)$. Since $F_{n_k} \longrightarrow 0$ uniformly on $X, F_{n_k} \circ \varphi \longrightarrow 0$ in $\operatorname{Lip}_A(X)$. Thus

$$p(F_{n_k} \circ \varphi) = \sup_{\substack{z, w \in X \\ z \neq w}} \left| \frac{(h \circ \varphi)^{n_k} (w) - (h \circ \varphi)^{n_k} (z)}{n_k (w - z)} \right| \longrightarrow 0 \quad \text{as} \quad k \longrightarrow \infty.$$

In particular,

$$\frac{1}{n_k} \sup_{\substack{z \in X \\ z \neq c}} \left| \frac{(h \circ \varphi)^{n_k}(z) - (h \circ \varphi)^{n_k}(c)}{z - c} \right| < \epsilon, \tag{1}$$

for arbitrary $\epsilon > 0$ and some n_k .

By hypothesis, there exists an open disc D such that $c \in \partial D$ and $\overline{D} \setminus \{c\} \subseteq \operatorname{int} X$. We have $h \circ \varphi \in \operatorname{Lip}_A(D)$ and $(h \circ \varphi)(c) = \|h \circ \varphi\|_D = 1$. Then, by Proposition 2.4, the angular derivative of $h \circ \varphi$ restricted to D at c exists and is nonzero, if $h \circ \varphi$ is not constant on D. But by (1) this derivative is zero, so $h \circ \varphi$ is constant on D. Since h and φ are analytic on intX and h is non-constant, φ must be constant.

We conjecture that the same conditions are necessary for compactness of an endomorphism T of $\text{Lip}_A(X, \alpha), 0 < \alpha < 1$.

3 Compact endomorphisms of $Lip^n(X, \alpha)$

Let $\operatorname{Lip}^n(X, \alpha)$, $(0 < \alpha \leq 1, n > 1)$ be the algebra of all functions f on a perfect compact plane set X whose derivatives up to order n exist and for each k $(0 \leq k \leq n)$, $f^{(k)} \in \operatorname{Lip}(X, \alpha)$. Note that, $f \in \operatorname{Lip}^n(X, \alpha)$ is analytic on intX. These algebras are normed algebras if equipped with the norm

$$||f|| = \sum_{k=0}^{n} \frac{||f^{(k)}||_X + p(f^{(k)})}{k!}, \qquad (f \in \operatorname{Lip}^n(X)).$$

These algebras were introduced by T. Honary and H. Mahyar [4]. It was shown that if $D^1(X)$ is complete, $\operatorname{Lip}^n(X, \alpha)$ is a natural Banach function algebra [4].

Let X be a compact perfect plane set satisfying (*)-condition. Then every selfmap $\varphi : X \to X$ in $\operatorname{Lip}^1(X, \alpha)$ induces an endomorphism of $\operatorname{Lip}^1(X, \alpha)$, that is $f \circ \varphi \in \operatorname{Lip}^1(X, \alpha)$ for every $f \in \operatorname{Lip}^1(X, \alpha)$. Because for every $z, w \in X$ and every $f \in \operatorname{Lip}^1(X, \alpha)$ we have

$$\frac{|f \circ \varphi(z) - f \circ \varphi(w)|}{|z - w|^{\alpha}} = \frac{|f(\varphi(z)) - f(\varphi(w))|}{|\varphi(z) - \varphi(w)|^{\alpha}} \left| \frac{\varphi(z) - \varphi(w)}{z - w} \right|^{\alpha}$$

$$\leq p_{\alpha}(f)C^{\alpha}(\|\varphi\|_{X} + \|\varphi'\|_{X})^{\alpha}$$

or
$$\leq C(\|f\|_{X} + \|f'\|_{X})p_{\alpha}(\varphi)$$

and

$$\begin{aligned} \frac{|(f \circ \varphi)'(z) - (f \circ \varphi)'(w)|}{|z - w|^{\alpha}} &= \frac{|f'(\varphi(z))\varphi'(z) - f'(\varphi(w))\varphi'(w)|}{|z - w|^{\alpha}} \\ &\leq \frac{|f'(\varphi(z)) - f'(\varphi(w))|}{|\varphi(z) - \varphi(w)|^{\alpha}} |\varphi'(z)| \left| \frac{\varphi(z) - \varphi(w)}{z - w} \right|^{\alpha} \\ &+ \frac{|\varphi'(z) - \varphi'(w)|}{|z - w|^{\alpha}} |f'(\varphi(w))| \\ &\leq p_{\alpha}(f') \|\varphi'\|_{X} C^{\alpha}(\|\varphi\|_{X} + \|\varphi'\|_{X})^{\alpha} + p_{\alpha}(\varphi') \|f'\|_{X} \end{aligned}$$

We now consider sufficient conditions that such φ induce compact endomorphisms of $\operatorname{Lip}^{1}(X, \alpha)$.

Theorem 3.1. Let X be a compact plane set with a nonempty interior and satisfying the (*)-condition, and a self-map φ on X be in $\operatorname{Lip}^1(X, \alpha)$. If φ is constant or $\varphi(X) \subseteq intX$, then φ induces a compact endomorphism of $\operatorname{Lip}^1(X, \alpha)$.

Proof. When φ is constant, it is clear. Let $\varphi(X) \subseteq \operatorname{int} X$. For compactness of T we assume that $\{f_n\}$ is a bounded sequence in $\operatorname{Lip}^1(X, \alpha)$ with $||f_n|| = ||f_n||_X + ||f_n'||_X + p_\alpha(f_n) + p_\alpha(f_n') \leq 1$. Then $\{f_n\}$ and $\{f_n'\}$ are bounded and equicontinuous in C(X). By Arzela-Ascoli Theorem and the (*)-condition, $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ which converges in $D^1(X)$, and also by Montel Theorem their derivatives of each order, $\{f_{n_k}^{(r)}\}$ are uniformly convergent in every compact subset of $\operatorname{int} X$, since each f_{n_k} is analytic in $\operatorname{int} X$. We denote this subsequence by $\{f_n\}$ again. We want to show that $\{f_n \circ \varphi\}$ is convergent in $\operatorname{Lip}^1(X, \alpha)$. Clearly, $||f_n \circ \varphi||_X \leq ||f_n'||_X ||\varphi'||_X$ and $p_\alpha(f_n \circ \varphi) \leq C(||f_n||_X + ||f_n'||_X)p_\alpha(\varphi)$. Thus the sequences $\{||f_n \circ \varphi||_X\}, \{||(f_n \circ \varphi)'||_X\}$ and $\{p_\alpha(f_n \circ \varphi)\}$ are Cauchy. Moreover, using Lemma 1.5, we obtain a finite union of uniformly regular sets Y in $\operatorname{int} X$ containing $\varphi(X)$, and a constant C such that for all $z, w \in X$ with $\varphi(z) \neq \varphi(w)$

and all positive integers m, n we have

$$\frac{|((f_n \circ \varphi)' - (f_m \circ \varphi)')(z) - ((f_n \circ \varphi)' - (f_m \circ \varphi)')(w)|}{|z - w|^{\alpha}} \leq \frac{|(f'_n - f'_m)(\varphi(z)) - (f'_n - f'_m)(\varphi(w))|}{|\varphi(z) - \varphi(w)|} \frac{|\varphi(z) - \varphi(w)|}{|z - w|^{\alpha}} |\varphi'(z)| + \frac{|\varphi'(z) - \varphi'(w)|}{|z - w|^{\alpha}} |(f'_n - f'_m)(\varphi(w))| \leq C(||f'_n - f'_m||_Y + ||f''_n - f''_m||_Y) p_{\alpha}(\varphi) ||\varphi'||_X + p_{\alpha}(\varphi') ||f'_n - f'_m||_X$$

Hence $\{p_{\alpha}((f_n \circ \varphi)')\}$ is also a Cauchy sequence. By completeness of $\operatorname{Lip}^1(X, \alpha)$, the Cauchy sequence $\{f_n \circ \varphi\}$ in $\operatorname{Lip}^1(X, \alpha)$ is convergent.

Remark 3.2. Using the similar way, one can conclude Theorem 3.1 for $\operatorname{Lip}^{n}(X, \alpha)$, $n \geq 1, 0 < \alpha \leq 1$.

We show that for certain plane sets X in the case $\alpha = 1$ the conditions in Theorem 3.1 are also necessary. For this we need the following lemma due to Julia [2, part six].

Lemma 3.3. Let f be a continuously differentiable complex-valued function on the closed unit disc $\overline{\mathbb{D}}$. If f is non-constant and $f(1) = 1 = ||f||_{\mathbb{D}}$, then |f'(1)| is a strictly positive number.

In the next theorem, we write $\operatorname{Lip}^{1}(X)$ instead of $\operatorname{Lip}^{1}(X, 1)$ and we use the above lemma for any disc $D = D(z_{0}, r)$.

Theorem 3.4. Let Ω be a bounded domain in plane and $X = \overline{\Omega}$ satisfying the (*)condition have smooth and peak boundary with respect to $\operatorname{Lip}^1(X)$. Let $0 \neq T$ be a compact endomorphism of $\operatorname{Lip}^1(X)$ induced by φ . Then φ is constant or $\varphi(X) \subseteq$ intX.

Proof. Let $0 \neq T$ be compact and $\varphi(c) \in \partial X$ for some $c \in \partial X$. By hypothesis, there exists a non-constant function $h \in \operatorname{Lip}^1(X)$ such that $h(\varphi(c)) = ||h||_X = 1$. Let $F_n(z) = \frac{h^n(z)}{n(n-1)}$. Then

$$||F_n|| = ||F_n||_X + ||F'_n||_X + p(F_n) + p(F'_n)$$

$$\leq \frac{1}{n(n-1)} + \frac{||h'||_X}{n-1} + \frac{p(h)}{n-1} + \frac{p(h')}{n-1} + p(h)||h'||_X.$$

Therefore $\{F_n\}$ is a bounded sequence in $\operatorname{Lip}^1(X)$. By compactness of T, there exists a subsequence $\{F_{n_k}\}$ such that $TF_{n_k} = F_{n_k} \circ \varphi$ is convergent in $\operatorname{Lip}^1(X)$. Since $F_{n_k} \to 0$ uniformly on X, $F_{n_k} \circ \varphi \to 0$ in $\operatorname{Lip}^1(X)$. Thus

$$p((F_{n_{k}} \circ \varphi)') = \sup_{\substack{z,w \in X \\ z \neq w}} \frac{|(h \circ \varphi)'(z)h^{n_{k}-1}(\varphi(z)) - (h \circ \varphi)'(w)h^{n_{k}-1}(\varphi(w))|}{(n_{k}-1)|z-w|}$$
$$= \frac{1}{n_{k}-1} \sup_{\substack{z,w \in X \\ z \neq w}} |\frac{h^{n_{k}-1}(\varphi(z)) - h^{n_{k}-1}(\varphi(w))}{z-w}(h \circ \varphi)'(z) + \frac{(h \circ \varphi)'(z) - (h \circ \varphi)'(w)}{z-w}h^{n_{k}-1}(\varphi(w))| \to 0 \quad \text{as} \quad k \to \infty$$

Considering

$$\frac{1}{n_k - 1} \sup_{\substack{z, w \in X \\ z \neq w}} \left| \frac{(h \circ \varphi)'(z) - (h \circ \varphi)'(w)}{z - w} h^{n_k - 1}(\varphi(w)) \right| \leq \frac{1}{n_k - 1} p((h \circ \varphi)')$$

 $\to 0 \quad \text{as} \quad k \to \infty,$

we have

$$\frac{1}{n_k - 1} \sup_{\substack{z, w \in X \\ z \neq w}} \left| \frac{h^{n_k - 1}(\varphi(z)) - h^{n_k - 1}(\varphi(w))}{z - w} (h \circ \varphi)'(z) \right| \to 0 \quad \text{as} \quad k \to \infty.$$

In particular

$$\frac{1}{n_k - 1} \sup_{\substack{z \in X \\ z \neq c}} \left| \frac{h^{n_k - 1}(\varphi(z)) - h^{n_k - 1}(\varphi(c))}{z - c} (h \circ \varphi)'(z) \right| \to 0 \quad \text{as} \quad k \to \infty,$$

and hence

$$\frac{1}{n_k - 1} \sup_{\substack{z \in X \\ z \neq c}} \left| \frac{(h \circ \varphi)^{n_k - 1}(z) - (h \circ \varphi)^{n_k - 1}(c)}{z - c} (h \circ \varphi)'(z) \right| < \epsilon,$$

for arbitrary $\epsilon > 0$ and some n_k . Then

$$\frac{1}{n_k - 1} \lim_{\substack{z \to c \\ z \in X}} \left| \frac{(h \circ \varphi)^{n_k - 1}(z) - (h \circ \varphi)^{n_k - 1}(c)}{z - c} (h \circ \varphi)'(z) \right| \le \epsilon,$$

so $|(h \circ \varphi)'(c)|^2 = |((h \circ \varphi)'(c))^2 (h \circ \varphi)^{n_k - 2}(c)| \le \epsilon$, for any $\epsilon > 0$. Hence $(h \circ \varphi)'(c) = 0$.

On the other hand, by hypothesis X has smooth boundary, then there exists an open disc D such that $c \in \partial D$ and $\overline{D} \setminus \{c\} \subseteq \operatorname{int} X$. Since $h \circ \varphi \in \operatorname{Lip}^1(X)$, $h \circ \varphi$ has continuous complex derivative on X, in particular on \overline{D} , and $(h \circ \varphi)(c) = ||h \circ \varphi||_D = ||h||_X = 1$. Then by Lemma 3.3, $h \circ \varphi$ is constant on \overline{D} . Since $h \circ \varphi$ is analytic on intX and intX is connected, $h \circ \varphi$ is constant on X. As we know h is not constant, so φ must be constant.

Remark 3.5. (a) Considering the function $\frac{h^n(z)}{n(n-1)\dots(n-m)}$ rather than $\frac{h^n(z)}{n(n-1)}$ in the proof of theorem 3.4, this theorem is valid for $\operatorname{Lip}^m(X), m \ge 1$.

(b) Suppose a set X satisfies the conditions of theorems 2.5 and 3.4 except for the requirement that X to be connected. Let $X = \bigcup_{i=1}^{n} \bar{\Omega}_i$, where each Ω_i is a bounded domain in plane. Suppose that T is a compact endomorphism of B ($B = \text{Lip}_A(X)$ or $\text{Lip}^n(X)$) induced by φ . One can prove that if $\varphi(\bar{\Omega}_i) \cap \partial X \neq \phi$, then φ is constant on $\bar{\Omega}_i$.

As a consequence of Theorems 2.1, 2.5, 3.1 and 3.4 we have the following corollary.

Corollary 3.6. Let B be one of the algebras $\operatorname{Lip}_A(\mathbb{D})$ or $\operatorname{Lip}^1(\mathbb{D})$ and T be an endomorphism of B induced by φ . Then T is compact if and only if φ is constant or $\|\varphi\|_{\mathbb{D}} < 1$.

When X = [0, 1], we have:

Theorem 3.7. Every nonzero compact endomorphism T of $Lip^1([0,1])$ has the form $Tf = f(x_0)1$ for some $x_0 \in [0,1]$

Proof. Let T be a compact endomorphism of $\operatorname{Lip}^1([0,1])$ induced by φ . Then $\varphi \in \operatorname{Lip}^1([0,1])$. We show that φ is a constant function. Let $f_n(x) = \frac{e^{inx}}{n^2}$. Then $f_n \in \operatorname{Lip}^1([0,1])$ and $||f_n|| \leq 4$ for all n. By compactness of T, $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{Tf_{n_k}\}$ is convergent in $\operatorname{Lip}^1([0,1])$. Since $Tf_{n_k} = f_{n_k} \circ \varphi$ is uniformly convergent to zero on [0,1], $Tf_{n_k} = f_{n_k} \circ \varphi \to 0$ in $\operatorname{Lip}^1([0,1])$. Hence $p((f_{n_k} \circ \varphi)') \to 0$ as $k \to \infty$. Similarly to the proof of Theorem 3.4 we conclude that

$$\frac{1}{n_k} \sup_{\substack{0 \le x, y \le 1\\ x \ne y}} \left| \frac{e^{in_k \varphi(x)} - e^{in_k \varphi(y)}}{x - y} \varphi'(y) \right| \to 0 \quad \text{as} \quad k \to \infty.$$

Hence

$$\frac{1}{n_k} \sup_{\substack{0 \le x, y \le 1 \\ x \ne y}} \left| \frac{e^{in_k \varphi(x)} - e^{in_k \varphi(y)}}{x - y} \varphi'(y) \right| < \epsilon,$$

for arbitrary $\epsilon > 0$ and some n_k . Then for any $y \in [0, 1]$ we have

$$\frac{1}{n_k} \lim_{x \to y} \left| \frac{e^{in_k \varphi(x)} - e^{in_k \varphi(y)}}{x - y} \varphi'(y) \right| < \epsilon,$$

that is, $|\varphi'(y)|^2 = 0$. Hence $\varphi' = 0$ and φ is a constant function. Therefore, $Tf = f(x_0)1$ for some $x_0 \in [0, 1]$.

We remark, one can show that every nonzero compact endomorphism of $\operatorname{Lip}^{n}([0, 1])$ has the form $Tf = f(x_0)1$ for some $x_0 \in [0, 1]$.

4 Spectra of compact endomorphisms

In this section we determine the spectrum of a compact endomorphism of algebras $\operatorname{Lip}_A(X, \alpha)$ and $\operatorname{Lip}^n(X, \alpha)$ ($0 < \alpha \leq 1, n > 1$). H. Kamowitz in [7] proved that if T is a nonzero compact endomorphism of commutative semi-simple Banach algebra B induced by $\varphi : \mathcal{M}(B) \longrightarrow \mathcal{M}(B)$, then $\cap \varphi_n(\mathcal{M}(B))$ is finite and if $\mathcal{M}(B)$ is connected and B is unital, $\cap \varphi_n(\mathcal{M}(B))$ is singleton where φ_n is nth iterate of φ , i.e., $\varphi_0(x) = x$ and $\varphi_n(x) = \varphi(\varphi_{n-1}(x))$. If $\cap \varphi_n(\mathcal{M}(B)) = \{x_0\}$, then x_0 is a fixed point for φ . In fact, if $F = \cap \varphi_n(\mathcal{M}(B))$, then $\varphi(F) = F$.

Theorem 4.1. Let B be a natural Banach function algebra on a compact plane set X containing the coordinate function Z, and $B \subseteq A(X)$. Let T be a compact endomorphism of B induced by φ . If $\varphi(X) \subseteq intX$ and z_0 is a fixed point of φ , then $\sigma(T) = \{\varphi'(z_0)^n : n \in \mathbb{Z}_+\} \cup \{0, 1\}.$ Proof. Clearly 0 and also $1 \in \sigma(T)$ since T(1) = 1. If φ is constant, then the proof is complete. Let $\lambda \in \sigma(T) \setminus \{0, 1\}$. By compactness of T there exists $f \neq 0$ in B such that $Tf = f \circ \varphi = \lambda f$. Since $\varphi(z_0) = z_0 \in \text{int}X$, $f(z_0) = 0$. Let n be a positive integer number such that for every $0 \leq k < n$, $f^{(k)}(z_0) = 0$ but $f^{(n)}(z_0) \neq 0$. We show that $\lambda = \varphi'(z_0)^n$. By n times differentiation of $f \circ \varphi = \lambda f$, we have $\varphi'(z_0)^n f^{(n)}(\varphi(z_0)) = \lambda f^{(n)}(z_0)$, therefore $\lambda = \varphi'(z_0)^n$. Then $\sigma(T) \setminus \{0, 1\} \subseteq \{\varphi'(z_0)^n : n \in \mathbb{Z}_+\}$.

Conversely, first we show that if $\lambda \in \sigma(T)$ with $|\lambda| = 1$, then $\lambda = 1$. Let $\lambda \in \sigma(T)$ and $|\lambda| = 1$. By compactness of T there exists $0 \neq f \in B$ such that $f \circ \varphi = \lambda f$. Since $\varphi(X) \subseteq \text{int} X$ by maximum modulus principle $\lambda = 1$. We claim that $\varphi'(z_0) \in \sigma(T)$. If $\varphi'(z_0) \notin \sigma(T)$, then there exists $g \in B$ such that $g \circ \varphi - \varphi'(z_0)g = z - z_0$. By differentiation at z_0 , we have $0 = \varphi'(z_0)g'(\varphi(z_0)) - \varphi'(z_0)g'(z_0) = 1$, this is a contradiction. We now show that for every $n \in \mathbb{Z}_+$, $\varphi'(z_0)^n \in \sigma(T)$. If $\varphi'(z_0)^m \notin \sigma(T)$ for some m > 1, then there exists $f \in B$ such that $f \circ \varphi - \varphi'(z_0)^m f = (z - z_0)^m$. By m - 1 times differentiation at z_0 , we have $0 = \varphi'(z_0)^m f^{(m)}(\varphi(z_0)) - \varphi'(z_0)^m f^{(m)}(z_0) = m!$, this is a contradiction.

Corollary 4.2. Let B and T satisfy the conditions of Theorem 4.1. Let F be a finite set such that $\varphi(F) = F$. Then there exist $z_0 \in F$ and $k \in \mathbb{Z}_+$ such that $\sigma(T)^k = \{\varphi'_k(z_0)^n : n \in \mathbb{Z}_+\} \cup \{0, 1\}.$

Proof. Since F is a finite set and $\varphi(F) = F$, there exists $z_0 \in F$ and $k \in \mathbb{Z}_+$ such that $\varphi_k(z_0) = z_0$. Since $\varphi(X) \subseteq \operatorname{int} X$, so $z_0 \in \operatorname{int} X$. If φ is constant, the proof is complete. When φ is not constant, let $\tilde{T}f = f \circ \varphi_k$ for $f \in B$. Therefore \tilde{T} is a compact endomorphism induced by φ_k and $\varphi_k(z_0) = z_0$. By Theorem 4.1, $\sigma(\tilde{T}) = \{\varphi'_k(z_0)^n : n \in \mathbb{Z}_+\} \cup \{0, 1\}$. But $\tilde{T} = T^k$, by Spectral Mapping Theorem $\sigma(T)^k = \sigma(T^k) = \sigma(\tilde{T})$. Therefore $\sigma(T)^k = \{\varphi'_k(z_0)^n : n \in \mathbb{Z}_+\} \cup \{0, 1\}$.

Remark 4.3. Let X be a compact plane set and B be one of the natural Banach function algebras $\operatorname{Lip}_A(X,\alpha)$ and $\operatorname{Lip}^n(X,\alpha)$. In the case $\operatorname{Lip}^n(X,\alpha)$, we assume that X satisfies the (*)-condition. Let T be a nonzero compact endomorphism of B induced by φ and $\varphi(X) \subseteq \operatorname{int} X$. Then the spectrum $\sigma(T) = \{\varphi'(z_0)^n : n \in \mathbb{Z}_+\} \cup \{0, 1\}$, where z_0 is a fixed point of φ .

References

- F. Behrouzi, Homomorphisms of certain Banach function algebras, Proc. Indian Acad. Sci. (Math Sci) 112 (2002), 331-336.
- [2] C. Caratheodory, Theory of Functions of a Complex Variable, Vol. II, Chelsea, New york, 1960.
- [3] H.G. Dales and A. M. Davie, Quasianalytic Banach function algebras, J. Funct. Anal. 13 (1973), 28-50.

- [4] T. G. Honary and H. Mahyar, Approximation in Lipschitz algebras of infinitely differentiable functions, Bull. Korean Math. Soc. 36 (1999), 629-636.
- [5] K. Jarosz, $Lip_{Hol}(X, \alpha)$. Proc. Amer. Math. Soc. **125** (1997), 3129-3130.
- [6] H. Kamowitz, Compact operators of the form $uC\varphi$, Pacific J. Math. 80 (1979), 205-211.
- [7] , Compact endomorphisms of Banach algebras, Pacific J. Math. 89 (1980), 313-325.
- [8] H. Kamowitz and S. Scheinberg, Some properties of endomorphisms of Lipschitz algebras, Studia Math. **96** (3) (1990), 255-261.
- [9] H. Mahyar, Approximation in Lipschitz algebras and their maximal ideal space, Ph.D. Thesis, University For Teacher Education, 1994, Tehran, Iran.
- [10] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.

Faculty of Mathematical Sciences and Computer Engineering Teacher Training University Tehran 15618, Iran email: behrouzif@yahoo.com, mahyar@saba.tmu.ac.ir