Poisson Integral Representation of some Eigenfunctions of Landau Hamiltonian on the Hyperbolic Disc

Zouhaïr Mouayn

Abstract

We characterize some eigenfunctions of Landau Hamiltonian on the hyperbolic disc which are Poisson integrals of square integrable functions at the disc boundary.

1 Introduction

In this Letter, we will be concerned with the second order differential operator in the complex unit disc $\mathbb{D}=\{z \in \mathbf{C},|z|<1\}$:

$$
\Delta_{B}:=4\left(1-|z|^{2}\right)\left(\left(1-|z|^{2}\right) \frac{\partial^{2}}{\partial z \partial \bar{z}}+B z \frac{\partial}{\partial z}-B \bar{z} \frac{\partial}{\partial \bar{z}}+B^{2}\right)
$$

acting in the space $C^{\infty}(\mathbb{D}, \mathbf{C})$ of complex-valued C^{∞}-functions. This operator is obtained from the operator

$$
H_{B}:=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)-2 i B y \frac{\partial}{\partial x}
$$

in the complex upper half plane $\mathbb{H}^{2}=\{w=x+i y, \mathbf{C}, x \in \mathbf{R}, y>0\}$ by

$$
\Delta_{B} f(z)=4\left(\frac{\bar{w}-i}{w+i}\right)^{-B} H_{B}\left(\frac{\bar{w}-i}{w+i}\right)^{B} f(\mathcal{C}(w)),
$$

Received by the editors January 2003 - In revised form in April 2003.
Communicated by S. Gutt.
1991 Mathematics Subject Classification : 33C05, 33C55, 35J10, 42A16, 44A05, 81Q10.
Key words and phrases : Poisson Integral Transform, Landau Hamiltonian, Hyperbolic Disc.
where $f \in C^{\infty}(\mathbb{D}, \mathbf{C})$ and $z=\mathcal{C}(w) \in \mathbb{D}$ is the image of $w \in \mathbb{H}^{2}$ under the Cayley transform : $w \rightarrow \mathcal{C}(w)=(w-i)(w+i)^{-1}$.

In physics, the operator H_{B} represents the Hamiltonian of a uniform magnetic field on \mathbb{H}^{2} of magnitude proportional to $|B|, B \in \mathbf{R}$. The latter being the Curl of the vector potential represented by the 1 -form : $\omega_{B}=B y^{-1} d x$ in the Landau gauge (see [1] and references therein). If $B=0, \Delta_{0}$ is the Lobachevsky Laplacian on the unit disc \mathbb{D} endowed with the metric $d s^{2}=\left(1-|z|^{2}\right)^{-2}\left(d x^{2}+d y^{2}\right)$. For $B \neq 0$, we will call Δ_{B} the Landau Hamiltonian on \mathbb{D}.

In [4] , p.582, H.O. Kim and E.G. Kwon have established a necessary and sufficient condition for some eigenfunctions of the Bergman Laplacian on the unit ball of \mathbf{C}^{n} to be represented by a Poisson integral of square integrable functions at the ball boundary.

Here, we deal with an analogous question in the context of the unit disc \mathbb{D} and for the Landau Hamiltonian Δ_{B} with the associated Poisson integral transform defined for a C^{∞} function φ on the boundary $\mathbb{T}=\partial \mathbb{D}$ (see [2] , p.308) by

$$
P_{B}^{\alpha}[\varphi](z):=\int_{\mathbb{T}} \exp (\alpha \log P(z, \zeta)) \exp (2 i B \arg (1-\bar{z} \zeta)) \varphi(\zeta) d \sigma(\zeta)
$$

where

$$
P(z, \zeta)=\frac{1-|z|^{2}}{|1-z \bar{\zeta}|^{2}}, \quad(z, \zeta) \in \mathbb{D} \times \mathbb{T}
$$

being the Poisson-Szegö kernel of the unit disc $\mathbb{D}, \alpha \in \mathbf{C}, \log P(z, \zeta)$ is the principal branch and $d \sigma$ denotes the measure area on \mathbb{T}.

We precisely characterize eigenfunctions of Δ_{B} in $C^{\infty}(\mathbb{D}, \mathbf{C})$ with eigenvalues $\mu(\alpha):=4 \alpha(\alpha-1)$, which are Poisson integrals of functions of $L^{2}(\mathbb{T}, d \sigma)$ in the case when the parameter $\alpha \in \mathbf{C}$ satisfies $\operatorname{Re} \alpha \neq \frac{1}{2}$ and $\alpha \neq|B|-m, m \in \mathbf{Z}_{+}$.

The organization of this Letter is as follows. In section 2, we establish series expansion of eigenfunctions of Δ_{B} in $C^{\infty}(\mathbb{D}, \mathbf{C})$, and we discuss some spectral properties of this operator. Section 3 deals with some required properties of the Poisson integral transform P_{B}^{α} as its action on spherical harmonics of \mathbb{T} and its injectiveness . In section 4, we give the precise statement of our announced result and we establish its proof.

2 Eigenfunctions of Δ_{B}

In this section, we shall give the general form of eigenfunctions of Δ_{B}. For this we have to fix some notations. Let $\alpha \in \mathbf{C}$ be a fixed complex number and let $\mathcal{E}_{\alpha, B}$ denote the space of all eigenfunctions f of Δ_{B} associated with the eigenvalue $4 \alpha(\alpha-1)$. Since the differential operator Δ_{B} is elliptic on \mathbb{D}, therefore the eigenfunctions f are in $C^{\infty}(\mathbb{D}, \mathbf{C})$. i.e., $\mathcal{E}_{\alpha, B}=\left\{f \in \mathbf{C}^{\infty}(\mathbb{D}, \mathbf{C}), \Delta_{B} f=4 \alpha(\alpha-1) f\right\}$. In the following, we give series expansion in $C^{\infty}(\mathbb{D}, \mathbf{C})$ of any function in $\mathcal{E}_{\alpha, B}$.

Proposition 2.1.For every eigenfunction $f \in \mathcal{E}_{\alpha, B}$ there exists a family of complex numbers $\left(c_{B, \alpha, k}\right)_{k \in \mathbf{Z}}$ such that

$$
\begin{aligned}
& f\left(\rho e^{i \theta}\right)= \\
& \quad\left(1-\rho^{2}\right)^{\alpha} \sum_{k \in \mathbf{Z}} c_{B, \alpha, k}{ }_{2} F_{1}\left(\alpha+B+\frac{|k|+k}{2}, \alpha-B+\frac{|k|-k}{2}, 1+|k|, \rho^{2}\right) \rho^{|k|} e^{i k \theta}
\end{aligned}
$$

in $C^{\infty}(\mathbb{D}, \mathbf{C}), \rho e^{i \theta} \in D, 0 \leq \rho<1,0 \leq \theta \leq 2 \pi$.
Proof. Let $f \in \mathcal{E}_{\alpha, B}$. Then f satisfies the equation

$$
\begin{equation*}
\Delta_{B} f=4 \alpha(\alpha-1) f \tag{2.1}
\end{equation*}
$$

Since f is C^{∞} on \mathbb{D}, it can be expanded into its Fourier series as

$$
\begin{equation*}
f\left(\rho e^{i \theta}\right)=\sum_{k \in \mathbb{Z}} \gamma_{k}(\rho) e^{i k \theta}, \quad 0 \leq \rho<1,0 \leq \theta \leq 2 \pi \tag{2.2}
\end{equation*}
$$

where $\rho \rightarrow \gamma_{k}(\rho)$ is C^{∞} on $\left[0,1\left[\right.\right.$ for each $k \in \mathbf{Z}$. Writing Δ_{B} into polar coordinates (ρ, θ) :
$\Delta_{B}=\left(1-\rho^{2}\right) \frac{\partial^{2}}{\partial \rho^{2}}+\left(1-\rho^{2}\right)^{2} \frac{1}{\rho} \frac{\partial}{\partial \rho}+\left(1-\rho^{2}\right)^{2} \frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+4 i B\left(1-\rho^{2}\right) \frac{\partial}{\partial \theta}+4 B^{2}\left(1-\rho^{2}\right)$
and inserting the expansion (2.2) of $f\left(\rho e^{i \theta}\right)$ in Eq. (2.1), we obtain that every Fourier coefficient $\gamma_{k}(\rho)$ satisfies the second order differential equation :

$$
\begin{gather*}
\rho^{2}\left(1-\rho^{2}\right)^{2} \gamma_{k}^{\prime \prime}(\rho)+\left(1-\rho^{2}\right)^{2} \rho \gamma_{k}^{\prime}(\rho) \\
+\left[4 \alpha(1-\alpha) \rho^{2}+4 B^{2} \rho^{2}\left(1-\rho^{2}\right)-k^{2}\left(1-\rho^{2}\right)^{2}-4 k B \rho^{2}\left(1-\rho^{2}\right)\right] \gamma_{k}(\rho)=0 \tag{2.3}
\end{gather*}
$$

Observe that $\rho=0$ is a singular point and that the characteristic polynomial is $X^{2}-|k|^{2}$ whose zeros are $|k|$ and $-|k|$. Then, every solution of this equation is a linear combination of two functions $u_{1}(\rho), u_{2}(\rho)$ whose behaviour at $\rho=0$ is respectively like $\rho^{|k|}$ and $\rho^{-|k|}$. Since $\gamma_{k}(\rho)$ is bounded near zero, we shall look for regular solution of Eq. (2.3) in the form $\gamma_{k}(\rho)=\rho^{|k|} h_{k}\left(\rho^{2}\right)$ with $h_{k} \in \mathbf{C}^{\infty}([0,1[)$.We reduce Eq. (2.3) into a standard hypergeometric equation ([3] , p. 1045 - 1046.), by making the change of function $h_{k}\left(\rho^{2}\right)=\left(1-\rho^{2}\right)^{\alpha} \Psi_{k}\left(\rho^{2}\right)$. After calculations, we find that $\Psi_{k}\left(\rho^{2}\right)$ is given, up to a multiplicative constant, by

$$
{ }_{2} F_{1}\left(\alpha+B+\frac{1}{2}(|k|+k), \alpha-B+\frac{1}{2}(|k|-k), 1+|k|, \rho^{2}\right)
$$

Consequently, there exists a family of complex numbers $\left(c_{B, \alpha, k}\right)_{k \in \mathbf{Z}}$ such that

$$
\begin{aligned}
& f\left(\rho e^{i \theta}\right)= \\
& \quad\left(1-\rho^{2}\right)^{\alpha} \sum_{k \in \mathbf{Z}} c_{B, \alpha, k}{ }_{2} F_{1}\left(\alpha+B+\frac{|k|+k}{2}, \alpha-B+\frac{|k|-k}{2}, 1+|k|, \rho^{2}\right) \rho^{|k|} e^{i k \theta}
\end{aligned}
$$

Remark 2.1. One can also consider the operator Δ_{B} acting in the weighted Hilbert space $\mathcal{H}:=L^{2}\left(\mathbb{D},\left(1-|z|^{2}\right)^{-2} d \nu(z)\right)$, where $d \nu(z)$ being the Lebesgue measure on \mathbb{D}. Therefore, general spectral properties of the operator Δ_{B} acting in \mathcal{H} are similar to those of the operator H_{B} acting in $L^{2}\left(\mathbb{H}^{2}, y^{-2} d x \wedge d y\right)$. Namely, Δ_{B} is an essentially self-adjoint operator in the Hilbert space \mathcal{H}. The spectrum of Δ_{B} in \mathcal{H} consists of two parts : (i) an absolutely continuous spectrum]- $\infty, 0$] which corresponds to scattering states, (ii) a point spectrum consisting of a finite number of infinitely degenerate eigenvalues given by $e_{m}=(|B|-m)(|B|-m-1)$, $0 \leq m<|B|-1 / 2$ when $|B|>1 / 2$, which correspond to bound states.

3 The integral transform P_{B}^{α}

Let us write the integral transform P_{B}^{α} associated with Δ_{B} as

$$
\begin{equation*}
P_{B}^{\alpha}[\varphi](z)=\int_{\mathbb{T}}\left(\frac{1-|z|^{2}}{|1-z \bar{\zeta}|^{2}}\right)^{\alpha} \exp (2 i B \arg (1-\bar{z} \zeta)) \varphi(\zeta) d \sigma(\zeta) \tag{3.1}
\end{equation*}
$$

for every continuous function φ on \mathbb{T}. At first, one can use direct calculations to establish the following :

Proposition 3.1. Let $B \in \mathbf{R}$ and $\alpha \in \mathbf{C}$. Then, $P_{B}^{\alpha}[\varphi] \in \mathcal{E}_{\alpha, B}$ for every $\varphi \in L^{2}(\mathbb{T}, d \sigma)$.

Now, since functions of $L^{2}(\mathbb{T}, d \sigma)$ can be expanded into series in the basis of spherical harmonics $\left\{Y_{k}\right\}$ of $\mathbb{T}: \zeta \rightarrow Y_{k}(\zeta)=\zeta^{k}, k \in \mathbf{Z}$, we need then to compute the action of P_{B}^{α} on these functions $\left\{Y_{k}\right\}$. This is given by the following:

Lemma 3.1. Let $B \in \mathbf{R}, \alpha \in \mathbf{C}$ and $k \in \mathbf{Z}$. Then we have

$$
P_{B}^{\alpha}\left[Y_{k}\right](z)=\lambda_{k}^{\alpha, B} \Phi_{k}^{\alpha, B}(|z|) \exp (i k \arg z), \quad z \in \mathbb{D}
$$

where

$$
\begin{equation*}
\lambda_{k}^{\alpha, B}:=\frac{2 \pi \Gamma\left(\alpha+B+\frac{1}{2}(|k|+k)\right) \Gamma\left(\alpha-B+\frac{1}{2}(|k|-k)\right)}{\Gamma(1+|k|) \Gamma(\alpha+B) \Gamma(\alpha-B)} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{k}^{\alpha, B}(|z|):=|z|^{|k|}\left(1-|z|^{2}\right)_{2}^{\alpha} F_{1}\left(\alpha+B+\frac{|k|+k}{2}, \alpha-B+\frac{|k|-k}{2}, 1+|k|,|z|^{2}\right) \tag{3.3}
\end{equation*}
$$

Proof. By (3.1), the action of P_{B}^{α} on Y_{k} can be written as

$$
\begin{equation*}
P_{B}^{\alpha}\left[Y_{k}\right](z)=\left(1-|z|^{2}\right)^{\alpha} \int_{\mathbb{T}}(1-\bar{z} \zeta)^{-(\alpha-B)}(1-z \bar{\zeta})^{-(\alpha+B)} \zeta^{k} d \sigma(\zeta) \tag{3.4}
\end{equation*}
$$

Making use of the binomial formula

$$
\begin{equation*}
(1-x)^{-a}=\sum_{0 \leq p<\infty} \frac{\Gamma(a+p)}{\Gamma(a)} \frac{x^{p}}{\Gamma(1+p)} \tag{3.5}
\end{equation*}
$$

then, (3.4) transforms to

$$
\begin{equation*}
P_{B}^{\alpha}\left[Y_{k}\right](z)=\left(1-|z|^{2}\right)^{\alpha} \sum_{0 \leq j, k<+\infty} \frac{\Gamma(\alpha-B+j)}{\Gamma(\alpha-B)} \frac{\Gamma(\alpha+B+l)}{\Gamma(\alpha+B)} \frac{\bar{z}^{j} z^{l}}{j!l!} \int_{\mathbb{T}} \zeta^{k+j} \bar{\zeta}^{l} d \sigma(\zeta) \tag{3.6}
\end{equation*}
$$

But since

$$
\int_{\mathbb{T}} \zeta^{k+j} \zeta^{l} d \sigma(\zeta)=2 \pi \delta_{k+j, l}
$$

we set $j=n+\frac{1}{2}(|k|-k)$ and $k=n+\frac{1}{2}(|k|+k)$, therefore the double sum in (3.6) reduces to

$$
\begin{aligned}
& P_{B}^{\alpha}\left[Y_{k}\right](z)= \\
& 2 \pi\left(1-|z|^{2}\right)^{\alpha}|z|^{k} \sum_{0 \leq n<+\infty} \frac{\Gamma\left(\alpha-B+n+\frac{1}{2}(|k|-k)\right)}{\Gamma(\alpha-B)} \frac{\Gamma\left(\alpha+B+n+\frac{1}{2}(|k|+k)\right)}{\Gamma(\alpha+B)} \\
& \\
& \quad \times \frac{1}{\Gamma\left(n+\frac{1}{2}(|k|-k)+1\right) \Gamma\left(n+\frac{1}{2}(|k|+k)+1\right)}\left(|z|^{2}\right)^{n} e^{i k \arg z}
\end{aligned}
$$

Recalling the series of the hypergeometric function

$$
{ }_{2} F_{1}(a, b, c, x)=\sum_{0 \leq n<+\infty} \frac{\Gamma(a+n)}{\Gamma(a)} \frac{\Gamma(b+n)}{\Gamma(b)} \frac{\Gamma(c)}{\Gamma(c+n)} \frac{x^{n}}{n!}
$$

(see [3] , p.1039), we obtain the result.
Proposition 3.2. The Poisson transform P_{B}^{α} is injective if and only if $\alpha \neq$ $|B|-m, m \in \mathbf{Z}_{+}$.

Proof. Let $\varphi \in L^{2}(\mathbb{T}, d \sigma)$ be such that $P_{B}^{\alpha}[\varphi]=0$. Expanding φ into its Fourier series as : $\varphi(z)=\sum_{k \in \mathbf{Z}} c_{k} \zeta^{k}, \zeta \in \mathbb{T}, c_{k} \in \mathbf{C}$ with $\sum_{k \in \mathbf{Z}}\left|c_{k}\right|^{2}<+\infty$ then, we can write :

$$
\begin{equation*}
P_{B}^{\alpha}[\varphi](z)=\sum_{k \in \mathbf{Z}} c_{k} \lambda_{k}^{\alpha, B} \Phi_{k}^{\alpha, B}(|z|) \exp (i k \arg z)=0 \tag{3.6}
\end{equation*}
$$

where $\lambda_{k}^{\alpha, B}$ and $\Phi_{k}^{\alpha, B}(|z|)$ are given in (3.2) and (3.3). Now, since $\Phi_{k}^{\alpha, B}(|z|)$ is a nonvanishing term, then equality (3.6) is equivalent to $\lambda_{k}^{\alpha, B}=0$ if $c_{k} \neq 0$. Thus, a necessary and sufficient condition for P_{B}^{α} to be injective is that $\alpha+B$ and $\alpha-B$ avoid poles of the Gamma function. i.e., $\alpha \neq|B|-m, m \in \mathbf{Z}_{+}$.

Remark 3.1. If $\alpha=\alpha_{m}:=|B|-m, m \in \mathbf{Z}_{+}$, the integral transform P_{B}^{α} is noninjective and yet we still have $P_{B}^{\alpha_{m}}[\varphi] \in \mathcal{E}_{\alpha_{m}, B}$, for all $\varphi \in L^{2}(\mathbb{T}, d \sigma)$. In this case it would be of interest to characterize all those functions in $L^{2}(\mathbb{T}, d \sigma)$ which are mapped via $P_{B}^{\alpha_{m}}$ into the space $\mathcal{E}_{\alpha_{m}, B} \cap \mathcal{H}$ of bound states associated with a hyperbolic Landau level in \mathbb{D} when $|B|>\frac{1}{2}$. For instance, images of spherical harmonics $\left(Y_{k}\right)_{k \in \mathbf{Z}}$ under $P_{B}^{\alpha_{m}}$ belong to $\mathcal{E}_{\alpha_{m}, B} \cap \mathcal{H}$. This is due to the fact that the hypergeometric function arising in the expression of $P_{B}^{\alpha_{m}}\left[Y_{k}\right](z)$ is always a polynomial function in the variable $|z|^{2}, z \in \mathbb{D}$, therefore one can easily establish that the norm $\left\|P_{B}^{\alpha_{m}}\left[Y_{k}\right]\right\|_{\mathcal{H}}$ is finite.

4 A characterization theorem

In this section, we shall establish the following characterization theorem
Theorem 4.1. Let $\alpha \in \mathbf{C}$ with Re $\alpha \neq \frac{1}{2}$ and $\alpha \neq|B|-m, m \in \mathbf{Z}_{+}$. Then, a function $f: D \rightarrow C$ satisfies $f=P_{B}^{\alpha}[\varphi]$ for a certain $\varphi \in L^{2}(\mathbb{T}, d \sigma)$ if and only if $\Delta_{B} f=\mu(\alpha) f$ and

$$
\mathcal{N}(f):=\sup _{0 \leq \rho<1}\left(\left(1-\rho^{2}\right)^{|1-2 \operatorname{Re} \alpha|-1} \int_{\mathbb{T}}|f(\rho \omega)|^{2} d \sigma(\omega)\right)<+\infty
$$

Proof. We deal the case $\operatorname{Re} \alpha<\frac{1}{2}$. Let $f: \mathbb{D} \rightarrow \mathbf{C}$ be such that $f=P_{B}^{\alpha}[\varphi]$ with $\varphi \in L^{2}(\mathbb{T}, d \sigma)$. By proposition 3.1, we have that $\Delta_{B} f=\mu(\alpha) f$. Next, to prove that the quantity $\mathcal{N}(f)$ is finite, we start by the inequality

$$
\begin{equation*}
|f(z)| \leq \int_{\mathbb{T}}\left(\frac{1-|z|^{2}}{|1-z \bar{\zeta}|^{2}}\right)^{\operatorname{Re} \alpha}|\varphi(\zeta)| d \sigma(\zeta) \tag{4.1}
\end{equation*}
$$

Set $z=\rho \omega$ where $\rho \in[0,1[$ and $\omega \in \mathbb{T}$ are polar coordinates, then we can write inequality (4.1) as

$$
\begin{equation*}
|f(\rho \omega)| \leq\left(\phi_{\rho, \alpha} *|\varphi|\right)(\omega) \tag{4.2}
\end{equation*}
$$

where the convolution is taken in \mathbb{T} and

$$
\phi_{\rho, \alpha}(\zeta):=\left(\frac{1-\rho^{2}}{|1-\rho \zeta|^{2}}\right)^{\operatorname{Re} \alpha}, \zeta \in \mathbb{T} .
$$

We apply Hausdorff-Young inequality to the convolution in (4.2) :

$$
\begin{equation*}
\left\|\phi_{\rho, \alpha} *|\varphi|\right\| \leq\left\|\phi_{\rho, \alpha}\right\|_{L^{1}(\mathbb{T})}\|\varphi\|_{L^{2}(\mathbb{T})} . \tag{4.3}
\end{equation*}
$$

This leads us to compute the L^{1}-norm of $\phi_{\rho, \alpha}$. For this, we make use of the binomial formula in (3.5) and we obtain that

$$
\begin{align*}
\left\|\phi_{\rho, \alpha}\right\|_{L^{1}(\mathbb{T})}= & \sum_{0 \leq j, k<\infty} \frac{\Gamma(\operatorname{Re} \alpha+j)}{(\Gamma(\operatorname{Re} \alpha))^{2}} \frac{\left(1-\rho^{2}\right)^{\operatorname{Re} \alpha}}{\Gamma(1+j) \Gamma(1+k)} \rho^{j} \rho^{k} \int_{\mathbb{T}} \zeta^{j} \zeta^{k} d \sigma(\zeta) \\
& =2 \pi\left(1-\rho^{2}\right)^{\operatorname{Re} \alpha}{ }_{2} F_{1}\left(\operatorname{Re} \alpha, \operatorname{Re} \alpha, 1, \rho^{2}\right) \tag{4.4}
\end{align*}
$$

Now, in view of (4.2), (4.3) and (4.4), we get

$$
\int_{\mathbb{T}}|f(\rho \omega)|^{2} d \sigma(\omega) \leq\left(2 \pi\left(1-\rho^{2}\right)^{\operatorname{Re} \alpha}{ }_{2} F_{1}\left(\operatorname{Re} \alpha, \operatorname{Re} \alpha, 1, \rho^{2}\right)\right)^{2}\|\varphi\|_{L^{2}(\mathbb{T})}^{2}
$$

Making use of the identity ([3] , p.1042) :

$$
{ }_{2} F_{1}(a, b, c, 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}, \operatorname{Re} c>\operatorname{Re}(a+b)
$$

for the increasing function $\rho \rightarrow{ }_{2} F_{1}\left(\operatorname{Re} \alpha, \operatorname{Re} \alpha, 1, \rho^{2}\right)$, we obtain the following inequality

$$
{ }_{2} F_{1}\left(\operatorname{Re} \alpha, \operatorname{Re} \alpha, 1, \rho^{2}\right) \leq \frac{\Gamma(1-2 \operatorname{Re} \alpha)}{(\Gamma(1-\operatorname{Re} \alpha))^{2}}, \quad 0 \leq \rho<1 .
$$

Therefore,

$$
\begin{equation*}
\left(1-\rho^{2}\right)^{-2 \operatorname{Re} \alpha} \int_{\mathbb{T}}|f(\rho \omega)|^{2} d \sigma(\omega) \leq\left(\frac{2 \pi \Gamma(1-2 \operatorname{Re} \alpha)}{(\Gamma(1-\operatorname{Re} \alpha))^{2}}\right)^{2}\|\varphi\|_{L^{2}(\mathbb{T})}^{2} \tag{4.5}
\end{equation*}
$$

and the proof of the necessary condition is completed by taking the sup with respect to $\rho \in[0,1[$ in left side of inequality (4.5).

Conversely, let $f \in \mathcal{E}_{\alpha, B}$ with $\mathcal{N}(f)<+\infty$. By proposition 2.1 there exists a family of complex numbers $\left(c_{B, \alpha, k}\right)_{k \in \mathbf{Z}}$ such that

$$
\begin{align*}
& f\left(\rho e^{i \theta}\right)= \\
& \left(1-\rho^{2}\right)^{\alpha} \sum_{k \in \mathbf{Z}} c_{B, \alpha, k} F_{1}\left(\alpha+B+\frac{|k|+k}{2}, \alpha-B+\frac{|k|-k}{2}, 1+|k|, \rho^{2}\right) \rho^{|k|} e^{i k \theta} . \tag{4.6}
\end{align*}
$$

Setting

$$
\psi(\zeta)=\sum_{k \in \mathbf{Z}} c_{B, \alpha, k}\left(\lambda_{k}^{\alpha, B}\right)^{-1} \zeta^{k}, \quad \zeta \in \mathbb{T}
$$

where $\left(\lambda_{k}^{\alpha, B}\right)$ are the quantities defined in (3.2), then obviously ψ satisfies $P_{B}^{\alpha}[\psi]=$ f. It remains to prove that ψ belongs to $L^{2}(\mathbb{T}, d \sigma)$. For this, we apply the Parseval formula in $L^{2}(\mathbb{T}, d \sigma)$ to the expansion given in (4.6), and we get for each fixed $\rho \in[0,1[$ the estimate :

$$
\begin{align*}
\sum_{k \in \mathbf{Z}}\left|c_{B, \alpha, k}\right|^{2} \rho^{2|k|} \left\lvert\,{ }_{2} F_{1}\left(\alpha+B+\frac{|k|+k}{2}, \alpha-B+\frac{|k|-k}{2}, 1\right.\right. & \left.+|k|, \rho^{2}\right)\left.\right|^{2} \\
& \leq \mathcal{N}(f)<+\infty \tag{4.7}
\end{align*}
$$

From (4.7) we can write for every fixed $l \in \mathbf{Z}_{+}$the following estimate

$$
\begin{equation*}
\sum_{|k| \leq l}\left|c_{B, \alpha, k}\right|^{2} \rho^{2|k|}\left|{ }_{2} F_{1}\left(\alpha+B+\frac{|k|+k}{2}, \alpha-B+\frac{|k|-k}{2}, 1+|k|, \rho^{2}\right)\right|^{2} \leq \mathcal{N}(f) \tag{4.8}
\end{equation*}
$$

Using the functional relation ([3], p.1043)

$$
\begin{aligned}
& { }_{2} F_{1}(a, b, c, x)=\frac{\Gamma(c-a-b) \Gamma(c)}{\Gamma(c-a) \Gamma(c-b)}{ }_{2} F_{1}(a, b, a+b-c+1,1-x) \\
+ & \frac{\Gamma(c) \Gamma(a+b-c)}{\Gamma(a) \Gamma(b)}(1-x)^{c-a-b}{ }_{2} F_{1}(c-a, c-b, c-a-b+1,1-x)
\end{aligned}
$$

we establish by computation the limit :

$$
\lim _{\rho \rightarrow 1} \rho^{2|k|}\left|{ }_{2} F_{1}\left(\alpha+B+\frac{|k|+k}{2}, \alpha-B+\frac{|k|-k}{2}, 1+|k|, \rho^{2}\right)\right|^{2}
$$

$$
=\frac{|\Gamma(1-2 \alpha) \Gamma(1+|k|)|^{2}}{\left|\Gamma\left(\alpha+B+\frac{|k|+k}{2}\right) \Gamma\left(\alpha-B+\frac{|k|-k}{2}\right)\right|^{2}}
$$

Now, letting ρ goes to 1 in (4.8), we get that

$$
\sum_{|k| \leq l}\left|c_{B, \alpha, k}\right|^{2} \frac{|\Gamma(1-2 \alpha) \Gamma(1+|k|)|^{2}}{\left|\Gamma\left(\alpha+B+\frac{|k|+k}{2}\right) \Gamma\left(\alpha-B+\frac{|k|-k}{2}\right)\right|^{2}} \leq \mathcal{N}(f)
$$

and in view of the expression of $\lambda_{k}^{\alpha, B}$, we can also write

$$
\sum_{|k| \leq l}\left|\left(\lambda_{k}^{\alpha, B}\right)^{-1} c_{B, \alpha, k}\right|^{2} \leq \frac{|\Gamma(\alpha+B) \Gamma(\alpha-B)|^{2}}{|\Gamma(1-2 \alpha)|^{2}} \mathcal{N}(f), \text { for all } l \in \mathbf{Z}_{+}
$$

This proves that $\psi \in L^{2}(\mathbb{T}, d \sigma)$.
Making use of the identity ([3], p.1043)

$$
{ }_{2} F_{1}(a, b, c, x)=(1-x)^{c-a-b}{ }_{2} F_{1}(c-a, c-b, c, x),
$$

we treat the case when $\operatorname{Re} \alpha>\frac{1}{2}$ in a similar manner. We get

$$
\left(1-\rho^{2}\right)^{-2(1-\operatorname{Re} \alpha)} \int_{\mathbb{T}}|f(\rho \omega)|^{2} d \sigma(\omega) \leq\left(\frac{2 \pi \Gamma(2 \operatorname{Re} \alpha-1)}{(\Gamma(\operatorname{Re} \alpha))^{2}}\right)^{2}\|\varphi\|_{L^{2}(\mathbb{T})}^{2}
$$

as analog of (4.5). And as analog of (4.6), we write

$$
\begin{aligned}
& f\left(\rho e^{i \theta}\right)=\left(1-\rho^{2}\right)^{1-\alpha} \\
& \sum_{k \in \mathbf{Z}} c_{B, \alpha, k}{ }_{2} F_{1}\left(1-\alpha+B+\frac{|k|+k}{2}, 1-\alpha-B+\frac{|k|-k}{2}, 1+|k|, \rho^{2}\right) \times \rho^{|k|} e^{i k \theta}
\end{aligned}
$$

Remark 4.1. We note that for $\operatorname{Re} \alpha=\frac{1}{2}$ there are difficulties in performing a natural condition on eigenfunctions of $\mathcal{E}_{\alpha, B}$ to be in the range of P_{B}^{α}.

References

[1] Albeverio S A, Exner P and Geyler V A, Geometric phase related to pointinteraction transport on a magnetic Lobachevsky plane, Letters in Mathematical physics 55:pp. 9-16 (2001).
[2] Elstrodt J, Die resolvente zum eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, Math. Ann.203, pp. 295-330 (1973).
[3] Gradshteyn I S and Ryzhik I M, Table of Integrals, Series and Products, Academic Press, INC (1980).
[4] Kim O H and Kwon E G, \mathcal{M}-Subspaces of X_{λ},Illinois.J.Math,Vol 37, No 4 (1993).

Zouhaïr Mouayn
Department of Mathematics,
Faculty of Sciences and Technics (M'Ghila),
Cadi Ayyad University
BP.523, Béni Mellal, Morocco
E-mail : mouayn@math.net

