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Abstract
We characterize some eigenfunctions of Landau Hamiltonian on the hy-

perbolic disc which are Poisson integrals of square integrable functions at the
disc boundary.

1 Introduction

In this Letter, we will be concerned with the second order differential operator in
the complex unit disc D = {z ∈ C, |z| < 1} :

∆B := 4
(
1− |z|2

)((
1− |z|2

) ∂2

∂z∂z
+Bz

∂

∂z
−Bz

∂

∂z
+B2

)

acting in the space C∞ (D,C) of complex−valued C∞−functions. This operator is
obtained from the operator

HB := y2

(
∂2

∂x2
+

∂2

∂y2

)
− 2iBy

∂

∂x

in the complex upper half plane H2 = {w = x+ iy,C,x ∈ R,y > 0} by

∆Bf (z) = 4
(
w − i

w + i

)−B

HB

(
w − i

w + i

)B

f (C (w)) ,
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where f ∈ C∞ (D,C) and z = C (w) ∈ D is the image of w ∈ H2 under the Cayley
transform : w → C (w) = (w − i) (w + i)−1 .

In physics, the operator HB represents the Hamiltonian of a uniform magnetic
field on H2 of magnitude proportional to |B| , B ∈ R. The latter being the Curl
of the vector potential represented by the 1−form : ωB = By−1dx in the Landau
gauge (see [1] and references therein). If B = 0, ∆0 is the Lobachevsky Laplacian on

the unit disc D endowed with the metric ds2 =
(
1− |z|2

)−2
(dx2 + dy2). For B 6= 0,

we will call ∆B the Landau Hamiltonian on D.
In [4] , p.582, H.O. Kim and E.G. Kwon have established a necessary and sufficient

condition for some eigenfunctions of the Bergman Laplacian on the unit ball of Cn

to be represented by a Poisson integral of square integrable functions at the ball
boundary.

Here, we deal with an analogous question in the context of the unit disc D and for
the Landau Hamiltonian ∆B with the associated Poisson integral transform defined
for a C∞ function ϕ on the boundary T = ∂D (see [2] , p.308) by

Pα
B [ϕ] (z) :=

∫
T

exp (αLogP (z, ζ)) exp (2iB arg (1− zζ))ϕ (ζ) dσ (ζ) ,

where

P (z, ζ) =
1− |z|2∣∣∣1− zζ

∣∣∣2 , (z, ζ) ∈ D×T

being the Poisson-Szegö kernel of the unit disc D, α ∈ C, LogP (z, ζ) is the principal
branch and dσ denotes the measure area on T.

We precisely characterize eigenfunctions of ∆B in C∞ (D,C) with eigenvalues
µ (α) := 4α (α− 1) , which are Poisson integrals of functions of L2 (T, dσ) in the
case when the parameter α ∈ C satisfies Reα 6= 1

2
and α 6= |B| −m, m ∈ Z+.

The organization of this Letter is as follows. In section 2, we establish series
expansion of eigenfunctions of ∆B in C∞ (D,C) , and we discuss some spectral prop-
erties of this operator. Section 3 deals with some required properties of the Poisson
integral transform Pα

B as its action on spherical harmonics of T and its injectiveness .
In section 4, we give the precise statement of our announced result and we establish
its proof.

2 Eigenfunctions of ∆B

In this section, we shall give the general form of eigenfunctions of ∆B. For this we
have to fix some notations. Let α ∈ C be a fixed complex number and let Eα,B denote
the space of all eigenfunctions f of ∆B associated with the eigenvalue 4α (α− 1) .
Since the differential operator ∆B is elliptic on D, therefore the eigenfunctions f are
in C∞ (D,C) . i.e., Eα,B = {f ∈ C∞ (D,C) ,∆Bf = 4α (α− 1) f} . In the following,
we give series expansion in C∞ (D,C) of any function in Eα,B.
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Proposition 2.1.For every eigenfunction f ∈ Eα,B there exists a family of com-
plex numbers (cB,α,k)k∈Z such that

f
(
ρeiθ

)
=(

1− ρ2
)α ∑

k∈Z
cB,α,k 2F1

(
α+B +

|k|+ k

2
, α−B +

|k| − k

2
, 1 + |k| , ρ2

)
ρ|k|eikθ

in C∞ (D,C) , ρeiθ ∈ D, 0 ≤ ρ < 1, 0 ≤ θ ≤ 2π .
Proof. Let f ∈ Eα,B. Then f satisfies the equation

∆Bf = 4α (α− 1) f. (2.1)

Since f is C∞ on D, it can be expanded into its Fourier series as

f
(
ρeiθ

)
=
∑
k∈Z

γk (ρ) eikθ, 0 ≤ ρ < 1, 0 ≤ θ ≤ 2π (2.2)

where ρ→ γk (ρ) is C∞ on [0, 1[ for each k ∈ Z. Writing ∆B into polar coordinates
(ρ, θ) :

∆B =
(
1− ρ2

) ∂2

∂ρ2
+
(
1− ρ2

)2 1

ρ

∂

∂ρ
+
(
1− ρ2

)2 1

ρ2

∂2

∂θ2
+4iB

(
1− ρ2

) ∂

∂θ
+4B2

(
1− ρ2

)

and inserting the expansion (2.2) of f
(
ρeiθ

)
in Eq. (2.1) , we obtain that every

Fourier coefficient γk (ρ) satisfies the second order differential equation :

ρ2
(
1− ρ2

)2
γ”

k (ρ) +
(
1− ρ2

)2
ργ

′

k (ρ)

+
[
4α (1− α) ρ2 + 4B2ρ2

(
1− ρ2

)
− k2

(
1− ρ2

)2
− 4kBρ2

(
1− ρ2

)]
γk (ρ) = 0.

(2.3)
Observe that ρ = 0 is a singular point and that the characteristic polynomial is
X2 − |k|2 whose zeros are |k| and -|k| . Then, every solution of this equation is
a linear combination of two functions u1 (ρ) , u2 (ρ) whose behaviour at ρ = 0 is
respectively like ρ|k| and ρ−|k|. Since γk (ρ) is bounded near zero , we shall look for
regular solution of Eq.(2.3 ) in the form γk (ρ) = ρ|k|hk (ρ2) with hk ∈ C∞ ([0, 1[) .We
reduce Eq.(2.3 ) into a standard hypergeometric equation ([3] , p.1045− 1046.) , by
making the change of function hk (ρ2) =(1− ρ2)

α
Ψk (ρ2) . After calculations, we

find that Ψk (ρ2) is given , up to a multiplicative constant, by

2F1

(
α+B +

1

2
(|k|+ k) , α−B +

1

2
(|k| − k) , 1 + |k| , ρ2

)
Consequently, there exists a family of complex numbers (cB,α,k)k∈Z such that

f
(
ρeiθ

)
=(

1− ρ2
)α ∑

k∈Z
cB,α,k 2F1

(
α+B +

|k|+ k

2
, α−B +

|k| − k

2
, 1 + |k| , ρ2

)
ρ|k|eikθ
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Remark 2.1. One can also consider the operator ∆B acting in the weighted

Hilbert spaceH:= L2

(
D,
(
1− |z|2

)−2
dν (z)

)
, where dν (z) being the Lebesgue mea-

sure on D . Therefore, general spectral properties of the operator ∆B acting in H
are similar to those of the operator HB acting in L2 (H2,y−2dx ∧ dy) . Namely, ∆B

is an essentially self-adjoint operator in the Hilbert space H. The spectrum of
∆B in H consists of two parts : (i) an absolutely continuous spectrum ]−∞, 0]
which corresponds to scattering states, (ii) a point spectrum consisting of a finite
number of infinitely degenerate eigenvalues given by em = (|B| −m) (|B| −m− 1) ,
0 ≤ m < |B| − 1/2 when |B| > 1/2, which correspond to bound states.

3 The integral transform P α
B

Let us write the integral transform Pα
B associated with ∆B as

Pα
B [ϕ] (z) =

∫
T

 1− |z|2∣∣∣1− zζ
∣∣∣2


α

exp (2iB arg (1− zζ))ϕ (ζ) dσ (ζ) (3.1)

for every continuous function ϕ on T. At first, one can use direct calculations to
establish the following :

Proposition 3.1. Let B ∈ R and α ∈ C. Then, Pα
B [ϕ] ∈ Eα,B for every

ϕ ∈ L2 (T, dσ) .

Now, since functions of L2 (T, dσ) can be expanded into series in the basis of
spherical harmonics {Yk} of T : ζ → Yk (ζ) = ζk, k ∈ Z, we need then to compute
the action of Pα

B on these functions {Yk}. This is given by the following:
Lemma 3.1. Let B ∈ R, α ∈ C and k ∈ Z. Then we have

Pα
B [Yk] (z) = λα,B

k Φα,B
k (|z|) exp (ik arg z) , z ∈ D,

where

λα,B
k :=

2πΓ
(
α+B + 1

2
(|k|+ k)

)
Γ
(
α−B + 1

2
(|k| − k)

)
Γ (1 + |k|) Γ(α+B)Γ(α−B)

(3.2)

and

Φα,B
k (|z|) := |z||k|

(
1− |z|2

)α

2
F1

(
α+B +

|k|+ k

2
, α−B +

|k| − k

2
, 1 + |k| , |z|2

)
(3.3)

Proof. By (3.1) , the action of Pα
B on Yk can be written as

Pα
B [Yk] (z) =

(
1− |z|2

)α
∫
T

(1− zζ)−(α−B)
(
1− zζ

)−(α+B)
ζkdσ (ζ) . (3.4)

Making use of the binomial formula

(1− x)−a =
∑

0≤p<∞

Γ (a+ p)

Γ (a)

xp

Γ (1 + p)
, (3.5)
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then, (3.4) transforms to

Pα
B [Yk] (z) =

(
1− |z|2

)α ∑
0≤j,k<+∞

Γ(α−B + j)

Γ(α−B)

Γ(α+B + l)

Γ(α+B)

zjzl

j!l!

∫
T

ζk+jζ
l
dσ (ζ)

(3.6)
But since ∫

T

ζk+jζ
l
dσ (ζ) = 2πδk+j,l

we set j = n+ 1
2
(|k| − k) and k = n+ 1

2
(|k|+ k) , therefore the double sum in (3.6)

reduces to

Pα
B [Yk] (z) =

2π
(
1− |z|2

)α
|z|k

∑
0≤n<+∞

Γ(α−B + n+ 1
2
(|k| − k))

Γ(α−B)

Γ(α+B + n+ 1
2
(|k|+ k))

Γ(α+B)

× 1

Γ(n+ 1
2
(|k| − k) + 1)Γ(n+ 1

2
(|k|+ k) + 1)

(
|z|2

)n
eik arg z

Recalling the series of the hypergeometric function

2F1 (a, b, c, x) =
∑

0≤n<+∞

Γ(a+ n)

Γ(a)

Γ(b+ n)

Γ(b)

Γ(c)

Γ(c+ n)

xn

n!

(see [3] , p.1039), we obtain the result.

Proposition 3.2. The Poisson transform Pα
B is injective if and only if α 6=

|B| −m, m ∈ Z+.
Proof. Let ϕ ∈L2 (T,dσ) be such that Pα

B [ϕ] = 0. Expanding ϕ into its Fourier

series as : ϕ (z) =
∑

k∈Z
ckζ

k, ζ ∈ T, ck ∈ C with
∑

k∈Z
|ck|2 < +∞ then, we can write :

Pα
B [ϕ] (z) =

∑
k∈Z

ckλ
α,B
k Φα,B

k (|z|) exp (ik arg z) = 0 (3.6)

where λα,B
k and Φα,B

k (|z|) are given in (3.2) and (3.3). Now, since Φα,B
k (|z|) is a

nonvanishing term, then equality (3.6) is equivalent to λα,B
k = 0 if ck 6= 0. Thus, a

necessary and sufficient condition for Pα
B to be injective is that α + B and α − B

avoid poles of the Gamma function. i.e., α 6= |B| −m,m ∈ Z+.

Remark 3.1. If α = αm := |B| − m, m ∈ Z+, the integral transform Pα
B is

noninjective and yet we still have Pαm
B [ϕ] ∈ Eαm,B, for all ϕ ∈ L2 (T, dσ) . In this

case it would be of interest to characterize all those functions in L2 (T,dσ) which
are mapped via Pαm

B into the space Eαm,B ∩ H of bound states associated with a
hyperbolic Landau level in D when |B| > 1

2
. For instance, images of spherical

harmonics (Yk)k∈Z under Pαm
B belong to Eαm,B ∩ H. This is due to the fact that

the hypergeometric function arising in the expression of Pαm
B [Yk] (z) is always a

polynomial function in the variable |z|2 , z ∈ D, therefore one can easily establish
that the norm ‖Pαm

B [Yk]‖H is finite.
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4 A characterization theorem

In this section, we shall establish the following characterization theorem
Theorem 4.1. Let α ∈ C with Reα 6= 1

2
and α 6= |B| −m, m ∈ Z+. Then, a

function f : D → C satisfies f = Pα
B [ϕ] for a certain ϕ ∈ L2 (T, dσ) if and only if

∆Bf = µ (α) f and

N (f) := sup
0≤ρ<1

(1− ρ2
)|1−2Re α|−1

∫
T

|f (ρω)|2 dσ (ω)

 < +∞

Proof. We deal the case Reα < 1
2
. Let f : D →C be such that f = Pα

B [ϕ] with

ϕ ∈ L2 (T,dσ) . By proposition 3.1, we have that ∆Bf = µ (α) f. Next, to prove
that the quantity N (f) is finite, we start by the inequality

|f (z)| ≤
∫
T

 1− |z|2∣∣∣1− zζ
∣∣∣2


Re α

|ϕ (ζ)| dσ (ζ) . (4.1)

Set z = ρω where ρ ∈ [0, 1[ and ω ∈ T are polar coordinates, then we can write
inequality (4.1) as

|f (ρω)| ≤ (φρ,α ∗ |ϕ|) (ω) (4.2)

where the convolution is taken in T and

φρ,α (ζ) :=

(
1− ρ2

|1− ρζ|2

)Re α

, ζ ∈ T.

We apply Hausdorff-Young inequality to the convolution in (4.2) :

‖φρ,α ∗ |ϕ|‖ ≤ ‖φρ,α‖L1(T) ‖ϕ‖L2(T) . (4.3)

This leads us to compute the L1−norm of φρ,α. For this, we make use of the binomial
formula in (3.5) and we obtain that

‖φρ,α‖L1(T) =
∑

0≤j,k<∞

Γ (Reα+ j)

(Γ (Reα))2

(1− ρ2)
Re α

Γ (1 + j) Γ (1 + k)
ρjρk

∫
T

ζjζ
k
dσ (ζ)

= 2π
(
1− ρ2

)Re α

2F1

(
Reα,Reα, 1, ρ2

)
. (4.4)

Now, in view of (4.2) , (4.3) and (4.4) , we get

∫
T

|f (ρω)|2 dσ (ω) ≤
(
2π
(
1− ρ2

)Re α

2F1

(
Reα,Reα, 1, ρ2

))2

‖ϕ‖2
L2(T) .

Making use of the identity ([3] , p.1042) :

2F1 (a, b, c, 1) =
Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b)
, Re c > Re (a+ b)
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for the increasing function ρ →2 F1 (Reα,Reα, 1, ρ2) , we obtain the following in-
equality

2F1

(
Reα,Reα, 1, ρ2

)
≤ Γ (1− 2 Reα)

(Γ (1− Reα))2 , 0 ≤ ρ < 1.

Therefore,

(
1− ρ2

)−2Re α
∫
T

|f (ρω)|2 dσ (ω) ≤
(

2πΓ (1− 2 Reα)

(Γ (1− Reα))2

)2

‖ϕ‖2
L2(T) (4.5)

and the proof of the necessary condition is completed by taking the sup with respect
to ρ ∈ [0, 1[ in left side of inequality (4.5).

Conversely, let f ∈ Eα,B with N (f) < +∞. By proposition 2.1 there exists a
family of complex numbers (cB,α,k)k∈Z such that

f
(
ρeiθ

)
=(

1− ρ2
)α ∑

k∈Z
cB,α,k 2F1

(
α+B +

|k|+ k

2
, α−B +

|k| − k

2
, 1 + |k| , ρ2

)
ρ|k|eikθ.

(4.6)

Setting

ψ (ζ) =
∑
k∈Z

cB,α,k

(
λα,B

k

)−1
ζk, ζ ∈ T

where
(
λα,B

k

)
are the quantities defined in (3.2) , then obviously ψ satisfies Pα

B [ψ] =

f. It remains to prove that ψ belongs to L2 (T, dσ) . For this, we apply the Parseval
formula in L2 (T, dσ) to the expansion given in (4.6) , and we get for each fixed
ρ ∈ [0, 1[ the estimate :

∑
k∈Z

|cB,α,k|2 ρ2|k|
∣∣∣∣∣2F1

(
α+B +

|k|+ k

2
, α−B +

|k| − k

2
, 1 + |k| , ρ2

)∣∣∣∣∣
2

≤ N (f) < +∞. (4.7)

From (4.7) we can write for every fixed l ∈ Z+ the following estimate

∑
|k|≤l

|cB,α,k|2 ρ2|k|
∣∣∣∣∣2F1

(
α+B +

|k|+ k

2
, α−B +

|k| − k

2
, 1 + |k| , ρ2

)∣∣∣∣∣
2

≤ N (f)

(4.8)
Using the functional relation ([3] , p.1043)

2F1 (a, b, c, x) =
Γ (c− a− b) Γ (c)

Γ (c− a) Γ (c− b)
2F1 (a, b, a+ b− c+ 1, 1− x)

+
Γ (c) Γ (a+ b− c)

Γ (a) Γ (b)
(1− x)c−a−b

2F1 (c− a, c− b, c− a− b+ 1, 1− x)

we establish by computation the limit :

lim
ρ→1

ρ2|k|
∣∣∣∣∣2F1

(
α+B +

|k|+ k

2
, α−B +

|k| − k

2
, 1 + |k| , ρ2

)∣∣∣∣∣
2
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=
|Γ (1− 2α) Γ (1 + |k|)|2∣∣∣Γ (α+B + |k|+k

2

)
Γ
(
α−B + |k|−k

2

)∣∣∣2
Now, letting ρ goes to 1 in (4.8) ,we get that

∑
|k|≤l

|cB,α,k|2
|Γ (1− 2α) Γ (1 + |k|)|2∣∣∣Γ (α+B + |k|+k

2

)
Γ
(
α−B + |k|−k

2

)∣∣∣2 ≤ N (f)

and in view of the expression of λα,B
k , we can also write

∑
|k|≤l

∣∣∣∣(λα,B
k

)−1
cB,α,k

∣∣∣∣2 ≤ |Γ (α+B) Γ (α−B)|2

|Γ (1− 2α)|2
N (f) , for all l ∈ Z+

This proves that ψ ∈ L2 (T,dσ) .
Making use of the identity ([3] , p.1043)

2F1 (a, b, c, x) = (1− x)c−a−b
2F1 (c− a, c− b, c, x) ,

we treat the case when Reα > 1
2

in a similar manner. We get

(
1− ρ2

)−2(1−Re α)
∫
T

|f (ρω)|2 dσ (ω) ≤
(

2πΓ (2 Reα− 1)

(Γ (Reα))2

)2

‖ϕ‖2
L2(T)

as analog of (4.5). And as analog of (4.6), we write

f
(
ρeiθ

)
=
(
1− ρ2

)1−α

∑
k∈Z

cB,α,k 2F1

(
1− α+B +

|k|+ k

2
, 1− α−B +

|k| − k

2
, 1 + |k| , ρ2

)
× ρ|k|eikθ.

Remark 4.1. We note that for Reα = 1
2

there are difficulties in performing a
natural condition on eigenfunctions of Eα,B to be in the range of Pα

B .
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