On the smallest abundant number not divisible by the first k primes

Douglas E. Iannucci

Abstract

We say a positive integer n is abundant if $\sigma(n) > 2n$, where $\sigma(n)$ denotes the sum of the positive divisors of n. Number the primes in ascending order: $p_1 = 2, p_2 = 3$, and so forth. Let A(k) denote the smallest abundant number not divisible by p_1, p_2, \ldots, p_k . In this paper we find A(k) for $1 \le k \le 7$, and we show that for all $\epsilon > 0$, $(1 - \epsilon)(k \ln k)^{2 - \epsilon} < \ln A(k) < (1 + \epsilon)(k \ln k)^{2 + \epsilon}$ for all sufficiently large k.

Introduction

We say a positive integer n is abundant if $\sigma(n) > 2n$, where $\sigma(n)$ denotes the sum of the positive divisors of n. The smallest abundant number is 12, and the smallest odd abundant number is 945. With a computer search, Whalen and Miller [3] found $5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29$ to be an odd abundant number not divisible by 3, and they raised the general question of how one goes about finding the smallest abundant number not divisible by the first k primes.

We number the primes in ascending order: $p_1 = 2$, $p_2 = 3$, and so forth. Let A(k) denote the smallest abundant number not divisible by p_1, p_2, \ldots, p_k . Note that A(1) = 945. In this paper we devise an algorithm to find A(k), and we apply it to find A(k) for $1 \le k \le 7$. We shall also prove

Theorem 1. For every $\epsilon > 0$ we have

$$(1 - \epsilon)(k \ln k)^{2 - \epsilon} < \ln A(k) < (1 + \epsilon)(k \ln k)^{2 + \epsilon}$$

whenever k is sufficiently large.

Received by the editors February 2002. Communicated by M. Van den Bergh.

1991 Mathematics Subject Classification: 11A32, 11Y70.

Key words and phrases: abundant numbers, primes.

D. E. Iannucci

2 Preliminaries

For a positive integer n we define the *index* of n to be

$$\sigma_{-1}(n) = \frac{\sigma(n)}{n}.$$

Thus n is abundant if $\sigma_{-1}(n) > 2$. The function σ_{-1} is multiplicative, and for prime p and integer $a \ge 1$ we have

$$\sigma_{-1}(p^a) = 1 + \frac{1}{p} + \frac{1}{p^2} + \dots + \frac{1}{p^a}.$$

Therefore $\sigma_{-1}(p^a)$ increases with a, and in fact

$$\frac{p+1}{p} \le \sigma_{-1}(p^a) < \frac{p}{p-1}.$$
 (1)

If p < q are primes then q/(q-1) < (p+1)/p and so for all integers $a \ge 1, b \ge 1$, we have

$$\sigma_{-1}(q^b) < \sigma_{-1}(p^a). \tag{2}$$

For each integer $k \ge 1$ let us define

$$V_t(k) = \prod_{j=k+1}^{t} \frac{p_j + 1}{p_j}$$

for integers t > k. By Theorem 19 in [1] and Theorem 3 of §28, Chapter VII in [2], $V_t(k)$ increases without bound as t increases, and therefore we may define

$$v(k) = \min \{ t : V_t(k) > 2 \}.$$

Since $V_t(k) = \sigma_{-1}(p_{k+1}p_{k+2}\cdots p_t)$, we have

$$A(k) \le p_{k+1} p_{k+2} \cdots p_{v(k)}. \tag{3}$$

We may also obtain a lower bound for A(k). For each integer $k \geq 1$ we define

$$U_t(k) = \prod_{j=k+1}^t \frac{p_j}{p_j - 1}$$

for integers t > k. Since p/(p-1) > (p+1)/p, we have $U_t(k) > V_t(k)$ and so we may define

$$u(k) = \min\{t : U_t(k) > 2\}. \tag{4}$$

Note that $u(k) \leq v(k)$. We can show that $A(k) \geq p_{k+1}p_{k+2}\cdots p_{u(k)}$; in fact we can show more:

Lemma 1. A(k) is divisible by $p_{k+1}p_{k+2}\cdots p_{u(k)}$.

Proof. Let $M = p_{k+1}p_{k+2}\cdots p_{u(k)}$ and suppose $M \nmid A(k)$. Let A(k) have the unique prime factorization given by $A(k) = \prod_{i=1}^t q_i^{a_i}$ for distinct primes $q_1 < q_2 < \cdots < q_t$, and positive integers a_i , $1 \le i \le t$. Note that $q_1 > p_k$. Hence $q_i \ge p_{k+i}$ for all i, $1 \le i \le t$.

We have $t \ge u(k) - k$. For, otherwise by (1), (2),

$$\sigma_{-1}(A(k)) < \frac{p_{k+1}}{p_{k+1}-1} \cdot \frac{p_{k+2}}{p_{k+2}-1} \cdot \cdot \cdot \frac{p_{u(k)-1}}{p_{u(k)-1}-1},$$

which implies $\sigma_{-1}(A(k)) \leq 2$ by (4); this contradicts the abundance of A(k).

Since $M \nmid A(k)$, we have $p_j \nmid A(k)$ for some j such that $k+1 \leq j \leq u(k)$. Therefore, since $t \geq u(k) - k$, at least one of the primes q_i dividing A(k) must be greater than $p_{u(k)}$. Without loss of generality we may assume $q_1 > p_{u(k)}$. Then by (2),

$$\sigma_{-1}(p_j q_2^{a_2} \cdots q_t^{a_t}) > \sigma_{-1}(q_1^{a_1} q_2^{a_2} \cdots q_t^{a_t}) > 2.$$

But then,

$$p_j q_2^{a_2} \cdots q_t^{a_t} < q_1^{a_1} q_2^{a_2} \cdots q_t^{a_t} = A(k),$$

which contradicts the minimality of A(k).

3 An Algorithm

From Lemma 1, we may devise an algorithm for finding A(k):

- (1) Find u(k), as given by (4).
- (2) Let $P_k = p_1 p_2 \cdots p_k$. Let m run through the positive integers which are relatively prime to P_k until we find

$$M(k) = \min_{(m,P_k)=1} \{ m : \sigma_{-1}(mp_{k+1}p_{k+2}\cdots p_{u(k)}) > 2 \}.$$

It follows that

$$A(k) = M(k)p_{k+1}p_{k+2}\cdots p_{u(k)}.$$

Note that by (3) we have $M(k) \leq p_{u(k)+1}p_{u(k)+2}\cdots p_{v(k)}$. Using the UBASIC software package, a computer search employing the algorithm was conducted to find A(k) for $1 \leq k \leq 7$. In Table 1 is given the values for M(k) and A(k), along with those of $p_{u(k)}$ and $p_{v(k)}$, for $1 \leq k \leq 7$.

Table 1. The values A(k) for $1 \le k \le 7$.

D. E. Iannucci

4 Behavior of A(k)

In this section we estimate the growth of A(k) by proving Theorem 1. We begin by stating a result due to Mertens (Theorem 429 in [1]),

$$\lim_{x \to \infty} \frac{e^{-\gamma}}{\ln x} \prod_{p \le x} \frac{p}{p-1} = 1, \tag{5}$$

where the product is taken over primes p and where γ denotes Euler's constant. We now prove

Lemma 2.

$$\lim_{x \to \infty} \frac{\ln p_{u(k)}}{\ln p_k} = 2.$$

Proof. Let $0 < \epsilon < 2$ be given. Take $0 < \epsilon_1 < \epsilon/(2 - \epsilon)$ (so that $2\epsilon_1/(1 + \epsilon_1) < \epsilon$), and take $0 < \epsilon_2 < \epsilon_1/(2 + \epsilon_1)$ (so that $(1 + \epsilon_2)/(1 - \epsilon_2) < 1 + \epsilon_1$). By (5), there exists an integer k_1 such that for all $x \ge p_{k_1}$ we have

$$(1 - \epsilon_2)e^{\gamma} \ln x < \prod_{p \le x} \frac{p}{p-1} < (1 + \epsilon_2)e^{\gamma} \ln x.$$

Note that by (4) we have

$$2 < \prod_{p_k < p \le p_{u(k)}} \frac{p}{p-1} = \frac{\prod_{p \le p_{u(k)}} \frac{p}{p-1}}{\prod_{p \le p_k} \frac{p}{p-1}}.$$

Thus for all $k \geq k_1$ we have

$$2 < \frac{(1+\epsilon_2)e^{\gamma} \ln p_{u(k)}}{(1-\epsilon_2)e^{\gamma} \ln p_k} < (1+\epsilon_1) \frac{\ln p_{u(k)}}{\ln p_k},$$

hence

$$\frac{\ln p_{u(k)}}{\ln p_k} > \frac{2}{1+\epsilon_1} = 2 - \frac{2\epsilon_1}{1+\epsilon_1} > 2 - \epsilon.$$

Now take $0 < \epsilon_4 < (-3 + \sqrt{9 + 4\epsilon})/2$ (so that $3\epsilon_4 + \epsilon_4^2 < \epsilon$), take $0 < \epsilon_5 < \epsilon_4/(2 + \epsilon_4)$ (so that $2/(1 - \epsilon_5) < 2 + \epsilon_4$), and take $0 < \epsilon_6 < \epsilon_5/(2 - \epsilon_5)$ (so that $(1 - \epsilon_6)/(1 + \epsilon_6) < 1 - \epsilon_5$). By (5) there exists an integer k_2 such that for all $k \ge k_2$ we have $1/(p_k - 1) < \epsilon_4$ and such that for all $x \ge p_{k_2}$ we have

$$(1 - \epsilon_6)e^{\gamma} \ln x < \prod_{p \le x} \frac{p}{p-1} < (1 + \epsilon_6)e^{\gamma} \ln x.$$

By (4) we have

$$2\frac{p_{u(k)}}{p_{u(k)}-1} \ge \prod_{p_k$$

and so for $k \geq k_2$

$$2\frac{p_{u(k)}}{p_{u(k)}-1} \ge \frac{(1-\epsilon_6)e^{\gamma}\ln p_{u(k)}}{(1+\epsilon_6)e^{\gamma}\ln p_k} > (1-\epsilon_5)\frac{\ln p_{u(k)}}{\ln p_k},$$

hence

$$\frac{\ln p_{u(k)}}{\ln p_k} < \frac{p_{u(k)}}{p_{u(k)} - 1} \cdot \frac{2}{1 - \epsilon_5} < (1 + \epsilon_4)(2 + \epsilon_4) = 2 + 3\epsilon_4 + \epsilon_4^2 < 2 + \epsilon.$$

Therefore if $k \ge \max\{k_1, k_2\}$ then $|\ln p_{u(k)}/\ln p_k - 2| < \epsilon$.

An almost identical proof (omitted here) gives

Lemma 3.

$$\lim_{x \to \infty} \frac{\ln p_{v(k)}}{\ln p_k} = 2.$$

The Prime Number Theorem (Theorem 8 in [1]) states that

$$\lim_{n \to \infty} \frac{p_n}{n \ln n} = 1. \tag{6}$$

An equivalent result (Theorem 420 in [1]) is

$$\lim_{x \to \infty} \frac{\theta(x)}{x} = 1, \tag{7}$$

where θ denotes the function, defined for x > 0, given by

$$\theta(x) = \sum_{p \le x} \ln p \,,$$

the sum being taken over primes.

We may now begin proving Theorem 1. Let $\epsilon > 0$ be given. Take $0 < \epsilon_1 < \sqrt[4]{1+\epsilon} - 1$ (so that $(1+\epsilon_1)^4 < 1+\epsilon$), take $0 < \epsilon_2 < \epsilon_1$, and take $0 < \epsilon_3 < \min\{1, \epsilon\}$. By (7), there exists an integer k_1 such that for all $k \ge k_1$ we have

$$\theta(p_{v(k)}) < (1 + \epsilon_1)p_{v(k)}.$$

By (6) there exists an integer k_2 such that for all $k \geq k_2$ we have

$$p_k < (1+\epsilon_2)k \ln k$$
.

By Lemma 3 there exists an integer k_3 such that for all $k \geq k_3$ we have

$$p_{v(k)} < p_k^{2+\epsilon_3} .$$

Then by (3), if $k \ge \max\{k_1, k_2, k_3\}$, we have

$$\ln A(k) \le \sum_{j=k+1}^{v(k)} \ln p_j < \theta(p_{v(k)}),$$

hence

$$\ln A(k) < (1 + \epsilon_1) p_{v(k)}$$

$$< (1 + \epsilon_1) p_k^{2+\epsilon_3}$$

$$< (1 + \epsilon_1) (1 + \epsilon_2)^{2+\epsilon_3} (k \ln k)^{2+\epsilon_3}$$

$$< (1 + \epsilon_1)^4 (k \ln k)^{2+\epsilon_3}$$

$$< (1 + \epsilon) (k \ln k)^{2+\epsilon}.$$

A similar proof (omitted here) shows that for sufficiently large k we have

$$\ln A(k) > (1 - \epsilon)(k \ln k)^{2 - \epsilon},$$

and hence the proof of Theorem 1 is complete.

D. E. Iannucci

Bibliography

[1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, Oxford, 1979;

- [2] K. Knopp, *Theory and Application of Infinite Series*, Dover Publications, New York, 1990;
- [3] M. T. Whalen and C. L. Miller, *Odd abundant numbers: some interesting observations*, Jour. Rec. Math. **22** (1990), 257–261;

University of the Virgin Islands 2 John Brewers Bay St. Thomas VI 00802 USA email: diannuc@uvi.edu