On the smallest abundant number not divisible
by the first k£ primes
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Abstract
We say a positive integer n is abundant if o(n) > 2n, where o(n) denotes
the sum of the positive divisors of n. Number the primes in ascending order:
p1 =2, p2 = 3, and so forth. Let A(k) denote the smallest abundant number
not divisible by p1, pa, ..., pg. In this paper we find A(k) for 1 <k <7, and
we show that for all € > 0, (1 —¢)(kInk)? ¢ <In A(k) < (1 +¢€)(kInk)>*€ for
all sufficiently large k.

1 Introduction

We say a positive integer n is abundant if o(n) > 2n, where o(n) denotes the sum
of the positive divisors of n. The smallest abundant number is 12, and the smallest
odd abundant number is 945. With a computer search, Whalen and Miller [3] found
52.7-11-13-17-19-23-29 to be an odd abundant number not divisible by 3,
and they raised the general question of how one goes about finding the smallest
abundant number not divisible by the first k& primes.

We number the primes in ascending order: p; = 2, po = 3, and so forth. Let
A(k) denote the smallest abundant number not divisible by py, ps, ..., pr. Note
that A(1) = 945. In this paper we devise an algorithm to find A(k), and we apply
it to find A(k) for 1 < k < 7. We shall also prove

Theorem 1. For every € > 0 we have
(1—e)(klnk)*“ <InA(k) < (14 ¢)(kInk)*

whenever k is sufficiently large.
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2 Preliminaries

For a positive integer n we define the index of n to be

Thus n is abundant if o_1(n) > 2. The function o_; is multiplicative, and for prime
p and integer a > 1 we have

. 11 1
071@):1—0———1-—24—“-4——@.
p p p
Therefore o_1(p®) increases with a, and in fact
p+1 P
Pl gy < 2 1)
p p—1

If p < g are primes then ¢/(¢ — 1) < (p+ 1)/p and so for all integers a > 1, b > 1,
we have

o) < o (). @)
For each integer k > 1 let us define

t

Vitk) = 11

j=k+1 Pi

pj—i-l

for integers ¢t > k. By Theorem 19 in [1] and Theorem 3 of §28, Chapter VII in [2],
Vi(k) increases without bound as t increases, and therefore we may define

v(k) =min{t : Vi(k) >2}.
Since Vi(k) = 0_1(pk+1Pk+2 - - - Pt), we have
A(k) < PryiPrsa - Dogh)- (3)

We may also obtain a lower bound for A(k). For each integer & > 1 we define

t

Ui(k) = H b

j=k+1 pj —

1

for integers ¢ > k. Since p/(p — 1) > (p + 1)/p, we have U(k) > Vi(k) and so we
may define
u(k) =min{t : Uy(k) >2}. (4)

Note that u(k) < v(k). We can show that A(k) > pr1Pr+2 - - Duk); in fact we can
show more:
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Lemma 1. A(k) is divisible by pri1Pk+2 - - Pu(i)-

Proof. Let M = pyi1Dk42 - - - Puk) and suppose M { A(k). Let A(k) have the unique
prime factorization given by A(k) = [T'_, ¢ for distinct primes q; < gz < - -+ < gy,
and positive integers a;, 1 < ¢ < t. Note that ¢ > pr. Hence ¢; > piy; for all ¢,
1< <t

We have t > u(k) — k. For, otherwise by (1), (2),

Pr+1 Pr+2 Pu(k)—1
o-1(Ak)) < Pet1— 1 Pre2a—1  pygy—1 — 1

which implies o_1(A(k)) < 2 by (4); this contradicts the abundance of A(k).

Since M { A(k), we have p; 1 A(k) for some j such that k +1 < j < wu(k).
Therefore, since ¢t > u(k) — k, at least one of the primes ¢; dividing A(k) must be
greater than p,). Without loss of generality we may assume g > py). Then by

(2),

o_1(pjgs? -+ q*) > o_1(qt ¢5? - - - qf*) > 2.

But then,
Pids” - gt < diay’ gt = A(k),
which contradicts the minimality of A(k). u

3 An Algorithm

From Lemma 1, we may devise an algorithm for finding A(k):
(1) Find u(k), as given by (4).

(2) Let Py = p1pa- - px. Let m run through the positive integers which are rela-
tively prime to P, until we find

M(k) = (m%ikr)lﬂ{ m : 01 (MPr1Prs2 " Puk)) > 2 }
It follows that

A(k) = M(K)pri1priz - *Pu(k) -
Note that by (3) we have M (k) < pu@)11Puk)+2 - - Potk)- Using the UBASIC software
package, a computer search employing the algorithm was conducted to find A(k) for
1 <k < 7. In Table 1 is given the values for M (k) and A(k), along with those of
Puk) and pypy, for 1 <k < 7.

k Pu(k)  Po(k) M(k) A(k)

1 7 13 32 33.5-7

2 23 31 5-29 52.7-11-13-17-19-23-29

3 61 73 7-11-67 72.112-13-17---59-61 - 67

4 127 149 11-13-131-137 112-132-17-19---131 - 137

5 199 233 13-17-211-223-227 132-172-19-23..-223 - 227

6 337 367 17-19-23-347-349 172-19%.232.29-31---347 - 349
7 479 521  19-23-29-487-491-499 192 -23%2.292.31-37---491 - 499

TABLE 1. The values A(k) for 1 <k < 7.
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4 Behavior of A(k)

In this section we estimate the growth of A(k) by proving Theorem 1. We begin by
stating a result due to Mertens (Theorem 429 in [1]),

-
lim < T -2~ =1 (5)

where the product is taken over primes p and where vy denotes Euler’s constant.
We now prove
Lemma 2. |
lim DPull) _
T—00 lnpk
Proof. Let 0 < € < 2 be given. Take 0 < ¢; < €¢/(2 —¢) (so that 2¢; /(1 +€1) < ¢),

and take 0 < €3 < €1/(2 4 €1) (so that (1 +€)/(1 —e€) < 1+ €). By (5), there
exists an integer k; such that for all > py, we have

2.

(1-e)e'nz < [] % <(l+e€)e’Inz.

p<z

Note that by (4) we have

H p _ Hpépu(k) ;%
Pl <P<Pu(k) p— HPSPk ;%
Thus for all £k > k; we have
1 71np, In p,
(1 +e€)e” Inpy) (1+6a) 1 Pu(k)
(1 —€y)eY Inpy In py,

2 <

2<

hence

1 2 2
npu(k)> =9 =L o9 .
Inpy = 1+6 l+e
Now take 0 < €4 < (=3 + /9 +4¢)/2 (so that 3es + €2 < ¢), take 0 < €5 <
€4/(2 + €4) (so that 2/(1 —€5) < 2+ ¢4), and take 0 < €5 < €5/(2 — €5) (so that
(1—¢€6)/(1+€) <1—e¢€5). By (5) there exists an integer ko such that for all £ > ks

we have 1/(pr, — 1) < €4 and such that for all x > p;, we have

(1—e)e’Inz < [] % <(l+e€)e’Inz.

p<z

By (4) we have

Pu(k) p Hpépu(k) z%
o Pt ] _

Pugky =1 7 Pe<p<pugry P 1 p<ps 1% ’
and so for k > ko

Puth) (1 —€)e” In pyy (1—e )hlpu(k)

2
Puey — 1 (14 €5)eY Inpy In py,

hence
In Py Duk) 2
< .
Inp,  pury —1 1—¢65
Therefore if k > max{ki, k2} then |Inp,x)/Inpy — 2| <e. n

<(1+e)2+e)=2+3e1+6 <2+e¢.
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An almost identical proof (omitted here) gives

Lemma 3. |
lim B Puk)
5% T,

The Prime Number Theorem (Theorem 8 in [1]) states that

=2.

lim =1.
n—conlnn
An equivalent result (Theorem 420 in [1]) is
0
hm—gl:L
r— 00 x‘

where 6 denotes the function, defined for x > 0, given by

:Zhlp,

p<z

the sum being taken over primes.

43

We may now begin proving Theorem 1. Let ¢ > 0 be given. Take 0 < ¢; <
vV1+e€e—1 (sothat (1+€)* < 1+¢), take 0 < € < €1, and take 0 < e3 < min{1, €}.

By (7), there exists an integer k; such that for all £ > k; we have

O(Pok)) < (1 + €1)Pugr) -
By (6) there exists an integer ko such that for all k£ > ko we have
pr < (1+e)knk.

By Lemma 3 there exists an integer k3 such that for all £ > k3 we have

Do) < Dp 2.

Then by (3), if & > max{ky, ko, k3}, we have

v(k)

InA(k) < > Inp; < 0(po))
j=k+1

hence

In A(k) + €1) P

1) +53

1 (]_ + 62)2+63(k3 ln ]{3)2+53
Q%Mn@ﬂ%
< (14 ¢€)(kInk)**

<(
<1+
<(l+e
<(1+e€

A similar proof (omitted here) shows that for sufficiently large k we have
InA(k) > (1 —¢)(klnk)*

and hence the proof of Theorem 1 is complete.
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