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Abstract

We say a positive integer n is abundant if σ(n) > 2n, where σ(n) denotes
the sum of the positive divisors of n. Number the primes in ascending order:
p1 = 2, p2 = 3, and so forth. Let A(k) denote the smallest abundant number
not divisible by p1, p2, . . . , pk. In this paper we find A(k) for 1 ≤ k ≤ 7, and
we show that for all ǫ > 0, (1− ǫ)(k ln k)2−ǫ < ln A(k) < (1 + ǫ)(k ln k)2+ǫ for
all sufficiently large k.

1 Introduction

We say a positive integer n is abundant if σ(n) > 2n, where σ(n) denotes the sum
of the positive divisors of n. The smallest abundant number is 12, and the smallest
odd abundant number is 945. With a computer search, Whalen and Miller [3] found
52 · 7 · 11 · 13 · 17 · 19 · 23 · 29 to be an odd abundant number not divisible by 3,
and they raised the general question of how one goes about finding the smallest
abundant number not divisible by the first k primes.

We number the primes in ascending order: p1 = 2, p2 = 3, and so forth. Let
A(k) denote the smallest abundant number not divisible by p1, p2, . . . , pk. Note
that A(1) = 945. In this paper we devise an algorithm to find A(k), and we apply
it to find A(k) for 1 ≤ k ≤ 7. We shall also prove

Theorem 1. For every ǫ > 0 we have

(1 − ǫ)(k ln k)2−ǫ < ln A(k) < (1 + ǫ)(k ln k)2+ǫ

whenever k is sufficiently large.
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2 Preliminaries

For a positive integer n we define the index of n to be

σ−1(n) =
σ(n)

n
.

Thus n is abundant if σ−1(n) > 2. The function σ−1 is multiplicative, and for prime
p and integer a ≥ 1 we have

σ−1(p
a) = 1 +

1

p
+

1

p2
+ · · ·+ 1

pa
.

Therefore σ−1(p
a) increases with a, and in fact

p + 1

p
≤ σ−1(p

a) <
p

p − 1
. (1)

If p < q are primes then q/(q − 1) < (p + 1)/p and so for all integers a ≥ 1, b ≥ 1,
we have

σ−1(q
b) < σ−1(p

a). (2)

For each integer k ≥ 1 let us define

Vt(k) =
t∏

j=k+1

pj + 1

pj

for integers t > k. By Theorem 19 in [1] and Theorem 3 of §28, Chapter VII in [2],
Vt(k) increases without bound as t increases, and therefore we may define

v(k) = min { t : Vt(k) > 2 } .

Since Vt(k) = σ−1(pk+1pk+2 · · · pt), we have

A(k) ≤ pk+1pk+2 · · · pv(k). (3)

We may also obtain a lower bound for A(k). For each integer k ≥ 1 we define

Ut(k) =
t∏

j=k+1

pj

pj − 1

for integers t > k. Since p/(p − 1) > (p + 1)/p, we have Ut(k) > Vt(k) and so we
may define

u(k) = min { t : Ut(k) > 2 }. (4)

Note that u(k) ≤ v(k). We can show that A(k) ≥ pk+1pk+2 · · · pu(k); in fact we can
show more:
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Lemma 1. A(k) is divisible by pk+1pk+2 · · · pu(k).

Proof. Let M = pk+1pk+2 · · · pu(k) and suppose M ∤ A(k). Let A(k) have the unique
prime factorization given by A(k) =

∏t
i=1 qai

i for distinct primes q1 < q2 < · · · < qt,
and positive integers ai, 1 ≤ i ≤ t. Note that q1 > pk. Hence qi ≥ pk+i for all i,
1 ≤ i ≤ t.

We have t ≥ u(k) − k. For, otherwise by (1), (2),

σ−1(A(k)) <
pk+1

pk+1 − 1
· pk+2

pk+2 − 1
· · · pu(k)−1

pu(k)−1 − 1
,

which implies σ−1(A(k)) ≤ 2 by (4); this contradicts the abundance of A(k).
Since M ∤ A(k), we have pj ∤ A(k) for some j such that k + 1 ≤ j ≤ u(k).

Therefore, since t ≥ u(k) − k, at least one of the primes qi dividing A(k) must be
greater than pu(k). Without loss of generality we may assume q1 > pu(k). Then by
(2),

σ−1(pjq
a2
2 · · · qat

t ) > σ−1(q
a1
1 qa2

2 · · · qat

t ) > 2.

But then,
pjq

a2
2 · · · qat

t < qa1
1 qa2

2 · · · qat

t = A(k),

which contradicts the minimality of A(k).

3 An Algorithm

From Lemma 1, we may devise an algorithm for finding A(k):

(1) Find u(k), as given by (4).

(2) Let Pk = p1p2 · · · pk. Let m run through the positive integers which are rela-
tively prime to Pk until we find

M(k) = min
(m,Pk)=1

{ m : σ−1(mpk+1pk+2 · · · pu(k)) > 2 } .

It follows that
A(k) = M(k)pk+1pk+2 · · · pu(k) .

Note that by (3) we have M(k) ≤ pu(k)+1pu(k)+2 · · · pv(k). Using the UBASIC software
package, a computer search employing the algorithm was conducted to find A(k) for
1 ≤ k ≤ 7. In Table 1 is given the values for M(k) and A(k), along with those of
pu(k) and pv(k), for 1 ≤ k ≤ 7.

k pu(k) pv(k) M(k) A(k)
1 7 13 32 33 · 5 · 7
2 23 31 5 · 29 52 · 7 · 11 · 13 · 17 · 19 · 23 · 29
3 61 73 7 · 11 · 67 72 · 112 · 13 · 17 · · ·59 · 61 · 67
4 127 149 11 · 13 · 131 · 137 112 · 132 · 17 · 19 · · ·131 · 137
5 199 233 13 · 17 · 211 · 223 · 227 132 · 172 · 19 · 23 · · ·223 · 227
6 337 367 17 · 19 · 23 · 347 · 349 172 · 192 · 232 · 29 · 31 · · ·347 · 349
7 479 521 19 · 23 · 29 · 487 · 491 · 499 192 · 232 · 292 · 31 · 37 · · ·491 · 499

Table 1. The values A(k) for 1 ≤ k ≤ 7.
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4 Behavior of A(k)

In this section we estimate the growth of A(k) by proving Theorem 1. We begin by
stating a result due to Mertens (Theorem 429 in [1]),

lim
x→∞

e−γ

ln x

∏

p≤x

p

p − 1
= 1 , (5)

where the product is taken over primes p and where γ denotes Euler’s constant.
We now prove

Lemma 2.

lim
x→∞

ln pu(k)

ln pk

= 2 .

Proof. Let 0 < ǫ < 2 be given. Take 0 < ǫ1 < ǫ/(2 − ǫ) (so that 2ǫ1/(1 + ǫ1) < ǫ),
and take 0 < ǫ2 < ǫ1/(2 + ǫ1) (so that (1 + ǫ2)/(1 − ǫ2) < 1 + ǫ1). By (5), there
exists an integer k1 such that for all x ≥ pk1 we have

(1 − ǫ2)e
γ ln x <

∏

p≤x

p

p − 1
< (1 + ǫ2)e

γ ln x .

Note that by (4) we have

2 <
∏

pk<p≤pu(k)

p

p − 1
=

∏
p≤pu(k)

p

p−1∏
p≤pk

p

p−1

.

Thus for all k ≥ k1 we have

2 <
(1 + ǫ2)e

γ ln pu(k)

(1 − ǫ2)eγ ln pk

< (1 + ǫ1)
ln pu(k)

ln pk

,

hence
ln pu(k)

ln pk

>
2

1 + ǫ1
= 2 − 2ǫ1

1 + ǫ1
> 2 − ǫ .

Now take 0 < ǫ4 < (−3 +
√

9 + 4ǫ)/2 (so that 3ǫ4 + ǫ2
4 < ǫ), take 0 < ǫ5 <

ǫ4/(2 + ǫ4) (so that 2/(1 − ǫ5) < 2 + ǫ4), and take 0 < ǫ6 < ǫ5/(2 − ǫ5) (so that
(1− ǫ6)/(1 + ǫ6) < 1− ǫ5). By (5) there exists an integer k2 such that for all k ≥ k2

we have 1/(pk − 1) < ǫ4 and such that for all x ≥ pk2 we have

(1 − ǫ6)e
γ ln x <

∏

p≤x

p

p − 1
< (1 + ǫ6)e

γ ln x .

By (4) we have

2
pu(k)

pu(k) − 1
≥

∏

pk<p≤pu(k)

p

p − 1
=

∏
p≤pu(k)

p

p−1∏
p≤pk

p

p−1

,

and so for k ≥ k2

2
pu(k)

pu(k) − 1
≥ (1 − ǫ6)e

γ ln pu(k)

(1 + ǫ6)eγ ln pk

> (1 − ǫ5)
ln pu(k)

ln pk

,

hence
ln pu(k)

ln pk

<
pu(k)

pu(k) − 1
· 2

1 − ǫ5
< (1 + ǫ4)(2 + ǫ4) = 2 + 3ǫ4 + ǫ2

4 < 2 + ǫ .

Therefore if k ≥ max{k1, k2} then |ln pu(k)/ln pk − 2| < ǫ.
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An almost identical proof (omitted here) gives

Lemma 3.

lim
x→∞

ln pv(k)

ln pk

= 2 .

The Prime Number Theorem (Theorem 8 in [1]) states that

lim
n→∞

pn

n ln n
= 1 . (6)

An equivalent result (Theorem 420 in [1]) is

lim
x→∞

θ(x)

x
= 1 , (7)

where θ denotes the function, defined for x > 0, given by

θ(x) =
∑

p≤x

ln p ,

the sum being taken over primes.
We may now begin proving Theorem 1. Let ǫ > 0 be given. Take 0 < ǫ1 <

4
√

1 + ǫ−1 (so that (1+ ǫ1)
4 < 1+ ǫ), take 0 < ǫ2 < ǫ1, and take 0 < ǫ3 < min{1, ǫ}.

By (7), there exists an integer k1 such that for all k ≥ k1 we have

θ(pv(k)) < (1 + ǫ1)pv(k) .

By (6) there exists an integer k2 such that for all k ≥ k2 we have

pk < (1 + ǫ2)k ln k .

By Lemma 3 there exists an integer k3 such that for all k ≥ k3 we have

pv(k) < p2+ǫ3
k .

Then by (3), if k ≥ max{k1, k2, k3}, we have

ln A(k) ≤
v(k)∑

j=k+1

ln pj < θ(pv(k)) ,

hence

ln A(k) < (1 + ǫ1)pv(k)

< (1 + ǫ1)p
2+ǫ3
k

< (1 + ǫ1)(1 + ǫ2)
2+ǫ3(k ln k)2+ǫ3

< (1 + ǫ1)
4(k ln k)2+ǫ3

< (1 + ǫ)(k ln k)2+ǫ .

A similar proof (omitted here) shows that for sufficiently large k we have

ln A(k) > (1 − ǫ)(k ln k)2−ǫ ,

and hence the proof of Theorem 1 is complete.



44 D. E. Iannucci

Bibliography
[1] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,

5th ed., Oxford University Press, Oxford, 1979;

[2] K. Knopp, Theory and Application of Infinite Series, Dover Publications, New
York, 1990;

[3] M. T. Whalen and C. L. Miller, Odd abundant numbers: some interesting obser-

vations, Jour. Rec. Math. 22 (1990), 257–261;

University of the Virgin Islands
2 John Brewers Bay
St. Thomas VI 00802 USA
email: diannuc@uvi.edu


