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Abstract

We revise a monogenic calculus for several non-commuting operators, which

is defined through group representations. Instead of an algebraic homomor-

phism we use group covariance. The related notion of joint spectrum and

spectral mapping theorem are discussed. The construction is illustrated by a

simple example of calculus and joint spectrum of two non-commuting selfad-

joint n × n matrices.

1 Introduction

Central objects of operator theory are functional calculus (usually defined as an al-
gebra homomorphism), spectrum (defined as set of singular points of the resolvent),
and spectral mapping theorem (describing transformations of the spectrum under
the functional calculus). Following the discussion in [26] we arrange these objects
as follows:

1. Functional calculus is an original notion defined in some independent terms;

2. Spectrum is derived from the previously defined functional calculus as its sup-
port in some appropriate sense;

3. Then Spectral mapping theorem should drop out naturally.

The full potential of such a construction depends from its source—the defini-
tion of a functional calculus. It is known that homomorphic calculi are successful
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only in few simplest cases, e.g. for a single normal operator. To increase its po-
tential functional calculus through group covariance was defined in [17]. In that
paper such a definition was applied to a complicated case of monogenic calculus
for several non-commuting operators. Monogenic calculus of commuting operators
was considered earlier in [29]. Monogenic calculus of non-commuting operators was
carefully developed through plane wave decomposition in many subsequent papers,
see [13, 14, 12, 15]. These papers contain many important results, e.g. connection
between monogenic and Weyl [1] calculi, but they do not consider covariant prop-
erties of the calculus. Papers [27, 28] utilized an algebraic approach and do not
develop group representations either.

Meanwhile the covariant approach to functional calculus required development of
wavelets technique and its applications to analytic function theory, it was performed
in [19, 20, 21, 23, 24]. It emerged from these studies that the new definition is a useful
replacement for classical one across all range of problems, even in case of a single
non-normal operator with finite range [26]. The key ingredient in this approach is the
development of all principal objects of analytical function theory (Cauchy integral,
Hardy and Bergman spaces, Cauchy-Riemann equations, Taylor series, etc.) from
the group of Möbius transformations and wavelets technique [19, 23]. This allows
to give a template definition of functional calculus as follows, cf. [17, Defn. 1.1]:

Definition 1.1. Let A be a normed algebra, and M be a left A-module. Let G
be a group, X be a left G-homogeneous space, and A(X) be an associated space
of analytic functions. An analytic functional calculus for an element a ∈ A is a
continuous linear mapping Φ : A(X) → A(X,M) such that

1. Φ is an intertwining operator

ΦρX = ρMΦ

between two representations of the group G: ρX acts in the analytic space A(X)
of scalar valued functions on X and ρM acts in a space A(X,M) of M-valued
functions in a way depending from a ∈ A.

2. There is an initialisation condition: Φ[f0] = fM , i.e. the vacuum vector of
A(X) is mapped into the vacuum vector of A(X,M).

Note that our functional calculus released from the homomorphism condition
can take value in any left A-module M , which however could be A itself if suitable.
This improves spectral localisation technique in our construction.

In the paper [1] joint spectrum was defined as the support of the Weyl calculus,
i.e. as the set of points where the operator valued distribution does not vanish.
We also define the spectrum as a support of functional calculus, but due to our
Definition 1.1 it has a different meaning.

Definition 1.2. [26] A corresponding spectrum of a ∈ A is the support of the
functional calculus Φ, i.e. the collection of non-vanishing intertwining operators
between ρM and prime representations [16, § 8.3].

More variations of functional calculi (Weyl, Wick, Berezin, etc.) are obtained
from other groups and their representations [17, 21]. There are also recent papers
of other researchers devoted to covariant calculus [2, 3].
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2 Preliminaries on Clifford Algebras and M öbius Transforma-

tions

Let Rn be a real n-dimensional vector space with a fixed frame e1, e2, . . . , en. Let
Cℓ(n) be the real Clifford algebra generated by 1, ej, 1 ≤ j ≤ n and the relations

eiej + ejei = −2δij .

Then there is the natural embedding of Rn into Cℓ(n) and a bilinear form B(x,x) on
Rn [7]. We identify Rn with its image in Cℓ(n) and call its elements vectors. There are
two linear anti-automorphisms ∗ (reversion) and¯ (main anti-automorphisms) and
automorphism ′ of Cℓ(n) defined on its basis Aν = ej1ej2 · · ·ejr

, 1 ≤ j1 < · · · < jr ≤ n
by the rule:

(Aν)
∗ = (−1)

r(r−1)
2 Aν , Āν = (−1)

r(r+1)
2 Aν , A′

ν = (−1)rAν .

In particular, for vectors, x̄ = x′ = −x and x∗ = x.
It is easy to see that xy = yx = 1 for any x ∈ Rn such that B(x,x) 6= 0

and y = x̄ ‖x‖−2, which is the Kelvin inverse of x. Finite products of invertible
vectors are invertible in Cℓ(n) and form the Clifford group Γ(n) [7, (1.39)]. Elements
a ∈ Γ(n) such that aā = ±1 form the Pin(n) group—the double cover of the group
of orthogonal rotations O(n). We also consider [6, § 5.2] T (n) to be the set of all
products of vectors in Rn.

Let (a, b, c, d) be a quadruple from T (n) with the properties:

1. (ad∗ − bc∗) ∈ R \ 0;

2. a∗b, c∗d, ac∗, bd∗ are vectors.

Then [6, Thm. 5.2.3], [7, (4.10)] 2×2-matrices

(

a b
c d

)

form the group Γ(1, n+1) un-

der the usual matrix multiplication. It has a representation ρRn by transformations

of Ṙn given by:

ρRn

(

a b
c d

)

: x 7→ (ax + b)(cx + d)−1, (1)

which form the Möbius (or the conformal) group of Ṙn. Here Ṙn the compactification
of Rn by the point at infinity (see [6, § 5.1]). The analogy with fractional-linear
transformations of the complex line C is useful, as well as representations of shifts
x 7→ x + y, orthogonal rotations x 7→ k(a)x, dilations x 7→ λx, and the Kelvin

inverse x 7→ x−1 by the matrices

(

1 y
0 1

)

,

(

a 0
0 a∗−1

)

,

(

λ1/2 0
0 λ−1/2

)

,

(

0 −1
1 0

)

respectively.
Following e.g. [7, (1.8)] we adopt the next agreement.

Notation 2.1. In a non-commutative algebra setting the ambiguous notation
a

b
always means ab−1. Consequently

ac

bc
=
a

b
but

ca

cb
6= a

b
in general.
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Study of Möbius transformation is facilitated by introduction of projective coor-
dinates in the space PR1,n+1 of spheres in Rn [7, (4.12)]. The sphere with the centre
m ∈ Rn and the radius r defined by the equation (y − m)2 = r2 is associated with
the ray of matrices by the map

T : {y | B(y − m,y − m) = r2} 7→ λ

(

m −m2 − r2
1 −m

)

. (2)

A point x ∈ Rn is associated with a zero radius sphere with the centre x and thus

is represented by

(

x −x2

1 x

)

. Then Möbius transformations (1) corresponds to the

orthogonal rotations in the projective space PR1,n+1 as follows [7, (4.13)]:

ρP

(

a b
c d

)

:

(

m −m2 − r2
1 −m

)

7→
(

a b
c d

)(

m −m2 − r2
1 −m

)(

d̄ b̄
c̄ ā

)

. (3)

One usually says that the conformal group in Rn, n > 2 is not so rich as the con-
formal group in R2. Nevertheless, the conformal covariance has many applications
in Clifford analysis [6, 33]. Notably, groups of conformal mappings of unit spheres
Sn−1 = {x | x ∈ Rn, B(x,x) = 1} onto itself are similar for all n and as sets can
be parametrised by the product of the unit ball Bn and the group of isometries of
Sn−1. We specialise the main result of [18] for the positive definite case as follows:

Proposition 2.2. The group M(Bn) of conformal mappings of the open unit ball
Bn and the unit sphere Sn−1 onto themselves is represented by matrices

(

a b′

b a′

)

, a, b ∈ T (n), ab∗ ∈ R
n, |a|2 − |b|2 = 1. (4)

Its inverse is

(

a b′

b a′

)−1

=

(

ā −b̄
−b∗ a∗

)

.

Proof. The proof is easy in the projective coordinates (2). Indeed the unit spere

corresponds to the matrix

(

0 −1
1 0

)

. Straightforwardly transformations ρP (3) with

matrices of the form (4) preserve this ray:
(

a b′

b a′

)(

0 −1
1 0

)(

a∗ b∗

b̄ ā

)

=

(

b′ −a
a′ −b

)(

a∗ b∗

b̄ ā

)

=

(

0 −1
1 0

)

.

Thus corresponding Möbius transformations preserve the unit sphere.

The presentation of M(Bn) by (4) is difficult to use due to ineffective definition
through the constrain |a|2 − |b|2 = 1. Thus we will prefer a direct parametrisation,
cf. [35, § VI.1.3], as follows. We can identify the unit ball Bn with the left coset
O(Sn−1)\M(Bn), where the decomposition M(Bn) ∼ O(Sn−1)×Bn follows from (7).
Note that K = O(Sn−1) is the maximal compact subgroup of M(Bn).

(

a b′

b a′

)

= |a|
( a

|a|
0

0 a′

|a|

)





1 ā
|a|2
b′

a∗

|a|2
b 1





=
1√

1 + u2

(

w 0
0 w′

)(

1 u′

u 1

)

, (5)
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where

w =
a

|a| , u =
a∗

|a|2
b,

√
1 + u2 = |a|−1 , |u| < 1. (6)

Consequently for u ∈ Bn, w ∈ Γ(n) the Möbius transformations φ(u,w) with matrix

1√
1 + u2

(

w 0
0 w′

)(

1 u′

u 1

)

=
1√

1 + u2

(

w wu′

w′u w′

)

, (7)

constitute M(Bn). Sometime in Möbius transformations we will omit the normalis-
ing factor (1+u2)−1/2 in (7) for the sake of brevity. Although one should not forget
that this factor is important for the invariant integration on M(Bn). The following
properties follows from such a realisation:

Lemma 2.3. M(Bn) acts on Bn transitively. Transformations of the form φ(0,w)

constitute a subgroup isomorphic to O(n). The homogeneous space M(Bn)/O(n) is
isomorphic as a set to Bn. Moreover:

1. φ2
(u,1) = −1 on Bn, thus φ−1

(u,1) = φ(u′,1) = φ(−u,1).

2. φ−1
(u,1)(0) = −u and φ−1

(u,1)(u) = 0.

3. φ−1
(u1,1)φ

−1
(u2,1) = φ−1

(u,w) where

u = φ−1
(u1,1)(u2) = φ−1

(u2,1)(u1) and w =
1 − u1u2

|1 − u1u2|
.

We use the same notation for the Möbius transformation φ(u,w) and the matrix (7)
which produces it. It is a direct check to see that

(

w 0
0 w′

)(

1 u′

u 1

)

=

(

1 wu′w∗

w′uw̄ 1

)(

w 0
0 w′

)

,

which implies that φ−1
(u,w) = φ(w∗u′w,w̄).

Lemma 2.4. The left invariant Haar measure dg on M(Bn) ∼ Bn × O(n) in
coordinates (u, w) is

dg(u, w) =
du dw

|1 + u2|n , (8)

where dw is a Haar measure on O(n) and du is the Lebesgue measure on Bn.

Proof. It follows from 3 that left shifts on M(Bn) in coordinates (u, w) acts by
Möbius transformations on u ∈ Bn which fixes the unit sphere. According to [6,
Cor. 6.1.2] the invariant metric on Bn is defined through the distance of the zero
radius sphere defined by u to the unit sphere Sn−1. This distance is |1 + u2|−1

, thus
the invariant measure is obtained from its n-th power.
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The importance of the Haar measure is justified by the invariant integration (or
invariant functional) it produces:

∫

M(Bn)
f(g) dg =

∫

M(Bn)
f(g1g) dg, for all f(g) ∈ L

1(M(Bn)) and g ∈ M(Bn).

It is rarely realised that the Haar invariant functional is not the only possible and
that other invariant functionals are useful as well. The classic example is described
below.

Lemma 2.5. The invariant functional H on M(Bn) of Hardy type is given by:

H(f) = lim
r→1

∫

O(n)

∫

Sn−1
f(ru, w)

dw du

|1 + u2|n−1 , where w ∈ O(n),u ∈ S
n−1. (9)

Proof. This result follows from the discussion in the proof of Lemma 2.4 and obser-
vation that the limit in (9) is Möbius invariant.

Definition 2.6. The Hardy inner product in a space of Clifford valued functions
on M(Bn) is derived from the Hardy functional (9):

〈f1, f2〉 = H(f̄1f2). (10)

Note that the invariance of the Hardy functional (9) implies that left shifts are
isometries with respect to norm defined through (10).

3 Construction of Clifford Analysis from M(Bn) Group

3.1 Wavelet Transform and Cauchy Kernel

To understand the functional calculus from Definition 1.1 we need first to realise the
function theory of monogenic functions from the representation theory of M(Bn),
see [19, 20, 23, 24] for more details.

Each element g ∈ M(Bn) acts by the linear-fractional transformation (the
Möbius map) on Bn and Sn−1 from the left as follows:

g−1 : x 7→ āx − b̄

a∗ − b∗x
, where g−1 =

(

ā −b̄
−b∗ a∗

)

. (11)

In the decomposition (5) the first matrix on the right hand side acts by transfor-
mation (11) as an orthogonal rotation of Sn−1 and Bn; and the second one—by
transitive family of maps of the unit ball onto itself.

Möbius transformations (11) could be linearised to the representation ρ1 on func-
tions, cf. [7, (4.56)] and [10, Thm. 5.4.1], by the induced representation technique [16,
§ 13]:

ρ1(g) : f(z) 7→ a′ − x̄b′

|a′ − x̄b′|n f
(

āx − b̄

a∗ − b∗x

)

, where g−1 =

(

ā −b̄
−b∗ a∗

)

. (12)
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Indeed one can directly verify:

ρ1(g1)(ρ1(g2)f(z)) = ρ1(g1)

(

a′2 − x̄b′2
|a′2 − x̄b′2|n

f

(

ā2x − b̄2
a∗2 − b∗2x

))

=
a′1 − x̄b′1

|a′1 − x̄b′1|n
a′2 − (ā1x − b̄1)(a∗1 − b∗1x)−1b′2
∣

∣

∣a′2 − (ā1x − b̄1)(a∗1 − b∗1x)−1b′2
∣

∣

∣

n

× f

(

ā2(ā1x − b̄1)(a
∗
1 − b∗1x)−1 − b̄2

(a∗2(a
∗
1 − b∗1x)(a∗1 − b∗1x)−1 − b∗2

)

=
(a′1 − x̄b′1)a

′
2 − (x̄a1 − b1)b

′
2

|(a′1 − x̄b′1)a
′
2 − (x̄a1 − b1)b′2|n

f

(

ā2(ā1x − b̄1) − b̄2(a
∗
1 − b∗1x)

a∗2(a
∗
1 − b∗1x) − b∗2(ā1x − b̄1)

)

=
(a′1a

′
2 + b1b

′
2) − x̄(b′1a

′
2 + a1b

′
2)

|(a′1a′2 + b1b′2) − x̄(b′1a
′
2 + a1b′2)|n

f

(

(ā2ā1 + b̄2b
∗
1)x − (ā2b̄1 + b̄2a

∗
1)

(a∗2a
∗
1 + b∗2b̄1) − (a∗2b

∗
1 + b∗2ā1)x

)

=
a′ − x̄b′

|a′ − x̄b′|n f
(

āx − b̄

a∗ − b∗x

)

[where a = a1a2 + b′1b2, b = b1a2 + a′1b2]

= ρ1(g1g2)f(x).

Let L2(S
n−1) be equipped with a Clifford valued inner product, cf. [7, (1.29)]:

〈f1, f2〉 =
∫

Sn−1
f̄1(x)f2(x) dx (13)

normalised such that
∫

Sn−1 dx = 1. Then [7, (4.56)] the representation (12) became

unitary in L2(S
n−1).

We choose [19, 21, 23] K-invariant function f0(x) = (x) ≡ 1 be vacuum vector
or mother wavelet [21]. Then coherent states or wavelets are all transformations of
the vacuum vector by ρ1:

fg(x) = ρ1(g)f0(x) =
a′ − x̄b′

|a′ − x̄b′|n , g−1 =

(

ā −b̄
−b∗ a∗

)

. (14)

They are mainly determined by the point on the unit disk u = a∗b/ |a|2. The linear
span of all wavelets is called the Hardy space H2(S

n−1), and f0 is cyclic in H2(S
n−1).

Möbius transformations provide a natural family of intertwining operators for ρ1

coming from inner automorphisms of M(Bn) (will be used later).
The wavelet transform [19, 21] W : L2(S

n−1) → H2(M(Bn)) is defined by:

Wf(g) = 〈fg, f〉 (15)

=
∫

Sn−1

a∗ − b∗x

|a∗ − b∗x|nf(x) dx (16)

=
∫

Sn−1

a∗x̄ − b∗

|a∗x̄ − b∗|n xdx f(x).

=
a∗

|a|n
∫

Sn−1

x̄ − ū

|x − u|n dσ(x) f(x), where u =
b′a∗

|a|2
, dσ(x) = xdx.(17)

If we consider the reduced wavelet transform [19, 21] W : L2(S
n−1) → H2(B

n)
then the last formula is the Cauchy integral formula in Clifford analysis up to the
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factor a∗

|a|n
. This factor is similar to the factor

√

1 − |u|2 in the Cauchy formula

in complex analysis derived in [19, (3.20)]. Their appeared due to the invariant
measures on SL(2,R) and M(Bn). Note the appearance of the important Clifford
valued differential form dσ(x) = xdx in (17), cf. [4, § 9.1], [9, § II.0.2.1]. A standard
derivation of the Cauchy formula in Clifford analysis are based on Stokes’s Theorem.

Although the Cauchy formula (i.e. reduced wavelet transform) is an established
tool in analytic function theory its unreduced version (16) acting W : L2(S

n−1) →
H2(M(Bn)) is also valuable for the functional calculus of several non-commuting
operators.

The wavelet transform of the vacuum vector f0

Wf0(g) = 〈fg, f0〉 =
∫

Sn−1

a∗ − b∗x

|a∗ − b∗x|n dx =
a∗

|a|n , where g =

(

a b′

b a′

)

, or

= w∗(1 + u2)(n−1)/2, where g =
1√

1 + u2

(

w wu′

w′u w′

)

.(18)

Consequently Wf0 has a finite norm with respect to (10).

Definition 3.1. The Hardy space H2(M(Bn)) of Clifford valued functions on M(Bn)
is a left Cℓ(n)-module invariant under left shifts on M(Bn), which is generated by
the vacuum vector Wf0 (18).

¿From the general wavelet technique [21] we obtain the following result:

Lemma 3.2. 1. H2(M(Bn)) is an inner product space with the product derived
from the Hardy functional (9):

〈f1, f2〉 = H(f̄1f2), where f1, f2 ∈ H2(M(Bn)). (19)

2. Wavelet transform (16) is a unitary operator intertwining the representation
ρ1 on H2(S

n−1) and the left regular representation on H2(M(Bn)) by shifts:

Wρ1(g) = λ(g)W, for all g ∈ M(Bn).

3.2 Taylor Series

Other classical objects of Clifford analysis (the Cauchy-Riemann equation, the Bergman
space, etc.) can be also obtained [19, 23] from representation ρ1. However we need
only the Taylor series in the present paper. It is known [5, § 11.2.2] that there is the
orthonormal basis Vm(x) of H2(S

n−1) labelled by a multiindex m = (m1, . . . , mn) ∈
Zn

+. Elements Vm(x) can be constructed as symmetric polynomials of hypercomplex
variables e1xj − ejx1, j = 1, . . . , n. Consequently there is a decomposition of the
Cauchy kernel (i.e. coherent states (14)):

ρ1(g)f0(x) = fg(x) =
∑

m∈Zn

+

Wm(g)Vm(x), where g ∈ M(Bn) (20)

with some functions on M(Bn) defined by

Wm(g) = 〈Vm, fg〉 where g ∈ M(Bn) and m ∈ Z
n
+. (21)
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The explicit expression of Wm(g) could be derived from the decomposition of the
Cauchy kernel in [5, § 11.4.2], but it is important for us now that formula (21) for a
fixed g is a sort of wavelet transform H2(S

n−1) → C(Zn
+), cf. (15). We also use the

following properties of functions Vm(x) related to the representation theory:

1. Functions Vm(x) with fixed |m| = m1 + · · · + mn form an O(n)-invariant
irreducible module [10, § 3.3], which is required by the general construction of
Taylor series [19, § 3.4].

2. There is the set of creation a+
j and annihilation a−j operators (known from

quantum mechanics):

a+
j : Vm(x) 7→ Vm′(x), where m′ = (m1, . . . , mj + 1, . . . , mn).

a−j : Vm(x) 7→ mjVm′(x), where m′ = (m1, . . . , mj − 1, . . . , mn).

These operators satisfied [8] to the Heisenberg commutation relations:

[a+
j , a

−
k ] = δj,kI, [a+

j , a
+
k ] = 0, [a−j , a

−
k ] = 0.

Thus we have [8] a representation of the Heisenberg group Hn in H2(S
n−1).

Note also that in [28] operators A+
j and A−

j were associated with operator of
“×-product” with the hypercomplex variable e1xj − ejx1 partial derivative ∂j

correspondingly.

3. The function V0(x) ≡ 1 coincides with the vacuum vector f0(x) and:

Vm(x) = (a+
1 )m1(a+

2 )m2 · · · (a+
n )mnf0(x).

Clearly we can decompose any shifted function ρ1(g)Vk(x) over the basis Vm(x) in
a way similar to (20):

ρ1(g)Vk(x) =
∑

m∈Zn

+

Wk,m(g)Vm(x), where Wk,m(g) = 〈Vm, ρ1(g)Vk〉 . (22)

The representation property ρ1(g1)ρ1(g2) = ρ1(g1g2) implies an addition formula:

Wl,m(g1g2) =
∑

l∈Zn

+

Wl,k(g1)Wk,m(g2). (23)

Thus functions Wk,m(g) are tokens [22, 25] from the cancellative semigroup Zn
+ to

M(Bn). This means that the formula (22) defines the representation ρ1 of M(Bn)
through the convolution on Zn

+.

4 Representations of M(Bn) in Algebras and Moduli

A simple but important observation is that the Möbius transformations (11) can be
easily extended to some non-commutative C∗-algebras.

Let A be a C∗-algebra with the unit I, and an n-tuple A of self-adjoint elements
Aj ∈ A, j = 1, . . . , n be fixed. We consider the tensor product A ⊗ Cℓ(n), which we
denote by An for the brevity. Its unit element will be again denoted by I. Then the
tuple A can be associated with the element A = e1A1 + e2A2 + · · · + enAn in An.
Let M be a left normed A-module, We denote by Mn the tensor product M ⊗Cℓ(n).
Mn is a left An module of course. All constructed functional calculi according to
Definition 1.1 are Mn-valued.
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4.1 Resolvent Approach

We define an action of the Möbius group M(n) on the algebra An by the natural
formula (in Notation 2.1) similarly to expression (1):

g : A 7→ g−1A =
āA − b̄I

a∗A − b∗I
, φ(u,w) =

(

ā −b̄
−b∗ a∗

)

∈ M(Sn−1). (24)

To this end we need invertibility of the operator a∗A − b∗I in An, which due to in-
vertibility of a∗ in Cℓ(n) is equivalent to invertibility of A−uI, where u = (a∗)−1b∗ =
a′b∗/ |a|2 and thus |u| < 1. Therefore we arrive to the following definition:

Definition 4.1. [17, Defn. 3.1] The Clifford (algebraic) resolvent set R(A) of an
n-tuple A1, A2, . . . , An is the maximal open subset of Rn such that for u = u1e1 +
u2e2 + · · · + unen ∈ R(A) the element A − uI is invertible in An.

The Clifford (algebraic) spectrum is the completion of the Clifford resolvent set
Rn \R(A).

Remark 4.2. The Clifford (algebraic) spectrum is mainly an abbreviation for “the
complement of the resolvent set” rather than an important characterisation of oper-
ator A. Such a characterisation is provided instead by the spectrum, defined through
the support of functional calculus, see below.

Under the assumption that the Clifford algebraic spectrum of A belongs to the
open unit ball Bn the orbit A = {g−1A | g ∈ M(Bn)} is a well defined subset of
An. As any orbit A is a M(Bn)-homogeneous space.

Lemma 4.3 ([17, Lem. 3.18]). For g ∈ M(Bn) such that (a∗)−1b∗ ∈ R(A) we
have:

āA − b̄I

a∗I − b∗A
− āx − b̄I

a∗ − b∗x
= (a− x∗b)−1(A− xI)(a∗I − b∗A)−1.

Consequently x ∈ R(A) implies āx−b̄
a∗−b∗x

∈ R
(

āA−b̄I
a∗I−b∗A

)

.

Proof. Möbius transforms of vectors are vectors, for them y∗ = y, thus we have:

āA− b̄I

a∗I − b∗A
− āx − b̄

a∗ − b∗x
=

āA − b̄I

a∗I − b∗A
−
(

āx − b̄

a∗ − b∗x

)∗

= (āA − b̄I)(a∗I − b∗A)−1 − (a− xb)−1(xa′ − b′)

= (a− xb)−1
(

(a− xb)(āA− b̄I) − (xa′ − b′)(a∗I − b∗A)
)

(a∗I − b∗A)−1

= (a− x∗b)−1(A − xI)(a∗I − b∗A)−1.

The second statement follows from that result immediately.

We define the resolvent function R(g,A) : M(Bn) × A → An by the familiar
expression:

R(g,A) = (a∗I − b∗A)−1

then a direct calculation shows that

R(g1,A)R(g2, g
−1
1 A) = R(g1g2,A). (25)
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The last identity is well known in representation theory [16, § 13.2(10)] and is a key
ingredient of induced representations. Thus we can again linearise (24) (cf. (12)) in a
suitable space of Mn valued functions, where Mn is a left An module as discussed at
the beginning of this section. We linearise (24) in the space of continuous functions
C(A,Mn) as follows:

ρA(g1) : f(g−1A) 7→ R(g−1
1 g−1,A) f(g−1

1 g−1A) (26)

= (a∗I − b∗A)−1 f

(

āA− B̄I

a∗I − b∗A

)

.

However such a representation is not unitary in H2(M(Bn)) for n > 2 as can be seen
from a comparison with (12). To fix this we need an operator which is symbolically
represented by |a∗I − b∗A|−n. When all operators Aj commute each other we can
simply define:

|a∗I − b∗A|−2 = (a∗I − b∗A)−1(a′I − Ab′)−1 =
(

|a|2 + |b|2 A2
)−1

=

(

|a|2 − |b|2
n
∑

j=1

Aj2

)−1

. (27)

Then for an even n ≥ 4 we can straightforwardly define |a∗I − b∗A|−n+2. For an odd
n we can define a square root of the selfadjoint element (a′I−Ab′)(a∗I− b∗A) of An

by various means. However the Clifford algebraic spectrum may not guarantee the
invertibility in (27), thus some additional assumptions of the type ‖A‖ < (1+

√
2)−1

are required [14]. Consequently for for a commuting n-tuple (n > 2) of operators
Aj one defines a representation ρA in the C(A,Mn) by the expression:

ρAf(A) = R(g,A) |a∗I − b∗A|−n+2 f(g−1A). (28)

In this way we obtain the monogenic calculus of commuting operators studied in [29].
For any v ∈M we can again define aK-invariant vacuum vector as f0(A, v) = v⊗

f0(A) ≡ v ∈ C(A,Mn). It generates the associated with fu family of coherent states
fg(A, v) = R(g,A) |a∗I − b∗A|−n+2 v, where g ∈ M(Bn). The wavelet transform
defined by the same common formula based on coherent states (cf. (15)):

Wmf(g) = 〈ρA(g)f0, f〉 ,

is a version of Cauchy integral, which maps L2(A,M
′) to C(M(Bn),C), where M ′

is the dual of the module M . The classical Riesz-Dunford functional calculus is a
particular realisation of this approach [26].

For a non-commuting tuple A one can, for example, define representation ρA

using the fruitful approach [14] based on the plain wave decomposition [34]. An
alternative is the Taylor expansion construction initiated in [17].

4.2 Taylor Expansion Approach

To define a functional calculus for A we fix images Φ(Vm) of Vm (see Subsection 3.2),
m ∈ Zn

+ in An, cf. [27, 28]. Seemingly this could be done in many different ways,
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but the covariance property fixes one preferred assignment. Indeed subgroup O(n)
of M(Bn) contains permutations of elements of orthonormal basis ek. Functions
Vm(x) are symmetric polynomials of xj and are invariant under such permutations.
To preserve O(n) invariance we define Φ(Vm) = ΦA,x(Vm) associated to the tuple A
to be

Φ(Vm) = Am :=
1

|m|!
∑

σ∈S|m|

eσ(1)Aσ(1)eσ(2)Aσ(2) · · · eσ(n)Aσ(|m|) (29)

is the averaging of products of mj copies of ejAj over the permutation group S|m|.

The value rR(A) = limj→∞ supσ

∥

∥

∥Aσ(1) · · ·Aσ(j)

∥

∥

∥

1/j
, 1 ≤ σ(i) ≤ n is known as the

Rota-Strang joint spectral radius [32]. We give a similar definition which is better
tailored to our circumstances:

Definition 4.4. Let m ∈ Zn
+, v ∈M and Am be defined in (29). We call

rS(A) = lim sup
|m|→∞

‖Am‖1/|m|
A

and rL(A, v) = lim sup
|m|→∞

‖Amv‖1/|m|
M

the symmetric joint spectral radius of A and local spectral radius of A at v corre-
spondingly. Obviously rS(A) ≤ rR(A) and rL(A, v) ≤ rS(A) ‖v‖.

Let rL(A, v) < 1, v ∈ M and a sequence cm, m ∈ Zn
+ be a square summable.

Then the infinite series
∑

m∈Zn

+
cmAmv is absolutely convergent by norm in Mn.

The linear space of all such sequences is denoted by H2(A, v). Analogously to
representation ρ1 in (22) we define an action ρA,v of M(Bn) on H2(A, v) by:

ρA,v(g) :
∑

k∈Zn

+

ckAkv 7→
∑

k∈Zn

+

dkAkv, where dk =
∑

m∈Zn

+

Wk,m(g) cm. (30)

Then the identity (23) implies that ρA,v is a representation of M(Bn).

Definition 4.5. Let rL(A, v) < 1 then the monogenic functional calculus Φ = ΦA,v

associated to a n-tuple A and a vector v ∈ M is a continuous linear map Φ :
H2(S

n−1) → H2(A, v) is defined by the following two conditions:

1. Φ intertwines ρ1 (12) and ρA,v (30): Φρ1(g) = ρA,v(g)Φ for all g ∈ M(Bn).

2. The map of vacuum vectors is Φ(f0) = fv, where f0(x) ≡ 1 and fv = v.

This defines monogenic calculus uniquely, particularly its integral formula.

Proposition 4.6. Let E(g,A) be the family of coherent states for ρA,v:

E(g,A) = ρA,vfv =
∑

k∈Zn

+

Wm,0(g)Amv. (31)

Then the functional calculus ΦA,v is defined by the Integral formula:

ΦA,vf =
∫

M(Bn)
E(g,A)f(g) dg.
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Proof. Indeed using the Definition 4.5 we calculate for f = 〈ρ1(g)f0, f〉:

ΦA,vf = ΦA,v 〈ρ1(g)f0, f〉
= 〈ΦA,vρ1(g)f0, f〉 (32)

= 〈ρA,v(g)ΦA,vf0, f〉 (33)

= 〈ρA,v(g)fv, f〉 (34)

= 〈E(g,A), f〉 (35)

=
∫

Sn−1
E(g,A)f(x) dx,

where (32) is obtained by linearity and continuity of functional calculus, (33) follows
from the intertwining property 1, (34) is obtained from the initialisation property 2,
and finally (35) uses expression (31) for E(g,A).

The full consideration of the monogenic calculus and the corresponding joint
spectrum requires a solid background from the representation theory of semisimple
Lie groups. We will consider a simpler but still illustrative case in the next section.

5 Functional Calculus and Spectrum for a Pair of Matrices

In this section we demonstrate the previous construction by the simplest non-trivial
example: functional calculus for a pair A1, A2 of self-adjoint non-commuting oper-
ators with finite dimensional ranges, cf. [15]. Instead of tensor product e1A1 + e2A2

with Clifford algebra Cℓ(2) we can consider the complexification A1 + iA2 since the
product i = e1e2 has all properties of the complex imaginary unit. The group M(Bn)
is the SL(2,R) group in this case, O(2) consists from the orthogonal rotations of the
plane, and M(Bn)/O(n) = SL(2,R)/O(2) is the unit disk D. In two dimensions the
formula (26) defines an isometric representation of M(Bn) without a normalising
factor.

5.1 Jet Bundles and Prolongations of ρ1

To formulate the complete description of monogenic calculus and spectrum of A =
A1 + iA2 we use the language of jet spaces and prolongations of representations
introduced by S. Lie, see [30, 31] for a detailed exposition.

Definition 5.1. [31, Chap. 4] Two holomorphic functions have nth order contact
in a point if their value and their first n derivatives agree at that point, in other
words their Taylor expansions are the same in first n + 1 terms.

A point (z, u(n)) = (z, u,u1, . . . ,un) of the jet space Jn ∼ D × Cn is the equiv-
alence class of holomorphic functions having nth contact at the point z with the
polynomial:

pn(w) = un
(w − z)n

n!
+ · · ·+ u1

(w − z)

1!
+ u. (36)
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For a fixed n each holomorphic function f : D → C has nth prolongation (or
n-jet) jnf : D → Cn+1:

jnf(z) = (f(z), f ′(z), . . . , f (n)(z)). (37)

The graph Γ
(n)
f of jnf is a submanifold of Jn which is section of the jet bundle over

D with a fibre Cn+1. We also introduce a notation Jn for the map Jn : f 7→ Γ
(n)
f of

a holomorphic f to the graph Γ
(n)
f of its n-jet jnf(z) (37).

One can prolong any map of functions ψ : f(z) 7→ [ψf ](z) to a map ψ(n) of n-jets
by the formula

ψ(n)(Jnf) = Jn(ψf). (38)

For example such a prolongation ρ
(n)
1 of the representation ρ1 of the group M(Bn) in

H2(D) (as any other representation of a Lie group [31]) will be again a representation

of M(Bn). Equivalently we can say that Jn intertwines ρ1 and ρ
(n)
1 :

Jnρ1(g) = ρ
(n)
1 (g)Jn for all g ∈ M(Bn).

Of course, the representation ρ
(n)
1 is not irreducible: any jet subspace Jk, 0 ≤ k ≤ n

is ρ
(n)
1 -invariant subspace of Jn. However the representations ρ

(n)
1 are primary [16,

§ 8.3] in the sense that they are not sums of two subrepresentations.
The following statement explains why jet spaces appeared in our study.

Proposition 5.2. Let the matrix A = A1 + iA2 be a Jordan block of a length k with
the eigenvalue u = 0, and v be its root vector of order k, i.e. Ak−1v 6= Akv = 0.
Then the restriction of ρA,v on the subspace generated by vm is equivalent to the
representation ρk

1.

5.2 Spectrum and the Jordan Normal Form of a Matrix

Now we are prepared to describe a spectrum of a matrix A = A1 + iA2. Since the
functional calculus is an intertwining operator its support is a decomposition into
intertwining operators with prime representations (we could not expect generally
that these prime subrepresentations are irreducible).

Recall the group of inner automorphisms bg : g1 7→ bg(g1) = g−1g1g of M(Bn).
The representation ρg(g1) = ρ1(bg(g1)) is equivalent to ρ1 and they are obviously
intertwined by the operator ρ1(g

−1): ρgρ1(g
−1) = ρ1(g

−1)ρ1. For a Jordan block A

with an eigenvalue u its Möbius transformation with the matrix

(

1 u′

u 1

)

will be

a Jordan block with eigenvalue 0 due to Lemma 4.3. Thus inner automorphisms
extend Proposition 5.2 to the complete characterisation of ρA,v for matrices.

Proposition 5.3. Representation ρA,v is equivalent to a direct sum of the prolon-

gations ρ
(k)
1 of ρ1 in the kth jet space Jk intertwined with inner automorphisms.

Consequently the spectrum of A (defined via the functional calculus ΦA,v) labelled
exactly by n pairs of numbers (ui, ki), where ui ∈ D, ki ∈ Z+ for 1 ≤ i ≤ n some of
whom could coincide.
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(a)

X

Y

λ1

λ2

λ3

λ4

(b)

X

Y

λ1
λ2

λ3

λ4

Z

(c)

X

Y

λ1
λ2

λ3

λ4

Z

Figure 1: (a) Classical spectrum for a pair of matrices on ; (b) the new version of
joint spectrum; (c) is an example mapping for the new spectrum.

Obviously this spectral theory is a fancy restatement of the Jordan normal form
of matrices.

Example 5.4. Let Jk(u) denote the Jordan block of the length k for the eigenvalue
u. On the Fig. 1 there are two pictures of the spectrum for the matrix

a = J3 (u1) ⊕ J4 (u2) ⊕ J1 (u3) ⊕ J2 (u4) ,

where

u1 =
3

4
eiπ/4, u2 =

2

3
ei5π/6, u3 =

2

5
e−i3π/4, u4 =

3

5
e−iπ/3.

Part (a) represents the conventional two-dimensional image of the spectrum, i.e.
eigenvalues of A, and (b) describes spectrum sp a arising from the wavelet construc-
tion. The first image does not allow to distinguish A from many other essentially
different matrices, e.g. the diagonal matrix

diag (u1,u2,u3,u4) ,

which even have a different dimensionality. At the same time the Fig. 1(b) com-
pletely characterise A up to a similarity. Note that each point of spA on Fig. 1(b)
corresponds to a particular root vector, which spans a primary subrepresentation.

In light of the previous discussions [17, p. 29], [13, Ex. 6.3] the following simple
example is still of interest.

Example 5.5. For a pair Pauli matrices J1 =

(

1 0
−1 0

)

and J2 =

(

0 1
1 0

)

, the

joint Clifford algebraic spectrum (Definition 4.1) as found in [17, p. 29] is the single
point (0, 0) ∈ D. The joint spectrum found in [13, Ex. 6.3] coincides with the Weyl
joint spectrum and the numerical range [15]: all of them are the entire unit disk D.
Finally the joint spectrum from Proposition 5.3 is a pair of points (0, 0) and (0, 1)
from R2 × Z+ since J1 + iJ2 is similar to the Jordan block of the length 2 with the
eigenvalue 0.

5.3 Spectral Mapping Theorem

As was mentioned in the Introduction a reasonable spectrum should be linked to the
corresponding functional calculus by an appropriate spectral mapping theorem. The
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new version of spectrum is based on prolongation of ρ1 into jet spaces. Naturally a
correct version of spectral mapping theorem should operate in jet spaces as well.

Let φ : D → D be a holomorphic map, let us define its action on functions
[φ∗f ](z) = f(φ(z)). According to the general formula (38) we can define the prolon-

gation φ
(n)
∗ onto the jet space Jn. Its associated action ρk

1φ
(n)
∗ = φ

(n)
∗ ρn

1 on the pairs
(u, k) is given by the formula:

φ(n)
∗ (u, k) =

(

φ(u),

[

k

degu φ

])

, (39)

where degu φ denotes the degree of zero of the function φ(z) − φ(u) at the point
z = u and [x] denotes the integer part of x. We are ready to state

Theorem 5.6 (Spectral mapping). Let φ be a holomorphic mapping φ : D → D

and its prolonged action φ
(n)
∗ defined by (39), then

sp φ(A) = φ(n)
∗ (spA).

The explicit expression of (39) for φ
(n)
∗ , which involves derivatives of φ up to nth

order, is known, see for example [11, Thm. 6.2.25]. However it was not recognised
before as a form of spectral mapping.

Example 5.7. Let us continue with Example 5.4. Let φ map all four eigenvalues u1,
. . . , u4 of the matrix A into themselves. Then Fig. 1(a) will represent the classical
spectrum of φ(a) as well as A. In the contrast Fig. 1(c) shows mapping of the new
spectrum for the case φ has orders of zeros at these points as follows: the order 1 at
u1, exactly the order 3 at u2, an order at least 2 at u3, and finally any order at u4.
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Seiffen, Germany (Klaus (ed.) Sprößig, Wolfgang (ed.); Gürlebeck, ed.), TU
Bergakademie Freiberg, Freiberg, 1996, Zbl 882.30030, pp. 95–100.

[19] , Analysis in R1,1 or the principal function theory, Complex Variables
Theory Appl. 40 (1999), no. 2, 93–118, E-print: arXiv:funct-an/9712003.
MR 2000k:30078.

[20] , Two approaches to non-commutative geometry, Complex Meth-
ods for Partial Differential Equations (H. Begehr, O. Celebi, and
W. Tutschke, eds.), Kluwer Academic Publishers, Netherlands, 1999, E-print:
arXiv:funct-an/9703001, MR 2001a:01002, pp. 219–248.

[21] , Wavelets in Banach spaces, Acta Appl. Math. 59 (1999), no. 1, 79–109,
E-print: arXiv:math/9807141. MR 2001c:43013.

[22] , Umbral calculus and cancellative semigroup algebras, Z. Anal. An-
wendungen 19 (2000), no. 2, 315–338, E-print: arXiv:funct-an/9704001.
MR 2001g:05017. Zbl 0959.43004.

[23] , Spaces of analytical functions and wavelets—Lecture notes, E-print:
arXiv:math.CV/0204018, 2000–2002, 92 p.

[24] , Meeting Descartes and Klein somewhere in a noncommutative space,
Highlights of Mathematical Physics (A. Fokas, J. Halliwell, T. Kibble, and
B. Zegarlinski, eds.), AMS, 2002, E-print: arXiv:math-ph/0112059, pp. 165–
189.

[25] , Tokens: An algebraic construction common in combinatorics, analysis,
and physics, Functional Analysis: Proc. of the Ukrainian Math. Congress-2001,
Inst. of Math. of NAS of Ukraine, 2002, E-print: arXiv:math.FA/0201012,
pp. 146–155.

[26] , Spectrum as the support of functional calculus, Functional Analysis and
its Applications (Proceedings of the S. Banach Conference) (North-Holland)
(V. Kadets and W. Zelazko, eds.), Math. Studies series, Elsevier Science Pub-
lishers, 2004, E-print: arXiv:math.FA/0208249, pp. 133–142.

[27] Vladimir V. Kisil and Enrique Ramı́rez de Arellano, The Riesz-Clifford func-
tional calculus for several non-commuting operators and quantum field theory,
Math. Methods Appl. Sci. 19 (1996), no. 8, 593–605, MR 97h:47009, E-print:
arXiv:funct-an/9502006.

[28] , A functional model for quantum mechanics: Unbounded operators,
Math. Methods Appl. Sci. 20 (1997), no. 9, 745–757, MR 98f:47028.



Monogenic Calculus as an Intertwining Operator 757

[29] Alan McIntosh and Alan Pryde, A functional calculus for several commuting
operators, 36 (1987), 421–439.

[30] Peter J. Olver, Applications of Lie groups to differential equations, second ed.,
Springer-Verlag, New York, 1993. MR 94g:58260

[31] , Equivalence, invariants, and symmetry, Cambridge University Press,
Cambridge, 1995. MR 96i:58005

[32] Gian-Carlo Rota and W.G. Strang, A note on the joint spectral radius, 22
(1960), 379–381.

[33] John Ryan, Some application of conformal covariance in Clifford analysis, Clif-
ford Algebras in Analysis and Related Topics (John Ryan, ed.), CRC Press,
Boca Raton, 1995, pp. 128–155.

[34] Frank Sommen, Plane wave decompositions of monogenic functions, Annales
Pol. Math. 49 (1988), 101–114.

[35] N. Ja. Vilenkin, Special functions and the theory of group representations,
American Mathematical Society, Providence, R. I., 1968, Translated from the
Russian by V. N. Singh. Translations of Mathematical Monographs, Vol. 22.
MR 37 #5429

School of Mathematics
University of Leeds
Leeds LS2 9JT
UK
email: kisilv@maths.leeds.ac.uk
homepage: http://maths.leeds.ac.uk/~kisilv/


