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Abstract

When the statistical experiment is dominated (i.e. when all the sampling
distributions are absolutely continuous w.r.t. a σ-finite measure), all the prob-
ability measures on the parameter space are prior distributions which give rise
to a dominated Bayesian experiment.
In this paper we shall consider the family D of prior distributions which give
rise to a dominated Bayesian experiment (w.r.t. a fixed statistical experiment
not necessarily dominated) and we shall think the set of all the probability
measures on the parameter space endowed by the total variation metric d.
Then we shall illustrate the relationship between d(µ,D) (where µ is the prior
distribution) and the probability to have sampling distributions absolutely
continuous w.r.t. the predictive distribution.
Finally we shall study some properties of D in terms of convexity and ex-
tremality and we shall illustrate the relationship between d(µ,D) and the
probability to have posteriors and prior mutually singular.

1 Introduction.

In this paper we shall consider the terminology used in [5]. Let (S,S) (sample space)
and (A,A) (parameter space) be two Polish Spaces and denote by P(A) and by P(S)
the sets of all the probability measures on A and S respectively.
Furthermore let (P a : a ∈ A) be a fixed family of probability measures on S (sam-
pling distributions) such that (a 7→ P a(X) : X ∈ S) are measurable mappings
w.r.t. A.
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Then, for any µ ∈ P(A) (prior distribution), we can consider the probability space
Eµ = (A× S,A⊗ S,Πµ) (Bayesian experiment) such that

Πµ(E ×X) =
∫
E
P a(X)dµ(a), ∀E ∈ A and ∀X ∈ S. (1)

Moreover we shall denote by Pµ the predictive distribution, i.e. the probability
measure on S such that

Pµ(X) = Πµ(A×X), ∀X ∈ S. (2)

Finally we can say that Eµ is regular because (S,S) and (A,A) are Polish Spaces,
(see e.g. [5], Remark (i), page 31); in other words we have a family (µs : s ∈ S) of
probability measures on A (posterior distributions) such that

Πµ(E ×X) =
∫
X
µs(E)dPµ(s), ∀E ∈ A and ∀X ∈ S. (3)

We stress that the family (µs : s ∈ S) satisfying (3) is Pµ a.e. unique; moreover Eµ
is said to be dominated if Πµ << µ⊗ Pµ.

Before stating the next result it is useful to introduce the following notation.
Let gµ be a version of the density of the absolutely continuous part of Πµ w.r.t.
µ ⊗ Pµ and assume that the singular part of Πµ w.r.t. µ ⊗ Pµ is concentrated on
a set Dµ ∈ A ⊗ S having null measure w.r.t. µ ⊗ Pµ; in other words the Lebesgue
decomposition of Πµ w.r.t. µ ⊗ Pµ is

Πµ(C) =
∫
C
gµd[µ⊗ Pµ] + Πµ(C ∩Dµ), ∀C ∈ A⊗ S.

Furthermore put

Dµ(a, .) = {s ∈ S : (a, s) ∈ Dµ}, ∀a ∈ A

and
Dµ(., s) = {a ∈ A : (a, s) ∈ Dµ}, ∀s ∈ S.

Now we can recall the following result (see [7], Proposition 1).

Proposition 1. µ a.e. the Lebesgue decomposition of P a w.r.t. Pµ is

P a(X) =
∫
X
gµ(a, s)dPµ(s) + P a(X ∩Dµ(a, .)), ∀X ∈ S. (4)

Pµ a.e. the Lebesgue decomposition of µs w.r.t. µ is

µs(E) =
∫
E
gµ(a, s)dµ(a) + µs(E ∩Dµ(., s)), ∀E ∈ A.

As an immediate consequence we obtain the next

Corollary 2. The following statements are equivalent:

Eµ dominated; (5)
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µ({a ∈ A : P a << Pµ}) = 1; (6)

Pµ({s ∈ S : µs << µ}) = 1. (7)

Corollary 3. The following statements are equivalent:

Πµ⊥µ⊗ Pµ;

µ({a ∈ A : P a⊥Pµ}) = 1;

Pµ({s ∈ S : µs⊥µ}) = 1.

From now on we shall use the following notation; for any µ ∈ P(A), we put

B(ac)
µ = {a ∈ A : P a << Pµ},

B(sg)
µ = {a ∈ A : P a⊥Pµ}

and, for a given family (µs : s ∈ S) of posterior distributions,

T (ac)
µ = {s ∈ S : µs << µ},

T (sg)
µ = {s ∈ S : µs⊥µ}.

Remark. For any Q ∈ P(S) we can say that

{a ∈ A : P a << Q}, {a ∈ A : P a⊥Q} ∈ A.

Indeed (see e.g. [3], Remark, page 58) we can consider a jointly measurable function
f such that f(a, ·) is a version of the density of the absolutely continuous part of
P a w.r.t. Q and, consequently, we have

{a ∈ A : P a << Q} = {a ∈ A :
∫
S
f(a, s)dQ(s) = 1}

and
{a ∈ A : P a⊥Q} = {a ∈ A :

∫
S
f(a, s)dQ(s) = 0}.

Then, for any µ ∈ P(A), we have

B(ac)
µ , B(sg)

µ ∈ A

and, by reasoning in a similar way, we can also say that

T (ac)
µ , T (sg)

µ ∈ S

for any given family (µs : s ∈ S) of posterior distributions.

Remark. In general T (ac)
µ and T (sg)

µ depend on the choice of the family (µs : s ∈ S)
satisfying (3) we consider. On the contrary, by the Pµ a.e. uniqueness of (µs : s ∈ S),
the probabilities Pµ(T

(ac)
µ ) and Pµ(T

(ac)
µ ) do not depend on that choice.
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In this paper we shall concentrate the attention on the set

D = {µ ∈ P(A) : (5) holds}.

We remark that when (P a : a ∈ A) is a dominated statistical experiment (see e.g.
[1]), i.e. when each P a is absolutely continuous w.r.t. a fixed σ-finite measure, we
have D = P(A).
However we can say that D is always not empty; indeed we have the following

Proposition 4. D contains all the discrete probability measures on A (i.e. all the
probability measures in P(A) concentrated on a set at most countable).

Proof. Let µ ∈ P(A) be concentrated on a set Cµ at most countable. Then, by
noting that

Pµ(X) =
∑
a∈Cµ

P a(X)µ({a}) (∀X ∈ S),

(6) holds and, by Corollary 2, µ ∈ D. �

Remark. It is known (see [2], Theorem 4, page 237) that each µ ∈ P(A) is the
weak limit of a sequence of discrete probability measures. Then, if we consider P(A)
as a topological space with the weak topology, D is dense in P(A) by Proposition 4.

In Section 2 we shall consider P(A) endowed with the total variation metric d
defined as follows:

(µ, ν) ∈ P(A)× P(A) 7→ d(µ, ν) = sup{|µ(E)− ν(E)| : E ∈ A}. (8)

Then we shall prove that

µ(B(ac)
µ ) + d(µ,D) = 1, ∀µ ∈ P(A) (9)

where d(µ,D) is the distance between µ and D, i.e.

d(µ,D) = inf{d(µ, ν) : ν ∈ D}. (10)

Hence µ(B(ac)
µ ) increases when d(µ,D) decreases.

In Section 3 we shall consider D and P(A) as subsets of M(A) (i.e. the vector
space of the signed measures on A) and we shall study some properties D in terms
of convexity and extremality.

In Section 4 we shall prove an inequality concerning d(µ,D) and the probability
(w.r.t. Pµ) to have posterior distributions and prior distribution mutually singular
and, successively, we shall present two examples.

2 The proof of (9).

In this Section we shall prove the formula (9).
To this aim we need some further notation. Put

A∗ = {E ∈ A : ∃QE ∈ P(S) such that P a << QE , ∀a ∈ E}
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and

F (µ) = sup{µ(E) : E ∈ A∗}. (11)

F (µ) defined in (11) has big importance in what follows; indeed we shall prove (9)
showing that, for any µ ∈ P(A), F (µ) is equal to 1− d(µ,D) and µ(B(ac)

µ ). Before
doing this, we need some propedeutic results.

Lemma 5. Let µ ∈ P(A) be such that µ({a ∈ A : P a << Q}) = 1 for some
Q ∈ P(S).
Then µ(B(ac)

µ ) = 1.

Proof. By the hypothesis we can say that (see e.g. [6], Lemma 7.4, page 287)

Pµ({s ∈ S : µs(E) =

∫
E fQ(a, s)dµ(a)∫
A fQ(a, s)dµ(a)

, ∀E ∈ A}) = 1

where fQ is a jointly measurable function such that

µ({a ∈ A : P a(X) =
∫
X
fQ(a, s)dQ(s), ∀X ∈ S}) = 1.

Hence we have Pµ(T
(ac)
µ ) = 1 and, by Corollary 2, µ(B(ac)

µ ) = 1. �

Lemma 6. For any µ ∈ P(A) there exists a set Aµ ∈ A∗ such that F (µ) = µ(Aµ).

Proof. The statement is obvious when F (µ) = 0; indeed we have µ(E) = 0 for any
E ∈ A∗.
Thus let us consider the case F (µ) > 0.
Then, for any n ∈ N, we have a set An ∈ A∗ such that µ(An) > F (µ) − 1

n
and we

can say that

µ(∪n∈NAn) > F (µ)− 1

n
, ∀n ∈ N;

thus
µ(∪n∈NAn) ≥ F (µ).

Furthermore the probability measure Q defined as follows

Q =
∑
n∈N

QAn

2n

is such that
P a << Q, ∀a ∈ ∪n∈NAn.

Thus ∪n∈NAn ∈ A∗ and µ(∪n∈NAn) = F (µ).
In other words we can put Aµ = ∪n∈NAn. �

Lemma 7. Let µ ∈ P(A) be such that F (µ) = 1. Then µ ∈ D.

Proof. By Lemma 6 we have a set Aµ ∈ A∗ such that µ(Aµ) = 1; in other words
there exists Q ∈ P(S) such that µ({a ∈ A : P a << Q}) = 1.
Then, by Lemma 5, µ(B(ac)

µ ) = 1 and µ ∈ D follows from Corollary 2. �



506 C. Macci

Lemma 8. Let µ ∈ P(A) be such that F (µ) = 0. Then

D ⊂ {ν ∈ P(A) : µ ⊥ ν}.

Proof. Let ν ∈ D be arbitrarily fixed. Then ν(B(ac)
ν ) = 1 immediately follows.

Moreover we have µ(B(ac)
ν ) = 0; indeed F (µ) = 0.

Then µ ⊥ ν and the proof is complete. �

In this Section, when F (µ) ∈]0, 1[, we put µ1 = µ(·|Aµ) and µ2 = µ(·|Ac
µ).

Lemma 9. Let µ ∈ P(A) be such that F (µ) ∈]0, 1[. Then

F (µ1) = 1 (12)

and

F (µ2) = 0. (13)

Proof. By construction we have F (µ1) ≤ 1. Then (12) holds; indeed we have
µ1(Aµ) = 1 with Aµ ∈ A∗.
To prove (13) we reason by contradiction.
Assume that F (µ2) > 0 and let Q ∈ P(S) be defined as follows

Q =
QAµ +QAµ2

2
;

then we can say that

P a << Q, ∀a ∈ Aµ ∪Aµ2 . (14)

Now, since we have

µ = F (µ)µ1 + (1− F (µ))µ2,

we obtain

µ(Aµ ∪Aµ2) = F (µ)µ1(Aµ ∪Aµ2) + (1− F (µ))µ2(Aµ ∪Aµ2) =

= F (µ) + (1− F (µ))µ2(Aµ2) > F (µ).

But this is a contradiction; indeed, by (14), we have Aµ∪Aµ2 ∈ A∗ and consequently

µ(Aµ ∪Aµ2) ≤ F (µ).

�
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The identity (9) will immediately follow from the two next Propositions.

Proposition 10. For any µ ∈ P(A) we have

F (µ) = 1− d(µ,D).

Proof. If F (µ) = 1 we have µ ∈ D by Lemma 7 and d(µ,D) = 0.
If F (µ) = 0 we have D ⊂ {ν ∈ P(A) : µ ⊥ ν} by Lemma 8 and, by (8),

D ⊂ {ν ∈ P(A) : d(µ, ν) = 1}.

Thus, by (10), we have d(µ,D) = 1.
Then let us consider the case F (µ) ∈]0, 1[.
By (12) and by Lemma 7, µ1 ∈ D. Moreover, by construction, we have µ1 ⊥ µ2;
thus, by (8),

d(µ1, µ2) = 1.

Then, for any ν ∈ D, we put
Eν = Aµ ∪B(ac)

ν

and we obtain

d(µ, ν) ≥ |µ(Eν)− ν(Eν)| = |F (µ)µ1(Eν) + (1− F (µ))µ2(Eν)− 1| =

= |F (µ)1 + (1− F (µ))0− 1| = 1− F (µ);

indeed, by (13), µ2(B
(ac)
ν ) = 0.

Then the proof is complete; indeed µ1 ∈ D and we have

d(µ, µ1) = sup{|µ(E)− µ1(E)| : E ∈ A} =

= sup{|F (µ)µ1(E) + (1− F (µ))µ2(E)− µ1(E)| : E ∈ A} =

(1− F (µ))d(µ1, µ2) = (1− F (µ)).

�

Proposition 11. For any µ ∈ P(A) we have

F (µ) = µ(B(ac)
µ ).

Proof. If F (µ) = 1 we have µ ∈ D by Lemma 7; then, by Corollary 2, we have
µ(B(ac)

µ ) = 1.

If F (µ) = 0 we have necessarily µ(B(ac)
µ ) = 0.

Then let us consider the case F (µ) ∈]0, 1[.
By taking into account that

µ = F (µ)µ1 + (1− F (µ))µ2,
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we have Pµ1 << Pµ; indeed, by (2),

Pµ = F (µ)Pµ1 + (1− F (µ))Pµ2.

Thus B(ac)
µ1
⊂ B(ac)

µ and, consequently,

1 = µ1(B
(ac)
µ1

) = µ1(B
(ac)
µ );

indeed µ1 ∈ D by (12) and Lemma 7.
Then we obtain the following inequality:

µ(B(ac)
µ ) ≥ µ(Aµ ∩B(ac)

µ ) = F (µ)µ1(Aµ ∩B(ac)
µ )+

+(1− F (µ))µ2(Aµ ∩ B(ac)
µ ) = F (µ)1 + (1− F (µ))0 = F (µ).

Now put Q =
QAµ+Pµ

2
; then

P a << Q, ∀a ∈ Aµ ∪B(ac)
µ .

Thus Aµ ∪B(ac)
µ ∈ A∗ and, consequently, F (µ) = µ(Aµ ∪ B(ac)

µ ).
Then

F (µ) = µ(Aµ ∪B(ac)
µ ) = µ(Aµ) + µ(B(ac)

µ − Aµ)

whence µ(B(ac)
µ − Aµ) = 0 and we obtain the following inequality:

µ(B(ac)
µ ) = µ(B(ac)

µ ∩Aµ) + µ(B(ac)
µ − Aµ) = µ(B(ac)

µ ∩ Aµ) ≤ µ(Aµ) = F (µ).

This completes the proof; indeed we have µ(B(ac)
µ ) ≥ F (µ) and µ(B(ac)

µ ) ≤ F (µ). �

Remark. By (9) and Corollary 2 we have d(µ,D) = 0 if and only if µ ∈ D. Thus we
can say that, if we consider P(A) as a topological space with the topology induced
by d, D is a closed set.

3 Convexity and extremality properties.

The first result in this Section shows that D is a convex set.

Proposition 12. D is a convex set (see e.g. [8], page 100), i.e.

µ1, µ2 ∈ D, µ1 6= µ2 ⇒ tµ1 + (1− t)µ2 ∈ D, ∀t ∈ [0, 1].

Proof. Let µ1, µ2 ∈ D (with µ1 6= µ2) and t ∈ [0, 1] be arbitrarily fixed and put

µ = tµ1 + (1− t)µ2. (15)

Thus we have µ1, µ2 << µ and, moreover, Pµ1 , Pµ2 << Pµ; indeed, by (15), we
obtain

Πµ = tΠµ1 + (1− t)Πµ2, (16)
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whence
Pµ = tPµ1 + (1− t)Pµ2.

Then µ ∈ D. Indeed, by taking into account that µ1, µ2 ∈ D, (16) can be rewritten
as follows

Πµ(C) = t
∫
C
gµ1d[µ1 ⊗ Pµ1 ] + (1− t)

∫
C
gµ2d[µ2 ⊗ Pµ2 ] =

=
∫
C
[tgµ1(a, s)

dµ1

dµ
(a)

dPµ1

dPµ
(s)+

+(1− t)gµ2(a, s)
dµ2

dµ
(a)

dPµ2

dPµ
(s)]d[µ⊗ Pµ](a, s), ∀C ∈ A⊗ S.

�

In the following we need the next

Lemma 13. Let µ ∈ D be such that ν << µ. Then ν ∈ D and

Pν(X) =
∫
X

[
∫
A
gµ(a, s)dν(a)]dPµ(s), ∀X ∈ S. (17)

Proof. By Corollary 2 and Proposition 1 we have

µ({a ∈ A : P a(X) =
∫
X
gµ(a, s)dPµ(s), ∀X ∈ S}) = 1

whence
ν({a ∈ A : P a(X) =

∫
X
gµ(a, s)dPµ(s), ∀X ∈ S}) = 1;

indeed ν << µ.
Then

Πν(E ×X) =
∫
E
P a(X)dν(a) =

∫
E
[
∫
X
gµ(a, s)dPµ(s)]dν(a) =

=
∫
X

[
∫
E
gµ(a, s)dν(a)]dPµ(s), ∀E ∈ A and ∀X ∈ S

and (17) follows from (2) (with ν in place of µ). Furthermore we have

Πν(E ×X) =
∫
X

[

∫
E gµ(a, s)dν(a)∫
A gµ(a, s)dν(a)

∫
A
gµ(a, s)dν(a)]dPµ(s) =

=
∫
X

[

∫
E gµ(a, s)dν(a)∫
A gν(a, s)dν(a)

]dPν(s), ∀E ∈ A and ∀X ∈ S.

Thus (7) holds for Eν and ν ∈ D by Corollary 2. �

The next result is an immediate consequence of Lemma 13.

Proposition 14. D is extremal for P(A) (see e.g. [8], page 181), i.e.

tµ1 + (1− t)µ2 ∈ D with t ∈]0, 1[ and

µ1, µ2 ∈ P(A) ⇒ µ1, µ2 ∈ D.

Proof. Let µ ∈ D be such that µ = tµ1 + (1− t)µ2 with t ∈]0, 1[ and µ1, µ2 ∈ P(A).
Then µ1, µ2 ∈ D by Lemma 13; indeed, by construction, we have µ1, µ2 << µ. �



510 C. Macci

Before proving the next Propositions, it is useful to denote by EX(D) the set of
the extremal points of D (see e.g. [8], page 181); thus we put

EX(D) = {µ ∈ D : µ = tµ1 + (1− t)µ2 with t ∈]0, 1[

and µ1, µ2 ∈ D ⇒ µ1 = µ2 = µ}.

Thus we can prove the next results.

Proposition 15. If µ ∈ D is not concentrated on a singleton, then µ /∈ EX(D).

Proof. If µ ∈ D is not concentrated on a singleton, there exists a set B ∈ A such
that µ(B) ∈]0, 1[ and we can say that

µ = µ(B)µ(·|B) + (1− µ(B))µ(·|Bc).

Then µ(·|B), µ(·|Bc) ∈ D by Lemma 13 and µ(·|B) and µ(·|Bc) are both different
from µ; indeed µ(B) ∈]0, 1[. Thus we can say that µ /∈ EX(D). �

Proposition 16. If µ ∈ D is concentrated on a singleton, then µ ∈ EX(D).

Proof. Assume that µ ∈ D is concentrated on a singleton; in other words there exists
b ∈ A such that

µ(E) = 1E(b), ∀E ∈ A.

Then, if we have

µ = tµ1 + (1− t)µ2 with t ∈]0, 1[ and µ1, µ2 ∈ D,

we obtain

1 = tµ1({b}) + (1− t)µ2({b}).

Then we have necessarily µ1({b}) = µ2({b}) = 1; thus µ1 = µ2 = µ. �

Proposition 17.

EX(D) = {µ ∈ P(A) : µ is concentrated on a singleton}

Proof. By Proposition 15 and Proposition 16 we have

EX(D) = {µ ∈ D : µ is concentrated on a singleton}.

Then the proof is complete; indeed, by Proposition 4, all the probability measures
concentrated on a singleton belong to D. �
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4 A consequence about Posteriors and two examples.

In Section 2 we proved equation (9). From a statistical point of view it is more
interesting a relationship between d(µ,D) and the probability to have a particular
Lebesgue decomposition between posteriors distributions and prior distribution.

Then, in the first part of this Section, we shall prove that

Pµ(T
(sg)
µ ) ≤ d(µ,D), ∀µ ∈ P(A). (18)

We stress that T (sg)
µ can be seen as the set of samples which give rise to posterior

distributions concentrated on a set of probability zero w.r.t. the prior distribution
µ.

Equation (18) immediately follows from (9) and from the next

Proposition 18. We have

Pµ(T
(sg)
µ ) ≤ 1− µ(B(ac)

µ ), ∀µ ∈ P(A).

Proof. By (1), (2) and (4) we have

Pµ(T
(sg)
µ ) =

∫
A
P a(T (sg)

µ )dµ(a) =
∫
A
[
∫
T

(sg)
µ

gµ(a, s)dPµ(s) +P a(T (sg)
µ ∩Dµ(a, .))]dµ(a)

whence it follows

Pµ(T
(sg)
µ ) =

∫
T

(sg)
µ

[
∫
A
gµ(a, s)dµ(a)]dPµ(s) +

∫
A
P a(T (sg)

µ ∩Dµ(a, .))dµ(a);

thus, by Proposition 1, we obtain

Pµ(T
(sg)
µ ) =

∫
A
P a(T (sg)

µ ∩Dµ(a, .))dµ(a).

Then we can conclude that

Pµ(T
(sg)
µ ) =

∫
(B

(ac)
µ )c

P a(T (sg)
µ ∩Dµ(a, .))dµ(a) ≤ µ((B(ac)

µ )c) = 1− µ(B(ac)
µ );

indeed, as a consequence of (4), we have∫
B

(ac)
µ

P a(Dµ(a, .))dµ(a) = 0.

�

In conclusion we can say that Pµ(T
(sg)
µ ) cannot be too big when µ is near D

(w.r.t. the distance d). More precisely, when µ /∈ D, we can have Pµ(T
(sg)
µ ) = 0 (see

the example in [7], Section 4) or Pµ(T
(sg)
µ ) > 0 but, in any case, Pµ(T

(sg)
µ ) cannot be

greater than the d-distance between µ and D.

Now we shall consider two examples. For the first one we shall derive D by using
the results in Section 2 and in Section 3 while, for the second one, we shall present
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the different cases concerning (9) and (18) for some particular choices of prior dis-
tributions.

In the first example we shall consider (A,A) and (S,S) both equal to ([0, 1],B),
where B denotes the usual Borel σ-algebra. Moreover we shall put

X ∈ S 7→ P a(X) =
1

2
[1X(a) + λ(X)], ∀a ∈ B = [0,

1

4
] ∪ [

3

4
, 1] (19)

and

X ∈ S 7→ P a(X) = a1X(
1

2
) + (1− a)λ(X), ∀a ∈ A−B =]

1

4
,
3

4
[ (20)

where λ is the Lebesgue measure.
We stress that the statistical experiment (P a : a ∈ A) defined by (19) and (20) is
not dominated because, for any a ∈ B, {a} is an atom of P a.
As we shall see, the set B has a big importance to say when a prior distribution µ
belongs to D.

For doing this let us consider the following notation; given a a prior distribution
µ, we put

I(µ) =
∫
A−B

adµ(a);

then we obtain

X ∈ S 7→ Pµ(X) =
1

2

∫
B
[1X(a)+λ(X)]dµ(a) +

∫
A−B

[a1X(
1

2
)+ (1− a)λ(X)]dµ(a) =

=
1

2
µ(B ∩X) +

1

2
µ(B)λ(X) + I(µ)1X(

1

2
) + (1− µ(B)− I(µ))λ(X) =

=
1

2
µ(B ∩X) + (1− µ(B)

2
− I(µ))λ(X) + I(µ)1X(

1

2
).

For our aim, let us consider the following

Lemma 19. Assume µ is diffuse (i.e. µ assigns probability zero to each singleton).
Then

d(µ,D) = µ(B). (21)

Proof. We have three cases: µ(B) = 1, µ(B) = 0 and µ(B) ∈]0, 1[.
If µ(B) = 1, we have I(µ) = 0 and

X ∈ S 7→ Pµ(X) =
1

2
[µ(X) + λ(X)];

then µ(B(ac)
µ ) = µ(∅) = 0 and (21) follows from (9).

If µ(B) = 0, we have I(µ) ∈] 1
4
, 3

4
[ and

X ∈ S 7→ Pµ(X) = (1− I(µ))λ(X) + I(µ)1X(
1

2
);
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then µ(B(ac)
µ ) = µ(A− B) = 1− µ(B) and (21) follows from (9).

Finally, if µ(B) ∈]0, 1[, we have I(µ) ∈] 1
4
(1 − µ(B)), 3

4
(1 − µ(B))[ and we can say

that Pµ has {1
2
} as a unique atom and its diffuse part is absolutely continuous w.r.t.

λ; then
µ(B(ac)

µ ) = µ(A−B) = 1− µ(B)

and (21) follows from (9). �

Now we can prove the next

Proposition 20. µ ∈ D if and only if

µ = pµ(ds) + (1− p)µ(df) (22)

where p ∈ [0, 1], µ(ds) is a discrete probability measure on A, µ(df) is a diffuse
probability measure on A such that

µ(df)(B) = 0. (23)

Proof. Let us start by noting that, for any µ ∈ P(A), (22) holds in general (always
with p ∈ [0, 1], µ(ds) discrete probability measure on A and µ(df) diffuse probability
measure on A).
If p = 1, we have µ ∈ D by Proposition 4.
If p = 0, by Lemma 19 we have µ ∈ D if and only if (23) holds.
Finally, if p ∈]0, 1[, we have two cases: when (23) holds, µ ∈ D by Proposition 12
(i.e. by the convexity of D); when (23) fails, µ /∈ D by Proposition 14 (i.e. because
D is extremal w.r.t. P(A)). Indeed, by taking into account that D is an extremal
subset, when we have

µ = tµ1 + (1− t)µ2

with t ∈]0, 1[, µ1 ∈ D and µ2 /∈ D, we can say that µ /∈ D. �

The second example refers to a nonparametric problem (see example 4 in [5],
page 45).
The results in Section 2 and in Section 4 will be used for a class of prior distributions
called Dirichlet Processes (see the references cited therein).
For simplicity let (S,S) be the real line equipped with the usual Borel σ-algebra,
put

A = {a : S → [0, 1]} = [0, 1]S

and, for A, we take the product σ-algebra (i.e. the σ-algebra generated by all the
cylinders based on a Borel set of [0, 1] for a finite number of coordinates).
Furthermore let (P a : a ∈ A) be such that P a = a when a is a probability measure
on S and let µ be the Dirichlet Process with parameter α, where α is an arbitrary
finite measure on S; thus it will be denoted by µα.
In what follows we shall refer to the results shown by Ferguson (see [4]).
First of all we can say that, µα almost surely, a is a discrete probability measure on
S and

Pµα =
α(·)
α(S)

.
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Moreover we can say that each addendum in (9) assumes the values 0 and 1 only;
more precisely:
µα(B

(ac)
µα

) = 1 (and d(µα,D) = 0, i.e. µα ∈ D) when α is discrete;

µα(B
(ac)
µα ) = 0 (and d(µα,D) = 1), when α is not discrete.

Consequently, by Corollary 2, when α is discrete we obtain

Pµα(T
(ac)
µα ) = 1;

thus equation (18) gives 0 ≤ 0.
On the contrary, when α is diffuse, we have µα(B

(sg)
µα

) = 1 and

Pµα(T
(sg)
µα ) = 1

follows from Corollary 3; thus equation (18) gives 1 ≤ 1.
Finally let us consider α neither discrete nor diffuse.
It is known that (see [4], Theorem 1) that

Pµα({s ∈ S : (µα)
s = µα+δs}) = 1

where δs denotes the probability measure concentrated on s.
Then, if we put

Kα = {s ∈ S : α({s}) > 0} = {s ∈ S : Pµα({s}) > 0},

we have Pµα(T
(ac)
µα

) = Pµα(Kα) and Pµα(T
(sg)
µα

) = Pµα((Kα)
c); thus, in this case,

equation (18) gives the strict inequality Pµα((Kα)
c) < 1.
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