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Introduction

In inventory models the major objective consists of minimizing the total inventory
cost and to balance the economics of large orders or large production runs against
the cost of holding inventory and the cost of going short.
In the present paper we analyse the fluctuations in the stock and starting from
some basic assumptions we obtain bounds between which the stock varies. The
main purpose and use of our results is that we are able to determine the exact
upper and lower stockbounds. In the paper we formulate a deterministic and a
stochastic version of our model.

1 The deterministic model

Consider an inventory process involving one item and suppose that the initial stock is
equal to a, a positive real number. During regular time-intervals the stock decreases
because of demand. We assume that the demand is in units of size b. When inventory
is below the level b, the policy consists of ordering p = a + b new units. This type
of inventory process has also been analyzed by Andres and Emmons (1975) and by
Zoller (1977). Formally the model is the following. Let 0 < b < a denote arbitrary
real numbers. We define a sequence {xn} of stock-levels as follows :

x1 = a;

xn+1 = xn − b if xn ≥ b

and
xn+1 = xn − b + p = xn + a if xn < b.
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We analyse the sequence {xn} and want to find sharp lower and upper bounds
between which the sequence takes its values. Obviously we have to find an upper
bound by examining those x-values greater than a. We shall denote by zn the x-
value for which xi ≥ a for the n-th time. We can find an upperbound by studying
{zn, n ≥ 1}; we can find a lower bound by studying {zn − a, n ≥ 2}.

Now suppose that xm ≥ a and that xm = zn, the n-th time that we have a value
≥ a. We determine xm+1, xm+2, ..., xm+k and k such that

xm+k = xm − kb ≥ b and xm+k+1 = xm − (k + 1)b < b.

Obviously k + 1 = [xm/b] with [xm/b] the integer part of xm/b. Using this value of
k we find a new x-value ≥ a :

zn+1 = xm+k+2 = xm − (k + 1)b + a = xm − [xm/b]b + a.

It follows that z1 = a and that zn+1 = zn− [zn/b]b + a, n ≥ 1.

Now divide by b and let un := zn/b so that

u1 = d = a/b and un+1 = d + un − [un], n ≥ 1.

A further simplification we get by replacing un by yn = un − [d] :

y1 = c = d− [d] and yn+1 = c + yn − [yn], n ≥ 1.

In the next lemma we find a simple expression for yn :

Lemma 1.1 For n ≥ 1 : yn = nc− [(n− 1)c] =: f(n).

Proof. By induction on n. �

We study the sequence {yn} and distinguish two cases. In case 1 we assume that c
is rational. The second case is devoted to irrational c.

1.1 Case 1 : c is rational

We suppose that c = p/q where p, q ∈ N, p < q and GCD(p, q) = 1. It is easy to
see that f(q + 1) = f(1) and consequently that f(n + q) = f(n). Hence {f(n)} is
periodic with period not greater than q. Now suppose that {f(n)} is periodic with
period r, i.e. f(r + 1) = f(1). From this it follows that rc = [rc] is an integer. It
follows that the period of {f(n)} equals q because q is the first integer r for which
rc is a natural number. Summarizing our findings we have

Lemma 1.2 a) If c = p/q with GCD(p, q) = 1, then {f(n)} is periodic with period
q.
b) {f(n)} is periodic if and only if c is a rational number. �
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Under the conditions of Lemma 1.2 we can find max {f(n)} by looking at {f(1), f(2),
..., f(q)}. Obviously all numbers f(i) (i = 1, ..., q) are different - since otherwise the
period of {f(n)} would be less than q. Moreover for each i we have c ≤ f(i) < c+1
and f(i) is of the form f(i) = c + ni/q where 0 ≤ ni ≤ q − 1. Hence {f(i), i =
1, 2, ..., q − 1} = {c + j/q, j = 0, ..., q− 1} and hence max {f(i)} = c + (q − 1)/q =
(p + q − 1)/q.

For min{xn} we study min{zn − a, n ≥ 2}. Introducing yn and f(n) as before, we
find that min{f(i), i ≥ 2} = c + 1/q. Summarizing, we have proved the following
result.

Theorem 1.3 If c = p/q ∈ Q, with GCD(p, q) = 1, then

max{yn, n ≥ 1} = (p + q − 1)/q = 1 + c− 1/q.

min{yn, n ≥ 2} = 1/q.

�

Returning to the starting point of our analysis, we obtain

Corallary 1.4 Max{xn} = a + b−GCD(a, b) and min{xn} = GCD(a, b).

Proof. For the first part, use Lemma 1.3 and zn = b(yn + [d]), where d = a/b. For
the second part, recall that lower bound can be found by considering the minimum
of the values zn − a. �

Remarks. 1. Consider the following extension of the previous model. Consider an
inventory process involving m items. For each item j the inventory policy consists of
the pair (bj, aj) as in the previous model. If xn,j denotes the inventory level of item
j at stage n, then the total inventory level equals In = xn,1 + ... + xn,m. Corollary
1.4 states that

m∑
j=1

GCD(aj , bj) ≤ In ≤
m∑
j=1

(aj + bj + GCD(aj, bj)).

Whereas the bounds in Corollary 1.4 are sharp, the question rises whether the
bounds for In are sharp.

2. If we assume that the demand is not in units of b but in fractions of b (i.e. the
demand is tb per time unit, where 1/t is an integer and t < 1), then the sequence of
inventory levels (with c = tb + a) is defined as follows :

x1 = a; xn+1 = xn − tb if xn ≥ b and xn+1 = xn + a if xn < b.

Among similar lines the analogue of Corollary 1.4 follows. Using un = zn/tb and then
yn = un−[a/tb] it follows that y1 = c = a/tb−[a/tb] and yn+1 = yn−[yn]+c+1−1/t.
We obtain

Corallary 1.5 For the sequence {xn} we have
max{xn} = a + (2t− 1)b−GCD(a, tb) and min{xn} = (t− 1)b + GCD(a, tb). �

3. The results of remark 2. can be generalized as in remark 1.
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1.2 Case 2 : c irrational

In the case where c is a irrational number we prove the following result, cf. lemma
1.3.

Lemma 1.6 For irrational c, 0 < c < 1, there holds

sup{nc− [nc], n ≥ 1} = 1 and inf{nc − [nc], n ≥ 1} = 0.

Proof. If c is irrational we represent c as

c = q1 +
1

q2 + 1
q3+...

or as c = (q1, q2, q3, ...), where q1 = [c], q2 = [1/(c− q1)] > 0, etc.

Using this notation, for each integer n we consider An/Bn = (q1, q2, ..., qn). Obvi-
ously An and Bn are integers with the following properties :

(i) A1 = q1, B1 = 1, A2 = q1q2 + 1, B2 = q2;

(ii) for n > 1 : An+1 = Anqn+1 + An−1 and Bn+1 = Bnqn+1 + Bn−1;

(iii) using (ii) :AnBn+1 − An+1Bn = (−1)n+1;

(iv) {Bn} is strictly increasing with limit +∞.

Now let a = (qn+1, qn+2, ...) so that a > 0 and c = (q1, ..., qn, a). From (ii) it
follows that

(v) c = (Ana + An−1)/(Bna + Bn−1).

A combination of (iii) and (v) yields

(vi) A2n/B2n < c < A2n+1/B2n+1.

Using (v) and (vi) we obtain 0 < B2nc− A2n < 1/B2n+1.
By using (iv), for each β > 0 we can find N sufficiently large so that

0 < B2nc− A2n < β, for all n ≥ N.

Since A2n is an integer, it follows that 0 ≤ B2nc− [B2nc] < β.
Since B2n is an integer also, it follows that inf{nc− [nc], n ≥ 1} = 0.
In a similar way from (v) and (vi) we obtain that 0 < A2n+1 − B2n+1c < 1/B2n.
For arbitrary β > 0 it follows that 0 ≤ 1− (B2n+1c− [B2n+1c]) < β, for all n ≥ N .
Hence the other statement of the lemma follows. �

For the original sequence {xn} we have the following analogue of Corollary 1.4.

Theorem 1.7 If a/b is irrational, then sup{xn} = a + b and inf {xn} = 0. �
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2 The Stochastic model

Suppose a, b and c(a > b) are positive real numbers and suppose that X, X1, X2, ...
are i.i.d. positive random variables (r.v.) with distribution function (d.f.) F (x). A
new sequence Y0, Y1, .., Yn of r.v. is constructed as follows. Let Y0 = a and for n ≥ 0,
let

Yn+1 = Yn −Xn+1 if Yn ≥ b

and

Yn+1 = Yn −Xn+1 + c if Yn < b.

The interpretation of Yn is clear : we start with an initial inventory (a) and demand
is stochastic. When the inventory at time n is below level b the policy consists of
ordering a fixed number c of new units during the next time interval.

Example 1. A waterreservoir is initially at level a; from time to time a random
amount Xi of water is demanded. Once the level is below b, an amount of water a
is added to the reservoir.

Example 2. A firm has an amount of cash a and at certain times bills have to be
paid and the cash decreases with an amount Xi. Once below a level b, the cash is
increased by an amount c.

For this sequence relevant questions are : what is the maximal value ? what is the
smallest value ? What is the mean re-order time ?

Let S0 = 0 and for each n ≥ 1, let Sn = X1 + ... + Xn. Clearly we have Y0 = a.
For n = 0, 1, 2, ... we have Yn = a − Sn as long as Sn−1 ≤ a − b. The first time
Sn−1 > a− b we have Yn = a− Sn + c.

The corresponding value of n is related to the the renewal counting process for the
process Sn. As usual we define N(x), the renewal process, as follows :

N(x) = n if and only if Sn−1 ≤ x < Sn.

It follows that Sn−1 ≤ a− b < Sn iff N(a− b) = n.

At the first renewal the inventory equals m1 = YN(a−b) = a−SN(a−b) and at the next
time point the inventory is M1 = YN(a−b)+1 = a + c− SN(a−b)+1.

From this time on, the process starts again and a new renewal occurs at step N(a +
c−b). Then we have m2 = YN(a+c−b) = a+c−SN(a+c−b) and M2 = a+2c−SN(a+c−b)+1.

Continuing this way we find that at step k we have

mk = a + kc− SN(a+kc−b)

and

Mk = a + (k + 1)c− SN(a+kc−b)+1.
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In the following discussion we will concentrate on mk. We can do this because the
event {N(x) = n} does not depend on Xn+1, and this implies that the distributins
of mk and Mk are related by the following obvious relation :

(1) Mk =d= mk + c −X.

Remark. If the r.v. X is degenerate and takes only the value b, then Sn = nb and
N(x) = [x/b] + 1. In this case we have mk = a + kc−N(a + kc − b)b. If c = a + b,
this leads to mk = a(k + 1) − [(k + 1)a/b]b, a relation which was treated in section
1.

In order to find the mean values of mk (and Mk) we use the renewal function. The
renewal function H(x) is defined as the mean of N(x) : H(x) = E(N(x)).

It is well-known (see e.g. Feller (1971) or Ross (1970)) that H(x) =∑∞
n=0 F ∗n(x) where * denotes convolution. Now Wald’s identity states that E(SN(x))

= E(X)H(x) = µH(x) whenever E(X) = µ is finite. Using Wald’s identity and (1),
we find

Lemma 2.1 If E(X) = µ is finite, then E(mk) = a + kc− µH(a + kc− b) and
E(Mk) = a + (k + 1)c− µ(H(a + kc− b) + 1). �

The asymptotic behaviour of H(x) is well-known and can be used to determine the
asymptotic behavior of E(mk) and E(Mk) as k a tends to infinity.

Lemma 2.2 (a) Suppose that F (x) is not lattice and that Var(X) <∞. Then as k
tends to infinity, limE(mk) = b−E(X2)/2µ and limE(Mk) = b+c−µ−E(X2)/2µ.

(b) If F is lattice with GCD{n|P{X = n} > 0} = 1 and if Var(X) <∞, then as k
tends to infinity, E(mk) = b−E(X2)/2µ + (a + kc− b− [a + kc− b]− 1/2) + o(1).

Proof. (a) Since F is not lattice and X has finite variance, we have (Feller, 1971,
IX.3)
H(x) = x/µ + E(X2)/2µ2 + o(1). The result (a) now follows from Lemma 2.1.
(b) For lattice distributions with GCD {n|P{X = n} > 0} = 1 and with finite
variance, it follows from Feller (1970, XIII,3 Theorem 3 and eq.(12.8),p.341) that
H(x) = [x]/µ + (EX2 + µ)/2µ2 + o(1). Using Lemma 2.1 it follows that

E(mk) = a + kc− µ{(E(X2) + µ)/2µ2 + [a + kc− b]/µ + o(1)

where the o(1)-term tends to 0. Hence result (b) follows. �

In the next result we determine the d.f. of mk and Mk. To this end let Y (t) = SN(t)−t
denote the excess or residual life at time t. Clearly mk = b− Y (a + kc− b).

For x ≤ b it follows that

(2) P{mk < x} = P{Y (a + kc− b) > b− x} = 1− P{Y (a + kc− b) ≤ b− x}.
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Now the distribution function of Y (t) is known (see e.g. Ross (1970), p.44):

(3) P{Y (t) ≤ x} = 1−
∫ t

0
[1F (t x y)]dH(y), x, t ≥ 0.

Furthermore, if F is not lattice and X has a finite mean µ, then the limit distribution
of Y (t) is known :

(4) lim
t→∞

P{Y (t) ≤ x} =
1

µ

∫ x

0
[1− F (y)]dy =: m(x).

In the next result we obtain the limit distributions of mk and Mk. Recall that f∗g
denotes the (Stieltjes-)convolution of the two measures f and g.

Lemma 2.3 If F (x) is not lattice and X has a finite mean µ, then :

(a) lim
k→∞

P{mk < x} = 1−m(b− x), x ≤ b

and

(b) lim
k→∞

P{Mk < x} = 1−m ∗ F (b− x + c), x ≤ b + c.

Proof. Result (a) follows from (2) and (4).
Result (b) follows from (a) and relation (1). �

Remarks. 1. It follows from the result that lim P{mk < 0} = 1 − m(b) and
lim P{Mk < b} = 1 − m∗F (c). When b and c are sufficiently large, then these
probabilities can be made as small as desired.
2. If X is concentrated in the interval [0, b′], then 1−m(b) = 0 for each b > b′.
3. Suppose X has the exponential distribution F (x) = 1 − exp(−x/µ) for x > 0.
In this case H(x) = F ∗(0) + x/µ and the d.f. of Y (t) equals F (x). For this special
case we have
P (mk ≤ x) = exp(−(b− x)/µ) (x ≤ b) and E(mk) = b− µ.
4. If E(X) is not finite, then the previous results do not apply. In this case instead
of limit laws for Y (t) one can consider limits for Y (t)/t , see e.g. Bingham et.al.
(1987, p. 361-364). Now only limit results for mk/k are available.

Finally we consider the rate of convergence in Lemma 2.3. To this end for u, v ≥ 0
we define R(u, v) = H(u + v) −H(u) − v/µ. Using (3) and the definition of m(x)
and R(u, v) it is straightforward to prove the following identity :

(5) P{Y (t) ≤ x} −m(x) =
∫ x

z=0
R(t + x− z, z)dF (x) + R(t, x)(1− F (x)).

For non-lattice d.f. F (x) and for fixed x, R(t, x) tends to zero as t tends to infinity.
The rate at which this occurs determines the rate of convergence in Lemma 2.3.
In order to formulate the next result, recall that a measurable positive function is
regularly varying at infinity and with index α (notation RVα) iff f(tx)/f(t) tends
to xα for each x > 0.

From Frenk (1983) we recall the following result.

Lemma 2.4 (Frenk (1983) Theorem 4.1.9) Suppose that X has an absolute contin-
uous d.f. F (x) and that 1− F (x) is RV−α with α > 1.
Then as t→∞, R(t, x) ∼ (1−m(t))/µ locally uniformly (l.u.) in x. �



410 J.Colpaert – E.Omey

Under the conditions of Lemma 2.4, 1−m(t) is RV1−α and 1−m(t + x) ∼ 1−m(t)
l.u. in x. It follows from (5), Lemma 2.4 and Lebesgue’s theorem that as t→∞,

(6) (P{Y (t) ≤ x} −m(x))/(1−m(t))→ F (x)/µ + (1− F (x))/µ = 1/µ, l.u. in x.

Specializing to mk and combining (2) and (6) we obtain the following result. A
similar result holds for Mk.

Lemma 2.5 Under the conditions of lemma 2.4, for x ≤ b as k →∞ we have

P{mk < x} = 1−m(b− x)− (1/µ + o(1))c1−α(1−m(k)).

�
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