
Rational tree relations

Jean-Claude Raoult

Abstract

We investigate forests and relations on trees generated by grammars in
which the non-terminals represent relations. This introduces some synchro-
nization between productions. We show that these sets are also solutions of
systems of equations, that they are described by rational expressions involving
union, substitution and iterated substitution, and that they are preserved by
residuals. We show that they are the images of k-copying descending trans-
ducers. Finally, we isolate a subset of these relations which is preserved by
composition.

1 Introduction

The rational transductions over a free monoid are relations satisfying several good
properties:

1. The identity I , the converse R−1 and the (associative) composition of rational
transductions are again rational transductions.

2. The image of a rational language is again a rational language. Together with
(1), this implies that the domain and range of a rational transduction are
rational.

3. The membership relation (x, y) ∈ R is decidable.

Received by the editors May 95.
Communicated by M. Boffa.
1991 Mathematics Subject Classification : 68Q42, 68Q45, 68Q50.
Key words and phrases : Tree automata, rationality, transductions, graph grammars.

Bull. Belg. Math. Soc. 4 (1997), 149–176

150 J.-C. Raoult

4. They accept several equivalent definitions: finite automata with output, gram-
mars of pairs of words, rational subsets of the square of the monoid, bimor-
phisms.

All these properties have been known long ago, and are used in several areas of
theoretical computer science. The definitions by grammars, or by bimorphisms, are
adapted to proving further properties. The definition using automata is used in
every lexical analyzer.

In the case of trees, the situation is not quite so neat (see Raoult [1992]). Surely
rational sets of trees are well defined and well-known (see Gecseg & Steinby [1984]):
a typical instance of a rational forest is the set of parse trees of a context-free gram-
mar. Also, plenty of definitions exist for finite state tree transformations. Most of
them use finite mechanical devices: finite automata with output. Engelfriet [1975]
sorts some of them into top-down or bottom-up tree transformations, which are in-
comparable in power, and yield by composition an infinite hierarchy. Vogler [1987]
allows the automaton to use a pushdown stack, thus extending its power and get-
ting an infinite hierarchy of tree transductions. Engelfriet & Vogler [1991] extend
further the definition to “modular tree transducers” which compute all the primitive
recursive functions on trees. These same functions had already been obtained by
Courcelle & Franchi-Zannettacci [1982] using strongly non circular attribute gram-
mars.

Restricting the power of transformations instead of extending it, Dauchet et
alii [1987] define ground tree transducers by the action of two finite automata, one
in the domain and one in the range. The relations computed in this way are preserved
by a number of operations, composition and iteration included. These relations are
essentially the same as the “regular bi-languages” of Pair & Quéré [1968]. They
are too particular to coincide with word transductions, when they are restricted to
monoids. A nice generalization by Dauchet & Tison [1992] of these ground tree trans-
ducers, in which a single finite automaton runs on a superposition of the input and
output trees, does extend the word transductions to the case of trees. Nevertheless
they leave out cases like the one shown in Fig. 1, given in Arnold & Dauchet [1982],
which can be obtained with an automaton with output.

c 2 1

c 4 3

6 5b

c

78

c

c

c

b

1

23

5 4

8 7 6

Figure 1: Equal numbers indicate equal subtrees. The relation
made of all these couples is not a transduction in the sense of
Dauchet and Tison [1992].

Rational tree relations 151

Another definition due to Arnold & Dauchet [1982] uses bimorphisms and co-
incides with non-erasing transductions when restricted to words. For instance, the
transformation of Figure 1 is definable in this way. Actually, Dauchet defines in his
thesis [1977] a very general form of tree transductions using two bimorphisms (i.e.
four morphisms), which coincides with rational word transductions when restricted
to words. We propose here yet another definition, the right one of course, which
is akin to Schreiber’s syntax connected transductions [1975]. Our definition mimics
the definition of word transductions, as in Berstel [1979] for instance. The basic
idea is to define tree relations recursively by tree grammars, but introducing some
synchronization between the productions of several non-terminals.

Example 1.1 For instance, the relation, say B(x, y), depicted in Figure 1 can be
defined in a Prolog-like form:

B(x, y) ⇐ x = y ∨ y = b(u, v)∧ C(x, u, v)

C(x, y, z) ⇐ x = c(u, v, w) ∧ y = c(u′, v′, w′) ∧ C(u, u′, v′)

∧v = w′ ∧ w = z

∨ x = b(u, v)∧ u = y ∧ v = z

The resulting transductions are the same as in Dauchet’s thesis, but we define
them more algebraically and, we hope, more intuitively.

Section 2 reviews the notation for trees, tuples of trees and graftings and defines
the topic of the paper: relations defined by grammars. In section 3, we show that
these relations can also be described by rational (regular) expressions, and derive a
pumping lemma. Nevertheless, unary relations (sets of trees) are more general than
rational forests. In section 4, we show that these equational relations are also images
of k-copying transducers. In section 5 a condition of desynchronization ensures
the stability under composition in such a way that the corresponding “rational
transductions” extend the rational transductions of words; this condition is shown
to be decidable on the grammar.

2 Grammars for relations

The definition in example 1 can be rewritten in order to stress the “tree-like” aspect
of the rules: 

B1B2 −→ C1 b(C2 C3) / I1I2

C1C2C3 −→ c(C1 I1 I ′2) c(C2 C3 I2) I ′2 / b(I1 I ′1) I2 I ′2
I1I2 −→ a(I1) a(I2) / e e.

The definitions below describe this notation.

Definition 2.1 Let F be an alphabet, or as the tradition has it, a set of “function
symbols” and X a denumerable set of “variables”. The set T * of tuples of trees (or
terms) over F and X is defined recursively by the following equation:

T * = {ε}+ X + FT * + T *T *

where the concatenation of sets denotes their cartesian product as is customary in
formal language theory, and is associative.

152 J.-C. Raoult

When F and X are not clear from the context, they are specified in the notation:
T (F, X)* instead of T *. The elements of X +FT * = T are trees: t = x or t = f(w);
those of {ε}+ T *T * are tuples of trees (possibly reduced to a single tree). And T *
is indeed the free monoid generated by T : T * =

∑
n>0 T n. It is easy to prove (see

next proposition), and it is essentially done in Pair & Quéré [1968], that T (F, X)* is
the free monoid over X with operators in F : this structure has two operations: one
binary and associative with a unit element (a monoid) and one for “multiplying” an
element w of the monoid by an operator f in F , yielding a new element f(w) of the
monoid. In the case of the free object T *, this multiplication consists in adjoining
a “root” labelled in F to a tuple t1 . . . tn (n > 0), yielding a tree f(t1 . . . tn).

A graded version is frequently used in conjunction with a representation of com-
posed functions: the set F of operators is graded: F =

∑
n∈IN Fn. The free monoid

T * is also graded by the length of its elements, the tuple t1 . . . tn being of degree,
or length, n. Then all trees t = f(w) are subject to the restriction that the length
n of w equals the degree of the operator f : f(w) ∈ T ⇒ (|w| = n ⇐⇒ f ∈ Fn).
In this context, tuples are sometimes denoted with parentheses and commas when
their elements are trees: (t1, . . . , tn) and f(t1, . . . , tn). We denote by X(w) the set of
variables of X occurring in the tuple w. This set is ordered by the first occurrence
of each variable when read from left to right.

The universal property of T * can be stated as follows

Proposition 2.2 Every mapping ϕ of X into a monoid M with operators in F
can be extended uniquely into a morphism of monoids with operators called again
ϕ : T (F, X)*→M .

Proof. The morphism ϕ is already defined over X and must satisfy the following
constraints, because it is a morphism.

ϕ(ε) = 1M ,

ϕ(uv) = ϕ(u)ϕ(v),

ϕ(f(u)) = f(ϕ(u)).

Conversely ϕ(w) is uniquely defined by structural induction on w by these rules.

In particular, let α : X → X be a bijective mapping. Then the generated
mapping α : T * → T * is called a variable renaming. The existence of a variable
renaming such that w′ = α(w) is an equivalence relation over T *. In this paper,
we shall group the variables of a tuple into sequences and manipulate a sequence
globally. Variable renaming will come in a different flavour to reflect this fact.

Definition 2.3 Given a set X of variables, a non empty sequence of distinct vari-
ables in X+ is called a multivariable. If A = A1 . . .An (n > 0), the multivariable A
has length n. The set of instances of variables (resp. multivariables) is the cartesian
product Xω (resp. X+ω) where ω is the set of natural numbers. More precisely,
(A, j) is the j-th instance of A, which we shall rather denote by Aj.

Note for instance that I3 = I3
1I

3
2 is the third instance of the multivariable I = I1I2,

but I2
1I3

2 is not an instance of I. Usually, A0, A1 and A2 will be written A, A′

and A′′. A bijection ω−→ω generates a bijection of T (F, Xω)* upon itself, called a

Rational tree relations 153

renaming of the instances. Two tuples will be considered equal if they correspond
by a renaming of instances. All tuples considered in this article will be linear: the
same instance of the same variable cannot occur twice in a tuple. Instances make
it possible to relate variables belonging to the same multivariable. For instance,
b(I1 I ′1) b(I2 I ′2) contains two instances of the multivariable I: I1I2 and I ′1I

′
2; but I1I

′
2

is not an instance of I.
A tuple in T (F, Xω)+ can be drawn as a tuple of trees together with a hyperarc

passing through Ak
1, . . . , Ak

n in this order and labelled by A. Thus the tuple

α = b(b(I1 I ′1) I ′′1) b(I2 b(I ′2 I ′′2)))

is drawn in Figure 2.

b

b b

b

I II

Figure 2: A graphical representation of b(b(I1 I ′1) I ′′1) b(I2 b(I ′2 I ′′2)).

Another application of the universal property: a mapping σ : X → T * extends
uniquely into a morphism σ : T *→ T * and is called a substitution if σ(x) = x for
all but a finite number of variables. If σ(x1) = v1,. . . , σ(xn) = vn and σ(x) = x for
all other variables x, the substitution σ is denoted by σ = [v1/x1, . . . , vn/xn] = [v/x]
where v = v1 . . . vn and x = x1 . . . xn. It is usually postfixed: u[v1/x1, . . . , vn/xn] =
uσ instead of σ(u). In this article, we only consider the graded versions of F and
T * and therefore we shall restrict to the case where xσ is a single tree (not a general
tuple) for all variables x in X. Since we restrict attention to linear tuples, the
substitution will be modified to become an internal operation: when we consider
u[v/x] it will be understood that the representative of v has been chosen such that
the instances of variables of v have been chosen greater, say, than all instances of
variables in u. It is easy to show that it is unique (up to renaming of its instances
of variables):

Proposition 2.4 Let u and v be two tuples of trees, let x be a multivariable, and
let α be a variable renaming. Suppose X(u) ∩X(v) = φ and X(u) ∩X(α(v)) = φ.
Then u[α(v)/x] = α(u[v/x]).

This is a well-known property of term substitution when the variable renaming
α restricted to the set X(u) of variables of u is the identity, and it does not even
require the linearity of u.

As a first result, if u and v are linear tuples, then u[v/x] is also linear.

Definition 2.5 Given a set X of variables, a production is a pair (A, α) in X+ ×
T (F, Xω)+ in which both sides have same length (|A| = |α|) and in which A and
α are linear. The multivariable A is the left-hand side and α the right-hand side.

154 J.-C. Raoult

A grammar is a finite set of productions in which the left-hand sides are equal or
disjoint and in which the instances of variables occurring in α can be grouped to
form instances of left-hand sides of the grammar: if Ak

i occurs in α and A1 . . . An is
a left-hand side then Ak

1, . . . , A
k
n occur in α.

Example 2.6 The following grammar is made of three productions for the non-
terminal A1A2, and represents a right rotation of AVL-trees (the first right-hand
side is drawn in Figure 2:

p : A1A2 −→ b(b(I1 I ′1) I ′′1) b(I2 b(I ′2 I ′′2))
q : I1I2 −→ a(I1) a(I2)
r : I1I2 −→ e e.

Definition 2.7 The step of derivation generated by a grammar G is defined as
follows

β−→
G

β[α/Aj]

if (A, α) is a production of G and Aj is an instance A in β. A derivation is a
sequence of steps of derivation, possibly empty.

As a basic case A1 . . . An−→
G

α for (A1 . . . An, α) ∈ G. This accounts for the fact

that productions will be denoted as single steps of derivations: A1 . . .An−→
G

α or

A−→
G

α. The subscript G will be omitted when the context makes it clear. In-

tuitively, the variables A1, . . . , An cannot be derived independently, but only syn-
chronously.

Note that if β and α are replaced by equal tuples (i.e. differing only by a renaming
of instances), the result β[α/Aj] changes only by a renaming of instances, and thus
represents an equal tuple. Finally note also that the derivation is an operation
preserving the length, so that all the tuples derived from a given tuple have the
same length.

We shall follow the standard terminology of formal language theory and call the
left-hand sides of the grammar non-terminals. Thus the set N of non-terminals is a
finite subset of X+. The language generated by a grammar starting from an axiom
α is

L(G, α) = {w ∈ T (F, Xω)+; α−→
G

*w

and non-terminals have no instances in w}.

Parse trees can be defined as follows.

Definition 2.8 Associate with each grammar G a tree grammar in the following
way. With each non-terminal A in G associate a unary non-terminal XA and for
each production A−→

G
α order arbitrarily the instances of non-terminals occurring

in α intothe sequence B1 . . . Bm. Associate with production p the tree production

XA−→ p(X1
B . . . Xm

B).

A parse tree for G is a tree generated by the tree grammar associated in this way with
G. The yield of a parse tree t is the tuple denoted by Y (t) and defined recursively:

Rational tree relations 155

1. if t = XB then Y (t) = B = B1 . . . Bp;

2. if t = p(t1, . . . , tm) then Y (t) = α[Y (t1)/B1, . . . , Y (tm)/Bm] with the above
notations for p.

Beware that the ordering of the instances of non-terminals in each right-hand
side, albeit arbitrary, in needed to define the yield. For instance, consider the
grammar given in example 2.6. The corresponding tree grammar is (for simplicity,
we set X = XA and Y = XI): 

X −→ p(Y Y Y)
Y −→ q(Y)
Y −→ r

where the first, second and third arguments of p correspond to I, I′ and I′′ respec-
tively. Then b(b(a(e) e) e) b(a(e) b(e e)) belongs to L(G, A) with parse tree p(q(r) r r)
(see figure 3 below). If the instances of non-terminals in the first production are
ordered with the reverse ordering, then the same parse tree has a different yield:
b(b(e e) a(e)) b(e b(e a(e))).

b b

b ba

e e ea

e

e

e p

rq

r

r

Figure 3: A couple generated by the grammar of example 2.6 and
its parse tree.

Of course, the grammar of parse trees is related to the original grammar by the
following expected result.

Proposition 2.9 The language generated by a grammar is equal to the set of yields
of all parse trees generated by the associated tree grammar.

Proof. By induction on the number of derivation steps, left to the reader.

What properties do we expect of these relations? To begin with, grammars may
be viewed as a systems of equations, as for context-free languages. The languages
generated by the grammar are the least solutions of the system. This is a corollary
of Habel’s and Kreowski’s work [1987] on hyperedge replacement systems (each
instance Aj of the non-terminal A can be considered as a hyperedge labelled A);
it could be rewritten in the framework of tuples of trees. Grammars admit also an
equivalent Greibach form: define the size ||w||F or simply ||w|| of a tuple of trees w
as the number of vertices labelled by function symbols. A grammar is in Greibach
normal form when each right-hand member, each production, has size one. Note

156 J.-C. Raoult

that this definition is different from Engelfriet’s definition [1992]: adapted to our
context, Engelfriet’s requirement is that all the roots at the right-hand sides are
labelled by terminal function symbols. This is a much stronger condition than the
existence of one root labelled by a terminal symbol. Our property being simpler, it
is not surprising that the proof that every grammar admits an equivalent Greibach
form is consequently shorter.

Lemma 2.10 Given a grammar, one can effectively deduce a grammar with the
same non-terminals, generating the same languages from the same non-terminals
and in which all right-hand sides have positive sizes.

Proof. In a first step, determine, for all non-terminals A, all the tuples α of size
0 (and of same length n as A) such that A →+ α. Such tuples belong to (Xω)n

(modulo variable renaming) and are therefore in finite number. In a second step,
for all production B−→β of G, for all instance Aj of A in β and for all α in
Xωn such that A →+ α (this has been determined in the first step), add to the
grammar the production B−→β[α/A]. Then remove all the productions of size
zero. The productions of the resulting grammar are derivations of G and generate
the same sets of tuples from the same axioms, as in the case of ordinary context-free
grammars.

Proposition 2.11 Given a grammar, one can effectively deduce a Greibach gram-
mar with an extended set of non-terminals, that generates the same languages from
the same non-terminals.

Proof. We may assume from lemma 2.10 that the grammar G contains only produc-
tions of positive size. Consider a production of size greater than one:

p : A−→
G

α

with α = β f(γ) δ where β, γ and δ are tuples of lengths a, b and c respectively.
Take a new non-terminal X of length a + b + c and replace production p by the two
productions  q : A−→

H
X1 . . . Xaf(Xa+1 . . . Xa+b)Xa+b+1 . . . Xa+b+c

r : X−→
H

βγδ

of sizes 1 and ||α|| − 1. The non-terminals of G are also non-terminals of H and H
generates the same sets of terminal tuples from the same axioms as G. Indeed, in one
direction it suffices to decompose every step of derivation p into the sequence qr. For
the converse, suppose that q appears in a derivation from a non-terminal of G: since
the only production of X is r, this derivation must contain production r. Modulo
reordering, one may assume that r follows q (because this is true for the grammar
of parse trees). Then the succession of q and r can be replaced by p. This ends the
proof by induction on

∑
A−→α ||α|| − 1.

The number of productions added in H during the third step is∑
(X−→α)∈G

||α|| − 1.

Rational tree relations 157

Corollary 2.12 One can decide whether a given tuple is generated by a given gram-
mar starting from a given non-terminal: the languages generated by our grammars
are recursive.

Proof. A tuple of size n is the result of a derivation of length n if the grammar is in
Greibach normal form. It is enough to check all derivations of length n.

3 Grammars generate rational languages

Three simple operations preserve the languages generated by our grammars: con-
catenation, union and projection. But note that the union is restricted: all tuples of
a generated language have the same length, that of the chosen axiom. This property
must be invariant.

Proposition 3.1 The languages generated by grammars are closed by concatena-
tions and by unions when languages are made of tuples of same length.

Proof. Without loss of generality, we suppose two grammars G and G′ having
disjoint sets of non-terminals and axioms S and S′ respectively. Let U be a new
non-terminal of length |S|+ |S′|. Then the grammar {U→ SS′}∪G∪G′ generates
from U the language L(G,S)L(G′,S′). And when |S| = |S′| let V be a new non-
terminal of length |V| = |S| = |S′|. Then the grammar {V→ S,V→ S′}∪G∪G′

generates from V the language L(G,S) ∪ L(G′,S′). Proof clear.

Proposition 3.2 The languages generated by grammars are closed by projections.
More precisely, given a grammar G one can deduce a grammar G′, called the gram-
mar of projections, such that for all tuples α and β of length n and all subset I of
[1, n]

α−→
G

β ⇐⇒ (prIα = prIβ or prIα−→
G′

prIβ).

Proof. Define the grammar G′ as follows. For all non-terminals A of G and all
non-empty subsets I = {i1, . . . , ip} of [1, |A|], introduce new non-terminals AI with
a renaming of variables AI,1 . . . AI,p = Ai1 . . .Aip. Thus the non-terminals AI and
AJ are disjoint even if I and J are not disjoint. The productions of AI are the
projections on I of the productions of A: one gets them from the productions of A
by erasing all trees of the right-hand side the ranks of which are not in I :

A−→
G

α⇒ AI −→
G′

prIα

where prIα = ti1 . . . tip if α = t1 . . . tn and I = {i1, . . . , ip} (i1 < · · · < ip) and in
which all partially erased instances Bk

j1
. . .Bk

jq of non-terminals B have been renamed

as instances of BJ : Bk
J,1 . . . Bk

J,q with J = {j1, . . . , jq}.
Consider now one step of derivation for G: β−→

G
γ = β[α/Aj] such that (A →

α) ∈ G and |β| = m, and let J be a non empty subset of [1, m]. Then let I be
the subset of [1, |A|] such that Aj

i occurs in prJβ if and only if i ∈ I . There are
two cases: if I = φ there is no variable of Aj remaining in the projection, and

158 J.-C. Raoult

prJβ = prJγ. If I 6= φ then there is a production in G′: AI −→ prIα, and therefore
there is a step of derivation under G′:

prJβ−→
G′

(prJβ)[prIα/Aj
I] = prJγ.

Conversely, the definition of G′ shows that every step of derivation for G′ is the
projection of a derivation step for G.

Consequently, 1) the projection on I of a derivation of a tuple in L(G, α) is a
derivation of a tuple in L(G′, prIα), for all α; and 2) conversely every derivation of a
tuple u in L(G′, prIα) is the projection of a derivation of a tuple β in L(G, α). If all
non-terminals in G can derive terminal tuples (G is “reduced”, and this assumption
does not restrict the generated languages), then β−→

G
*w and u = prIw.

In free algebras, grammars generate subsets that are solutions of polynomial
equations (see Mezei & Wright [1967] for instance, where equationality is called al-
gebraicity). These solutions also have “rational” (regular) descriptions. Rationality
(regularity) is well-known: it means stability under the union (denoted by +), under
some sort of binary product and under its iteration. In the case of words, this binary
product is the concatenation. In the case of free algebras, an analogue of concatena-
tion might be any given binary operator (not even associative: see Steinby [1984]).

In the case of trees, though, the operation that corresponds most closely to
concatenation is tree substitution. It is also associative, and coincides with concate-
nation when words are represented by filiform trees. To study this operation, we
define an operation L ·A L′ extending the substitution as follows.

Notation 3.3 Given a tuple u in T (F, Xω)* containing k instances A1, . . . , Ak of
a multivariable A = A1 . . .An in X+ and a language L ⊆ T (F, Xω)n we define the
language u ·A L as the set

u ·A L = {u[v1/A
1, . . . , vk/A

k]; v1, . . . , vk ∈ L}.

And given L′ ⊆ T (F, Xω)*, we define by additive extension

L′ ·A L =
⋃
u∈L′

u ·A L.

Remark that different instances of the same multivariable may be replaced by
possibly different tuples from L.

Example 3.4 For instance if L = {an(e) an(e); n > 0} and I = I1I2 then

b(b(I1 I ′1) b(I2 I ′2)) ·I L = {b(b(an(e) am(e)) b(an(e) am(e))); m, n > 0}.

Note also that u ·AL is the language generated from the axiom u by the (infinite)
grammar {A → v; v ∈ L} in the case where A has no instance in the tuples of L.
As a consequence, assuming that B is a multivariable having no instance in u and
L′ is a language of tuples of length |B|, the following associativity relation holds

(u ·A L) ·B L′ = u ·A (L ·B L′).

Rational tree relations 159

Notation 3.5 Given L ⊆ T (F, Xω)n and a n-ary multivariable A = A1,. . . , An,
the languages got by iterated substitution of L for A in A and in L are the least
solutions of

L∗A = {A} + L ·A L∗A,
L+A = L + L ·A L+A .

The following two equalities are easy to prove, using the explicit construction of the
least solution:

L∗A =
⋃
n(A + L) ·A . . . ·A (A + L) (n times),

L+A = L ·A L∗A .

Definition 3.6 The set Ratn of rational languages of tuples of length n is the
smallest set of languages containing the finite languages of n-tuples and closed by
the following operations:

1. L ∈ Ratn & M ∈ Ratn ⇒ L ∪M ∈ Ratn.

2. L ∈ Ratn & |X| = m & M ∈ Ratm ⇒ L ·X M ∈ Ratn.

3. L ∈ Ratn & |X| = n⇒ L∗X ∈ Ratn.

The family Rat of rational languages over F and Xω is the union of all Ratn (n > 0).

The following result is expected.

Proposition 3.7 A language L of n-tuples is rational if and only if it is generated
by some grammar G starting from some axiom A1 . . . An = A

L ∈ Ratn ⇐⇒ (∃G, A1 . . . An) L = L(G, A1 . . . An).

Proof. The “only if” part: finite languages can obviously be generated by gram-
mars and proposition 3.1 already ensures preservation of languages generated by
grammars under finite unions.

The case of substitution: Consider two grammars G and G′ having disjoint non-
terminals and let X = X1 . . . Xn be a multivariable of length n = |S′|. Note first
that if a multivariable X1 . . .Xn has an instance Xj

1 . . . Xj
n in L(G,S) then this

instance comes in a whole from an instance of X1 . . . Xn in some production A−→
G

α.

Otherwise, the various variables occurring in the multivariable would have different
instances, because of the definition of the step of derivation, which introduces new
instances of variables. Then the language L(G,S) ·X L(G′,S′) is generated by the
grammar G ∪ {X→ S′} ∪G′ starting from the axiom S of G. Or alternatively, one
may consider the grammar G∪G′ in which all instances of X in the productions of
G have been replaced by different instances of S′. The proof is the same as the proof
of preservation of context-free (word) languages by substitutions (cf. for instance
Hopcroft & Ullman [1979], th. 6.2 p. 131), or the proof of the same property for
trees (in Gecseg & Steinby [1984], th. 4.6).

The case of iterated substitution: Let L(G,S) be, as before, a language generated
by G starting from S, and X = X1 . . .Xn be a multivariable of length n = |S|. The
relation got by iterated substitution of L(G,S) for X in X is generated by the

160 J.-C. Raoult

following grammar: add a new non-terminal R of length |X| to G and replace in
G all instances of X by R. Define G′ as the set of all these modified productions
together with the productions R−→S and R−→X. Then L(G′,R) = L(G,S)∗X .
The proof is the same as for trees (cf. Gecseg & Steinby [1984] th. 4.8, p. 76).

Conversely, the “if” part is easy once one has noticed that the parse trees for
a grammar G make a rational set of trees, and that the correspondence between
the languages of parse trees and the languages of their yields preserves the rational
operations over the sets of parse trees. More precisely, the yield of a tree-language
is defined as the set of all yields of the trees of the language:

Y (K) = {Y (t); t ∈ K}

and the rational operations over the tree-languages are defined as follows:

K + K ′ = K ∪K ′,

K ·A K ′ =
⋃
t∈K

t ·A K ′,

K∗A = {A}+ K ·A K∗A ,

=
⋃
n>0

(A + K) ·A · · · ·A (A + K) (n times).

The correspondence is given by the following lemma.

Lemma 3.8 Let G be a grammar of tuples in which the non-terminal X has no
production, and K and K ′ be two sets of parse trees for G. Then
Y (K + K ′) = Y (K) + Y (K ′), where the symbol + denotes the union,
Y (K ·X K ′) = Y (K) ·X Y (K ′) and
Y (K∗X) = Y (K)∗X.

Proof. The first equality is a direct consequence of the definition of Y (K). It is
enough to prove the second by induction on a tree t in K.

Base case: if t = X then Y (X ·X K ′) = Y (K ′).
General case: if t = p(t1, . . . , tn) where p : A−→α and α contains the instances

of non-terminals B1, . . . , Bm (possibly X is among them), then by definition of the
operation ·X one has

t = p(t1, . . . , tm) ·X K ′ = p(t1 ·X K ′) . . . (tm ·X K ′)

and by induction hypothesis

Y (ti ·K ′) = Y (ti) ·X Y (K ′).

Then by definition of the yield

Y (t ·X K ′) = α[Y (t1 ·X K ′)/B1, . . . , Y (tm) ·X Y (K ′)/Bm].

By associativity of substitution and from the definition of Y (t) again:

Y (t ·X K ′) = α[Y (t1)/B1, . . . , Y (tm)/Bm] ·X Y (K ′)

= Y (t) ·X Y (K ′).

Rational tree relations 161

To prove the third equality, we notice that

Y [(X + K) ·X · · · ·X (X + K)] = [X + Y (K)] ·X · · · ·X [X + Y (K)] (n times)

by induction on n. Hence:

Y (K∗X) = Y (
⋃
n>0

(X + K) ·X · · · ·X (X + K)

=
⋃
n>0

[X + Y (K)] ·X · · · ·X [X + Y (K)]

= Y (K)∗X .

This ends the proof of the lemma.

Consider now a grammar G. The set of all parse trees for G is generated by the
associated grammar defined in section 2. Therefore it is a rational forest, described
by a rational expression (cf. Gecseg & Steinby [1984]). The same expression in
which the elementary trees are replaced by their yields describes all the lists of trees
having a parse tree in the forest: the language generated by the grammar.

This proposition is a slight refinement of theorem 4.3 of Habel & Kreowski [1987]
in the particular case of tree relations. Henceforth we shall call “rational” the
languages of the form L(G,A) for some grammar G and some axiom A.

This correspondence between the parse trees and their yielded relation also gives
an easy pumping lemma: a criterion of non-rationality.

Lemma 3.9 To every grammar G is associated a number N such that every tuple
u ∈ L(G,A) having at least N occurrences of symbols from F has a decomposition
u = α ·B β ·B v in which α and β have only one instance of B, with ||β|| > 0 and
α ·B (β)∗B ·B v ⊆ L(G,A).

Proof. Without loss of generality, we restrict to grammars having no production of
size zero (see Proposition 2.11 section 2). Then apply the pumping lemma to the
rational set of parse trees (see Gecseg & Steinby [1984] lemma 10.1 p.109): all parse
trees t of sufficient depth (at least the number of non-terminals) can be decomposed
into

t = t1 ·B t2 ·B t3

with t1 and t2 containing a unique instance of B and t2 of depth at least one, such
that t1 ·B (t2)

·kB ·B t3 is again a parse tree for G, for all k. Hence the result with
α = Y (t1), β = Y (t2) and v = Y (t3). To ensure that a parse tree t of u has depth
at least m, it is enough to assume that the size ||u|| of u is at least gdm where g is
the maximum size of right-hand sides of G, d is the maximum number of instances
of non-terminals occurring in the right-hand sides (the maximum out-degree of the
vertices of the parse trees) and m is the number of non-terminals. Indeed, a parse
tree of depth p has at most dp vertices and its yield has size at most gdp since every
production increases the size by g.

From this lemma we can deduce for instance that the set of perfect binary trees
(binary trees having all their leaves at the same depth) is not rational, because B in
β has a fixed length n. Actually, this set is not even algebraic in the classical sense.

162 J.-C. Raoult

Algebraic and rational relations are incomparable: the set of trees of the form anbn(e)
for n > 0 is algebraic (generated by the grammar f(x)−→ a(f(b(x))) / x starting
from f(e)) but it is not rational, with the same proof as for the non-rationality of
the language anbn; n > 0. On the other hand, the forest

{f(an(e) bn(e)); n > 0} = f
(
(a(x) b(y))∗xy ·xy e e

)
is generated by the following grammar:{

A → f(I1 I2)
I1I2 → a(I1) b(I2) / e e

and described by the expression f
(
(a(x) b(y))∗xy ·xy e e

)
: it is rational but not alge-

braic.
We mention finally that rational languages are preserved under some restricted

converse of the substitution: the residual operation, defined as follows.

Definition 3.10 Given a subset L of T (F, Xω)+ and a linear tuple u in T (F, X)+

containing the sequence of variables x, the residual of L under u is the set

u−1L = {w ∈ T (F, Xω)|x|; u[w/x] ∈ L}.

This definition leads to the following result.

Proposition 3.11 From a grammar G, a non-terminal A and a linear tuple u ∈
T (F, X)+ of same length, one can deduce a grammar G′ and a non-terminal [u−1A]
such that

[u−1A]−→
G′

nv ⇐⇒ A−→
G

nu[v/x]

where x is the sequence of variables occurring in u, for all v containing no instance
of a non-terminal.

Proof. It is known that given two terms s and t in T (F, X) which are compati-
ble (there exist two substitutions σ and τ such that sσ = tτ), there exist terms
r(x1, . . . , xp, y1, . . . , yq) and s1, . . . , sp and t1, . . . , tq satisfying{

s = r(s1, . . . , sp, y1, . . . , yq)
t = r(x1, . . . , xp, t1, . . . , tq).

Its extension to tuples of terms is immediate, and can be proved by induction using
proposition 2.2. We shall use it as follows. Define a new grammar G′ having the
non-terminals [v−1B] for all non-terminal B of G and all linear tuples v such that vi
is a variable or a subterm of u (there is only a finite number of such non-terminals).
We shall define the productions of [v−1B] in order to ensure

[v−1B]−→
G′

nw ⇐⇒ B−→
G

nv[w/x] (n > 0).

Start from the derivation on the right and isolate the first step:

B−→
G

α−→
G

n−1v[w/x]. (∗)

Rational tree relations 163

Then α and v are compatible: there exist tuples s, t and r(y z) where y is a subse-
quence of x (in v) and z a sequence of variables of α such that{

v = r(y t)
α = r(s z).

Replacing in α
n−1−→
G

v[w/x] and simplifying by the prefix r we get

s z
n−1−→
G

(y t)[w/x].

For all instance Bk of a non-terminal in α (or equivalently in s z), call tk the |Bk|-
tuple such that tki = xi if Bk

i is a variable in s, and tki is the subtree of t substituted
for Bk

i if Bk
i is a variable of z (these tuples are concatenations of sub-tuples of v

hence are in finite number). Define the production of G′ associated with v and
B−→

G
α as

[v−1B]−→
G′

(s z)[. . . , [(tk)−1Bk]/Bk, . . .].

Then derivation (∗) exists if and only if [(tk)−1Bk] derives wk, the tuple substituted
to the subsequence xk of variables of x occurring in tk, hence the result by induction
on n.

4 Grammars and finite copying transducers

Recall the definition of a tree transducer (actually a top-down, or root-to-frontier
tree transducer, see for instance Gecseg & Steinby [1984]).

Definition 4.1 Given a ranked alphabet of function symbols F and a set X of
variables, a top-down tree transducer on T (F, X) (we shall omit ‘top-down’) is a
finite set Q of unary states together with a finite set of rules of the form

qf(x1 . . . xn) ` t(q1xi1, . . . , qpxip)

where q ∈ Q, f ∈ F , n is the degree of f , x1, . . . , xn are distinct variables in
X, t ∈ T (F, Q{x1, . . . xn}) and q1xi1, . . . qpxip are the elements of Q{x1, . . . , xn}
occurring in t from left to right.

Note that instead of the strict notation q(x) for a unary q, we allow the shorter qx.
The rule above generates a relation on T (F ∪Q, X) by substitution of t1 for x1,. . . tn
for xn (to apply the rule at the root):

qt = qf(t1 . . . tn) `τ t(q1ti1, . . . , qptip)

and by addition of a context (to apply the rule below the root):

t `τ t′ ⇒ f(t1 . . . t . . . tn) `τ f(t1 . . . t′ . . . tn)

for all function symbol f ∈ F an all trees t1, . . . , tn. The name τ of the transducer
may be omitted if no ambiguity results. Once τ is given, a state q defines the relation

164 J.-C. Raoult

L(τ, q) ⊆ T (F)× T (F) which contains all pairs (s, t) such that qs `+ t (there is no
state left in t):

L(τ, q) = {(s, t) ∈ T (F, X)× T (F, X); qs `+
τ t}.

Transducers τ come usually equipped with a distinguished initial state q0 and in
this case the relation defined by τ is L(τ, q0).

If in the definition of the transducer all the rules satisfy t = f(x1 . . . xn) then
the transducer is a F -automaton and its domain is the language recognized by
the automaton. Any transducer τ induces an automaton over

⋃
n{(f, i); f ∈

Fn and 1 6 i 6 n}, and which has states in the set Q* of sequences of states
of τ by q1 . . . qd `(f,j) q(j,1) . . . q(j,hj) (hj > 0 and q(j,i) ∈ Q for i = 1, . . . , hj) if there
exist d rules qif(x1, . . . , xn) `τ ri (for i = 1, . . . , d) such that q(j,1)xj . . . q(j,hj)xj is the
sequence of all occurrences of elements of Qxj in the sequence r1 . . . rd (cf. Engelfriet
et al. [1980], def. 3.1.8). This automaton is restricted to the states accessible from
the sequence q0.

Definition 4.2 A tree transducer is k-copying if and only if its induced automaton
restricted to the states accessible from the initial state of the transducer, has set of
states included in 1 + Q + · · ·+ Qk.

This is essentially definition 3.1.9 of Engelfriet et al. [1980].

Example 4.3 Consider the transducer having set Q = {A, B1, B2, C1, C2} of states
and the following rules:

Ap(x) ` a(B1x, B2x)
B1q(x, y) ` b(B1x, C2y)
B2q(x, y) ` b(B2x, C1y)

B1r ` d
B2r ` d

C1s(x) ` c(d, B1x)
C2s(x) ` B2x

C1t ` d
C2t ` d

This transducer induces the following automaton:

(A)p(x) ` p((B1B2)x)
(B1B2)q(x, y) ` q((B1B2)x (C2C1)y)
(B2B2)q(x, y) ` q((B2B1)x (C1C2)y)

(B1B2)r ` r
(B2B1)r ` r

(C1C2)s(x) ` s((B1B2)x)
(C2C1)s(x) ` s((B2B1)x)

(C1C2)t ` t
(C2C1)t ` t

in which we have only computed the transitions of states accessible from A. This
automaton has states in 1 + Q + Q2: the transducer is 2-copying.

Rational tree relations 165

When the states of the induced automaton belong to 1 + Q the rules of the
transducer do not duplicate any variable: no subtree is duplicated during the trans-
ductions.

Proposition 4.4 With every pair of a k-copying tree transducer and an initial
state q0 can be associated a grammar G in which non-terminals have length at most
k + 1, and a non-terminal Xq0 such that L(G,Xq0) = L(τ, q0). Hence, this relation
has a rational range.

Proof. Given a transducer τ over an alphabet P , with set Q of states, one defines
the following grammar G: for all state sequence u = q1 . . . qd (0 6 d 6 k) introduce
a non-terminal Xu = Xu,0Xu,1 . . . Xu,d of length d + 1 with productions

Xu−→
G

p(Xv1,0 . . . Xvm,0) r′1 . . . r′d

if there exist d rules:

qip(x1 . . . xm) `τ ri (i = 1, . . . , d)

where r′i is deduced from ri as follows. In the tuple r1 . . . rd, denote by q(j,1)xj
. . . q(j,hj)xj the sequence of subtrees of depth one having leaves equal to xj (it is
the sequence used in the definition of the induced automaton). To shorten no-
tations we denote by vj the sequence of states q(j,1), . . . , q(j,hj). Then the tuple
r′1 . . . r′d is deduced from the tuple r1 . . . rd by replacing the sequence of subtrees
q(j,1)xj, . . . , q(j,hj)xj by the non-terminal variables Xvj ,1, . . . , Xvj ,hj , for j = 1, . . . , m
(the first such variable is Xvj ,1 because Xvj ,0 is the j-th argument of p).

We shall prove the following equivalence for all trees t, t1, . . . , td in T (F) and all
sequences u = q1 . . . qd in 1 + Q + · · ·+ Qk:

Xu−→
G

+tt1 . . . td ⇐⇒ qit `+
τ ti (i = 1, . . . , d).

The proof is by induction on the size ||t|| of t. If t = p(s1 . . . sm) for m > 0 (m = 0 is
the base case), then for having q1t `+ t1, . . . , qdt `+ td it is necessary and sufficient
that the following three conditions be satisfied.

1. There exist d rules qip(x1 . . . xm) `τ ri(q1xi1, . . . , qpxip) for i = 1, . . . , d which
are the first steps of each transduction;

2. the subtrees si transduce to terms in T (F, X): qijsij `τ *aij

3. which are subterms of the ti: ti = ri(ai1, . . . , aipi) (for i = 1, . . . , d).

Then by definition of the associated grammar, the first condition is equivalent to
the next one:

1′. There exists a production in G:

Xq1...qd −→
G

p(Xv1 ,0 . . . Xvm,0) r′1 . . . r′d.

The second condition is now equivalent (by induction hypothesis) to
2′. Xv1 −→

G

+s1a(1,1) . . . a(1,h1), etc. down to Xvm −→
G

+sma(m,1) . . . a(m,hm).

166 J.-C. Raoult

The conjunction of conditions 1′, 2′ and 3 is in turn equivalent to

Xq1...qd −→
G

p(Xv1,0 . . . Xvm,0) r′1 . . . r′d

−→
G

* p(s1 . . . sm) r1(a1, . . . , ap1) . . . rd(a1+pd−1
, . . . apd)

= tt1 . . . td

As a particular case one gets the following equivalence for all state q and all trees s
and t:

qs `+
τ t ⇐⇒ Xq −→

G

+ s t.

There remains to be checked that we introduce only a finite number of productions.
But we have proved that if the left-hand side of the grammar is the non-terminal
Xu then the non-terminals in the right-hand sides are Xv1 , . . . ,Xvm where u ` vj
is a rule of the automaton. Therefore the grammar is finite if and only if there is
only a finite number of non-terminals accessible from the axiom Xq0 if and only if
the transducer is k-copying for some k. The range of the relation is the projection
of L(G,Xq0) got by erasing its first components, hence the result.

We shall now prove the following partial converse.

Proposition 4.5 From any grammar G one can deduce a transducer τ having as
state set the set of all variables of the non-terminals of G, having as domain the set
of all the parse trees of the grammar, and such that t1 . . . tn ∈ L(G, A1 . . . An) if and
only if for some parse tree s, one has Ais `τ ti for i = 1, . . . , n.

Proof. In order to prove this proposition we shall first show an example then prove
a technical lemma. Given a grammar G, the associated transducer τ is defined as
follows. Its input alphabet is the set P of names of productions in G. Its output
alphabet is the terminal alphabet of G. Its set of states is the set of variables
occurring in the non-terminals: Q = {Ai; A1 . . . An ∈ N}. Its rules are

Aip(x1 . . . xm) ` ri[. . . , B
j
`xj/B

j
` , . . .]

for ` = 1, . . . , |Bj| and j = 1, . . . , m whenever there exists a production

p : A1 . . . An−→
G

r1 . . . rn

in which occur the instances B1,. . . , Bm of non-terminals.

Example 4.6 Consider the following grammar G:

p : A −→ a(B1 B2)
q : B1B2 −→ b(B1 C2) b(B2 C1)
r : B1B2 −→ d d
s : C1C2 −→ c(dB1)B2

t : C1C2 −→ d d.

The associated tranducer is given in example 4.3. For instance, the tree

a(b(b(d d) d) b(b(d c(d d)) d))

Rational tree relations 167

has p(q(q(r s(r)) t)) as parse tree and has the following derivation:

Ap(q(q(r s(r)) t)) −→ a(B1q(q(r s(r)) t)B2q(q(r s(r)) t))
−→ 2 a(b(B1q(r s(r))C2t) b(B2q(r s(r))C1t))
−→ 4 a(b(b(B1r C2s(r)) d) b(b(B2r C1s(r)) d))
−→ 4 a(b(b(dB2r) d) b(b(d c(dB1r)) d))
−→ 2 a(b(b(d d) d) b(b(d c(d d)) d)).

When the construction of proposition 4.4 is applied to the resulting tree trans-
ducer, the grammar which is built is easy to get directly from the original gram-
mar: for each non-terminal A = A1 . . .An of G define a non-terminal XA =
XA,0XA,1 . . . XA,n of G′ (with |XA| = |A|+ 1) and for each production

p : A−→
G

(r1, . . . , rd)

of G define a production of G′

p′ : XA−→
G′

p(XB1,0 . . . XBm,0) r′1 . . . r′n

in which r′i is deduced from ri by replacing every variable Bj
` of a non-terminal Bj

by the variable XBj ,` of the corresponding non-terminal in G′. The construction of
this associated grammar makes it clear that the projection of the language generated
from any non-terminal XA got by erasing the first tree is L(G,A). The next lemma
states the correspondence.

Lemma 4.7 Given a grammar G, define the corresponding transducer τ as above;
then construct the grammar G′ deduced from τ as in proposition 4.4. Then G′ is
the grammar directly deduced from G as above.

Proof. Production p and its n corresponding rules in τ are shown below

p : A−→ r1 . . . rn ⇐⇒ Aip(x1 . . . xm) ` r′i (i = 1, . . . , n)

in which r′1 . . . r′n is deduced from r1 . . . rn by replacing Bj
` by Bj

`xj. Then the
grammar G′ corresponding to the transducer τ by proposition 4.4 has non-terminals
Xu of length n + 1 for all sequences of states u = q1 . . . qn, and productions

Xu−→
G′′

p(Xv1,0 . . . Xvm,0) r′′1 . . . r′′n

if there exist n rules of the transducer

qip(x1 . . . xm) `τ r′i (i = 1, . . . , n)

and the tuple r′′1 . . . r′′n is deduced from r′1 . . . r′n by replacing the sequence of sub-
terms q(1,1)x1, . . . , q(1,h1)x1 by the non-terminal variables Xv1,1, . . . , Xv1,h1 , etc, the
sequence q(m,1)xm,. . . , q(m,hm)xm by the non-terminal variables Xvm,1, . . . ,Xvm,hm .

By definition of τ , the sequence of subterms q(j,1)xj, . . . , q(j,hj)xj is equal to Bj
1xj,

. . . , Bj
mj

xj, so that the corresponding non-terminal in G′ is Xvj of length hj + 1.
This also proves that the transducer τ is k-copying, where k is the maximum length
of the non-terminals in G.

168 J.-C. Raoult

Proposition 4.5 above is an easy consequence of this lemma. Propositions 4.4 and
4.5 together with an inspection of the lengths of the non-terminals of the implied
grammars yield the following connection, which was the aim of this section.

Proposition 4.8 Rational relations generated by grammars in which non-terminals
have length bounded by k are exactly the ranges of k-copying top-down tree trans-
ducers.

5 Composition of relations

We consider now languages in T (F)p+q as binary relations in T (F)p × T (F)q in
order to investigate their behavior with respect to composition. The first (resp. the
second) projection will be understood to be pr1 : T (F)p × T (F)q → T (F)p (resp.
pr2 : T (F)p × T (F)q → T (F)q). To explicit these two projections, attach to each
non-terminal X a subset I of [1, |X|] indicating which of its variables Xi are in the
first projection: those satisfying i ∈ I ; those that are in the second projection satisfy
i /∈ I . Without loss of generality we shall assume, modulo renaming the variables
of each non-terminal, that I = [1, p] and I = [p + 1, p + q]. This assumption allows
to write X = XsXd where Xs is the sequence of variables in the first projection
(sinistra) and Xd is the sequence of variables in the second projection (dextra).

The following operation on grammars, using complete derivations for produc-
tions, will be used in the sequel.

Definition 5.1 Given two grammars G and H over the same non-terminals, the
grammar GH has same non-terminals and productions

A−→α[β1/B
1, . . . , βm/Bm]

where A−→
G

α, where B1, . . . ,Bm are all the instances of non-terminals in α, and

where Bj −→
H

βj for j = 1, . . . , m.

In particular, terminal productions of G (m = 0) belong to GH. As usual
we denote G1 = G and Gk = Gk−1G for k > 1. It is straightforward to show
L(Gk, A) = L(G, A) for all k > 0 and all non-terminal A, as with words.

Begin with two rational relations having recognizable projections in the sense of
Pair & Quéré [1968], or of Gecseg & Steinby [1984] when the length of the projections
is one. Their composition need not have the same property, and need not even be
rational, as in the following example.

Example 5.2 Consider the relations generated by A and X. Here a and b have
arity one and zero, so that these relations are actually relations on words.{

A1A2A3 = a(A1)A2 a(A3) + a B1 a(B2)
B1B2 = b(B1) b(B2) + b b,{

X1X2X3 = b(X1)X2 b(X3) + b(Y1)Y2 b
Y1Y2 = a(Y1) a(Y2) + a a.

The relations L(G,X) ⊆ T ×T 2 and L(G,A) ⊆ T 2×T have both projections recog-
nizable: L(G,X) = {(bman, an, bm); n, m > 0} and L(G,A) = {(an, bm, anbm); m, n >

Rational tree relations 169

0}. The composition is {(bman, anbm); m, n > 0} which is not rational. What hap-
pens here is that two variables of A (and of X) are allowed to occur at unbounded
depths while the third variable remains at a fixed depth, remembering in some way
a synchronization to come between variables at arbitrarily distant depths. The
definition below will rule out this situation.

Definition 5.3 A relation in T p×T q is called a transduction when it is generated
by a grammar G such that in some power Gk of G, all the non-terminals occurring
in the right-hand sides have all their variables in two trees at most, one in each
projection of the relation. Such a grammar is called a transduction grammar.

This definition implies that each non terminal X of the grammar has been de-
composed into XsXd indicating which variables are in which projections. The first
and second projections of a transduction grammar generate recognizable languages
because each projection is equivalent to a grammar in which all non-terminals have
length one. But the grammars defined in example 5.2 above are not transduction
grammars. Yet, they have recognizable projections.

Transduction grammars are a recursive subset of all the grammars:

Proposition 5.4 It is decidable whether a grammar G is a transduction grammar.

Proof. If a grammar G is not a transduction grammar, then the first projection of G
(or the second) satisfies the following assertion: for all k, there is a right-hand side
t1 . . . tp of pr1G

k and a non-terminal X having two variables in two different trees
tk1 and tk2 of this right-hand side. These two variables Xi and Xj occur in two trees
produced by two variables Yp and Yq of some non-terminal Y in some right-hand
side of Gk−1. And so forth, up to two variables in two trees of a right-hand side
of G. We have therefore k − 1 pairs of variables belonging to the non-terminals of
G. Choose k = 2 +

∑
X∈N |X|(|X| − 1), computable from G. Then there cannot

exist k−1 different pairs of variables; so there must exist a non-terminal X and two
variables Xi and Xj of X such that

X−→
G

` t1 . . . t|X|

for some ` 6 k and Xi occurs in ti and Xj occurs in tj. Conversely, if such a
derivation exists for a projection of G then G clearly cannot be a transduction
grammar. All such derivations can be checked for this condition on G, and therefore
it is decidable whether G is not a transduction grammar.

We introduce now a notation which will be used throughout the rest of the
section.

Notation 5.5 Given a tree t in T (F, Xω) and a grammar, we consider the set of
non-terminals having a variable in t. This set is ordered by left to right ordering
in t of their first variable (in our case, each non-terminal will have a single variable
in t): X1, . . . ,Xm. Then we set

ν(t) = πt(X
1
1 . . . X1

p1
. . .Xm

1 . . . Xm
pm)

170 J.-C. Raoult

where

πt(X
j
i) =

ε if Xj
i occurs in t

Xj
i otherwise

We call ν(t) the sequence of variables attached to t.

Intuitively, ν(t) is the sequence of non-terminals having a variable in t in which
this variable has been erased (see figure 4).

Y
Y

Y

Z

ZZXYX 11

2

42 3

X

2

3 1 3

t

Figure 4: An example of variables attached to a tree. Here ν(t) =
Y1Y4X1X2Z2Z3

Proposition 5.6 Every transduction can be generated by a transduction grammar
in which all non-terminals have only one variable in the first projection (resp. in
the second projection).

Proof. Provided that we replace G by some power Gk, we may assume that all non-
terminals have their variables in at most two trees, one in each projection. Make the
projections visible in the style indicated at the beginning of the section: all tuples
α are factorized into α = αsαd.

Next, split each production p : AsAd → αsαd = t1 . . . tkαd in two: in a first step,
the second projection αd is produced alone; in a second step, the first projection αs
is generated: for all i = 1, . . . , k introduce a new non-terminal iP of length 1+ |ν(ti)|
and define β as αd in which all the variables in ν(ti) have been renamed iP2,i P3,
etc. for all i. Now, introduce the following production in a new grammar H:

p′ : A−→
H

1P1 . . . kP1 β,

and the unique productions of the new terminals iP in another grammar K:

iP−→
K

ti ν(ti).

The composition of p′ followed by these k new productions is equal to p. Or again,
we have HK = G. But now, the non-terminals iP have a unique variable in the first
projection. Replacing the non-terminals of G by their productions in H consists in
considering KH. The resulting grammar is the union of KH and of the productions
in H of the non-terminals of G. It generates the same languages from the same
non-terminals as G and satisfies the required condition.

Rational tree relations 171

Notice that (KH)(KH) = KGH so that the resulting grammar is again a trans-
duction grammar. This proposition has the following corollary.

Corollary 5.7 The first (and the second) projection of a transduction grammar
generates from any non-terminal a finite union of concatenations of recognizable
tree-languages.

Proof. The first projection of a transduction grammar generates the same languages
from the same non-terminals as a grammar in which all non-terminals have only
one variable. The languages generated starting from each of these non-terminals are
recognizable tree-languages in the sense of Gecseg & Steinby [1984].

We are now in a position to prove our main result.

Theorem 5.8 The transductions contain the identity and are preserved by con-
verse and composition.

Proof. The identity is defined by a grammar of transduction, and definition 5.3
is symmetrical with respect to the first and the second projections: transductions
are closed by taking the converse. There remains to show the stability under com-
position. Suppose two transductions grammars G and H. Using proposition 5.6
we assume that all non-terminals occurring in the right-hand sides of G have at
most one variable in the second projection, and that all non-terminals occurring in
the right-hand sides of H have at most one variable in the first projection. To be
short, we denote by α ◦ β what is in fact L(G, α) ◦ L(H, β). The basic situation
will be the following: with every pair (A, t) of a non-terminal A = A1 . . . An of
G and a subtree t of ξs, where X−→

H
ξsξd, we associate a non-terminal L of length

` = n− 1+
∑i=m
i=1 |Xi| − 1 where X1, . . . , Xm are the non-terminals having variables

in t. This non-terminal L is actually a new name for the variables of Asν(t):

A1 . . . An−1 ν(t) 7→ L1 . . . L`

and it will generate A ◦ tν(t). Symmetrically, for all non-terminal X of H and all
subtree t′ of αd, where A−→

G
αsαd, we associate with the pair (t′,X) the non-terminal

L′ which must generate ν(t′) t′ ◦ X. There is only a finite number of such non-
terminals. The method consists in remarking that for L to generate A ◦ t ν(t) using
productions of G or of H, the non-terminal A is “late” and should generate at its
occurrence Ad = An some tree having t as a prefix. Proceed by necessary conditions.
There must exist a production A−→

G
α = αs αd such that t and αd are compatible:

in this case there exist unique trees r(x1, . . . , xp, y1, . . . yq), t1, . . . , tp, t
′
1, . . . , t

′
q such

that {
t = r(t1, . . . , tp, y1, . . . , yq)

αd = r(x1, . . . , xp, t
′
1, . . . , t

′
q).

Note that t and αd are linear, that ti is a subterm of t, hence of ξ, and that t′j is
a subterm of αd, hence of α. Introduce the following production associated with
A−→

G
α = αs αd:

L−→
K

α′ z

172 J.-C. Raoult

obtained from αs ν(r) by renaming the variables in the following way. At each
variable xi of r, there is a variable Bm belonging to an instance of a non-terminal
B in αs αd. This variable Bm must still produce ti. As above define iL to be
the the non-terminal “associated with the pair (B, ti), of length |B| − 1 + |ν(ti)|.
Symmetrically at each variable yj of r, there is a variable Y1 belonging to an instance
of a non-terminal Y in ξ. This variable Y1 must produce t′j. As above, define a new
non-terminal jM associated with the pair (t′j,Y) which must generate ν(t′j) t′j ◦Y.

Note that variables that were synchronized in ν(t) may be desynchronized in z
as showed in figure 5.

r

t

t’

1

1

B

Y1

m

A

B

C Y

X

Figure 5: Originally all variables of X and Y are synchronized with
the variables of A. When A has produced αsr(x, t1), the variables
of X and Y will be desynchronized.

Then for L to generate A1 . . . An ◦ t ν(t) it is necessary and sufficient that induc-
tively

iL →+ B ◦ ti ν(ti)

jM →+ ν(t′j) t′j ◦Y

for all i and all j.
There remains to check that the grammar G ∪ H ∪ K constructed is indeed a

transduction grammar. This is the hypothesis for G and H. Regarding K, its first
projection is a subgrammar of G (up to productions of size zero) and its second
projection is a sub grammar of H (up to productions of size zero). Therefore they
both satisfy the condition.

On the way, we have given a construction of the composition of two transductions
available for words as well, but described nowhere — to our knowledge.

In the following examples, we advise the reader to draw graphical representations
of the productions, in the style of figure 5.

Example 5.9 Give I = e e + b(I1 I ′1) b(I2 I ′2) and let us compute first I ◦ I. Start
arbitrarily by letting I1I2, i.e. “the left I” produce (here we let J1J2 denote I1I2◦I

′
1I
′
2,

or J = I ◦ I):

1 : J −→ eK

2 : J −→ b(L1 L2)L3

Rational tree relations 173

where K has length one and denotes e ◦I1I2; and L1L2L3 denotes I1 I ′1 b(I2 I ′2) ◦I
′′
1I ′′2 .

These two non-terminals have productions:

3 : K−→ e
4 : L−→ J1 J ′1 b(J2 J ′2).

Since production 3 is the only production of K we may apply it immediately after
production 1, and similarly for production 4 which will follow immediately produc-
tion 2. We get the grammar of I again, up to the name of variables. Thus I ◦ I = I.

Example 5.10 Consider grammar G = H below

{
A1A2 = c(A1 I1 I ′1) b(b(A2 I2) I ′2) + I1 I2

R1R2 = b(A2 I1) b(A1 I2)

depicted in figure 6 (together with the definition of I but this will be understood).
We shall construct the grammar of the relation A ◦ R having axiom S (denoting
A1A2 ◦R1R2). Since R has a unique production, we let it produce first:

S−→L1 b(L2 L3)

where L1L2L3 denotes A1A2 ◦ b(A
′
2 I2)A′1I1 Then A is late and we make it produce

in L:

L−→ b(V1 J1)V2 J2

where V1V2 denotes I1I2 ◦ A2A1 and J1J2 denotes I1I2 ◦ I
′
1I
′
2. Knowing I ◦ I = I, the

second relation is J = I; the first one is I ◦A−1 = A−1, i.e. V1V2 = A2A1 (knowing
I ◦X = X for all relation X).

b b b

b

c==

A I

A

A

R

I

I

+ I

Figure 6: The grammar G.

Coming from the other production of A, we get

L−→ c(U1 U2 J1)U3 J2

where U1U2U3 denotes A1 I1 b(A2 I2) ◦ A′2A
′
1 and J1J2 denotes I1I2 ◦ I ′1I

′
2. Knowing

I ◦ I = I, the second relation is simply I. In the first relation, the variables can be

174 J.-C. Raoult

b

b

+=

=

L

L

S I

A I

+ c

L
I

Figure 7: The result of composing A ◦R.

renamed by permuting A and A′; we find, knowing I ◦ I = I that this new non-
terminal is in fact a permutation of L: more precisely, U1U2U3 = L2L3L1. Thus the
composition is complete. We get:{

S = L1 b(L2 L3)
L = b(A2 I1)A1 I2 + c(L2 L3 I1)L1 I2

depicted in figure 7.
The resulting grammar generates, among others, the pair of trees in figure 1.

Corollary 5.11 The image and the inverse image of a recognizable language by a
transduction is a recognizable language.

Proof. Since the converse of a transduction is a transduction, it is enough to prove
that the image is recognizable. The image of a rational language K by a transduction
R is the range (i.e. the second projection) of the transduction idK ◦R, which is a
recognizable language.

6 Conclusion

Starting from the ordinary theory of rational trees, we extended it to relations over
trees. Some results go through easily, like the correspondence between grammars
generating relation, rational expressions describing them and equations of which
they are solutions. We have also been able to derive a pumping lemma, to test non-
rationality. This is not surprising inasmuch as key concepts like derivation trees
carry over without difficulty.

A few pitfalls should nevertheless be advertised. The main one concerns the
restriction of our rational relations to the case of unary relations: an equational
unary relation is not a rational (or in this case, recognizable) forest.

Rational tree relations 175

The stability under residuals is not straightforward either. It is a case where,
starting from a set of trees, the removal of a prefix tree leaves a set of tuples. An
expected result is that residuals of rational languages by a finite set of tuples are
again rational languages.

Finally, composition is also fairly different from the case of free monoids. In gen-
eral, the composition of two rational relations, even with recognizable projections, is
not a rational relation. Nevertheless, we have been able to isolate a subset of these
relations encompassing all known transductions preserved by composition and giv-
ing a recognizable image of a recognizable set of trees. This subset, when restricted
to trees of arity zero or one, coincides with the rational transductions of words; and
it contains also the transductions of Arnold and Dauchet [1982]. It contains also the
logically defined transductions of Courcelle [1994] when they are restricted to trees.
The question remains whether this subset is recursive. The probable answer is no,
but it remains to be proved.

References

[1] A. Arnold, M. Dauchet, Morphismes et bimorphismes d’arbres, Theoret. Com-
put. Sci. 20 (1982) 33–93.

[2] J. Berstel, Transduction of context-free languages, Taubner Studienbücher
(1979).

[3] B. Courcelle, Monadic second-order definable graph transductions: a survey, in
Theoret. Comput. Sci. 126 (1994) 53–75.

[4] M. Dauchet, Transductions de forêts, bimorphismes de magmoïdes, Thèse, Uni-
versité de Lille 1 (1977).

[5] M. Dauchet, S. Tison, Algebraic complexity of tree languages, in Tree automata
and languages, M. Nivat & A. Podelski ed., Elsevier (1992).

[6] M. Dauchet, S. Tison, T. Heuillard, P. Lescanne, Decidability or the confluence
of ground term rewriting systems, INRIA report 675 (1987).

[7] N. Dershowitz, J.-P. Jouannaud, Rewriting systems, in Handbook of Theoretical
Computer Science, J. van Leeuwen ed., Elsevier (1990).

[8] J. Engelfriet, Bottom-up and top-down tree transformations — a comparison,
Math. Systems Theory 9 (1975) 198–231.

[9] J.Engelfriet, A Greibach normal form for context-free graph grammars, Lecture
Notes Comput. Sci. 623 (1992) 138–149.

[10] J. Engelfriet, G. Rozenberg, G Slutzki, Tree transducers, L-systems, and two-
way machines, J. Comput. Syst. Sci. 20 (1980) 150–202.

[11] J. Engelfriet, H. Vogler, Modular tree transducers, Theoret. Comput. Sci. 78
(1991) 267–303.

176 J.-C. Raoult

[12] F. Gecseg, M. Steinby, Tree automata, Akademiai Kiado, Budapest (1984).

[13] A. Grazon, J.-C. Raoult, Equational sets of tree-vectors, IRISA report 563,
Rennes (1990).

[14] A. Habel, H.J. Kreowski, Characteristics of graph languages generated by edge
replacement, Theoret. Comput. Sci. 51 (1987) 81–115.

[15] J.E. Hopcroft, J.D. Ullman, Introduction to automata theory, languages and
computation, Addison-Wesley (1979).

[16] J. Mezei, J.B. Wright, Algebraic automata and context-free sets, Inform. Con-
trol 11 (1967) 3–29.

[17] C. Pair, A. Quéré, Définition et étude des bilangages réguliers, Inform. Control
13 (1968) 565–593.

[18] J.-C. Raoult, A survey of tree-transductions, in Tree automata and languages,
M. Nivat & A. Podelski ed., Elsevier (1992) 311–326 (and report 1410 INRIA-
Rennes (1991)).

[19] P. P. Schreiber, Tree-transducers and syntax-connected transductions, Lecture
Notes Comput. Sci. 33 (1975) 202–208.

[20] M. Steinby, On certain algebraically defined tree transformations, in Proc. Coll.
Math. Janos Bolyai on Algebra, Combinatorics and Logic in Computer Science,
Györ, Hungary (1983) 745–764.

[21] H. Vogler, Basic tree transducers, J. Comput. Syst. Sci. 34 (1987) 87–128.

Jean-Claude Raoult
IRISA, Campus de Beaulieu

Université de Rennes 1
F-35042 RENNES (France)

Jean-Claude.Raoult@univ-Rennes1.fr

