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Abstract

We consider three notions of factorization arising in different frameworks: fac-
torizing languages, factorization of the natural numbers, factorizing codes. A
language X ⊆ A∗ is called factorizing if there exists a language Y ⊆ A∗ such
that XY = A∗ and the product is unambiguous. This is a decidable prop-
erty for recognizable languages X . If we consider the particular case of unary
alphabets, we prove that finite factorizing languages can be constructed by
using Krasner factorizations. Moreover, we extend Krasner’s algorithm to
factorizations of An. We introduce a class of languages, the strong factor-
izing languages, which are related to the factorizing codes, introduced by
Schützenberger. We characterize strong factorizing languages having three
words.

1 Introduction

In this paper we consider three notions of factorization arising in different frame-
works: factorizing languages, factorization of the natural numbers, factorizing codes.
The aim of this paper is to present some relations between these notions.

The notion of factorizing language, introduced in [1, 2], is related to some im-
portant questions in formal language theory (see e.g. [3, 5, 7]). We recall that a
subset X of A∗ is factorizing if there exists Y ⊆ A∗ such that X Y = A∗. Here,
the product of the languages X and Y is unambiguous [4]. Moreover X denotes the
characteristic series of X. Several results about this class of languages have been
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proved in [1, 2]. In particular, the decidability of the existence of Y for finite (resp.
recognizable) X (see Theorems 2.4, 2.7).

If we consider the particular case A = {a}, finding finite factorizing languages
X = aT = {at | t ∈ T} is equivalent to characterize finite subsets T of N such
that T + R = N, where R ⊆ N and the sum is unambiguous. We will call (T,R)
a factorization of N. It is not too difficult to see that some of these pairs can
be constructed starting from pairs (T ′, R′) such that T ′ + R′ = {0, . . . , n − 1}.
One of the results of this paper proves that any factorization (T,R) of the natural
numbers, with finite T , can be obtained in this way (Proposition 3.3). Notice that
this result is no longer true without the hypothesis of finiteness on T , as it is well
known that factorizations of N exist with both infinite sets as factors [13]. We
recall that Krasner provided an algorithm constructing all pairs (T ′, R′) such that
T ′+R′ = {0, . . . , n− 1} ([15], see [11, 16] for a recursive version of it). We will call
them Krasner factorizations of Zn, as they are particular factorizations of the cyclic
group Zn. In this framework, another result gives a slight generalization of Krasner’s
algorithm in several variables. Precisely, we prove that the same algorithm holds
when we replace a letter a by a finite alphabet A (Proposition 3.11).

Finally, we stress some relations with the so-called factorizing codes. A code
C is a subset of A∗ such that any word in A∗ has at most one factorization as a
product of elements in C . A code C is maximal (over A) if it is not a proper subset
of another code C ′ (over A), it is factorizing if there exist finite subsets P, S of A∗

such that S C∗P = A∗. Maximal and factorizing codes are related by the following
conjecture.

Conjecture 1.1 (Schützenberger) [3] Every finite maximal code is factorizing.

Thus, given a factorizing code C , there are two factorizing languages, S and
SC∗, associated with it. We will call S a strong factorizing language. Thanks to
a characterization of factorizing languages with three words (Theorem 2.8), we will
characterize strong factorizing languages with the same cardinality (Propositions
4.7, 4.8, 4.12). In particular, we will prove that there exist factorizing languages
with three words which are not strong factorizing. We recall that strong factorizing
languages with two words have been considered in [10].

This paper is organized as follows. Section 2 contains general results about
factorizing languages. Section 3 is dedicated to the relations with Krasner factoriza-
tions. Finally, in Section 4 we prove our results about strong factorizing languages.

2 Factorizing languages

In this section we will introduce the notion of factorizing language and recall the
results in [1, 2] which will be subsequently referred to. Notice that we can de-
cide whether a recognizable language is factorizing (Theorem 2.4). Moreover, some
criteria exist for deciding it, whenever X is finite (Theorem 2.7).

Let us introduce some definitions and notations. Given a finite alphabet A, let
〈A∗, ·, 1〉 be the free monoid generated by it. Given a semiring K, the class K〈〈A〉〉
of formal power series in non-commuting variables A and coefficients in K is the set
of functions s : A∗ → K. As usual, the value of s on w ∈ A∗ is denoted by (s, w) and
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is referred to as the coefficient of the series. K〈〈A〉〉, equipped with the sum and the
Cauchy product of formal power series, is a semiring. The power series is written
as a formal sum s = Σw∈A∗(s, w)w. The set supp(s) = {w ∈ A∗|(s, w) 6= 0} is the
support of the series s. A series s having a finite support is called a polynomial. We
denote by K〈A〉 the semiring of the polynomial in non-commuting variables A and
coefficients in K. The characteristic series of a language X ⊆ A∗, denoted X , is
the power series associating 1 with the words belonging to X and 0 with the words
not belonging to X. In the following we will often identify X with its characteristic
series without stating it explicitly. Some classical references to formal power series
are [4, 9, 20].

Definition 2.1 A language X ⊆ A∗ factorizes T ⊆ A∗ if there exists Y ⊆ A∗ such
that X Y = T . If X factorizes A∗, then X ⊆ A∗ is called factorizing.

In other words, X factorizes A∗ if there exists a language Y ⊆ A∗ such that any
word w ∈ A∗ has a unique factorization w = xy, with x ∈ X and y ∈ Y .

Remark 2.2 [1, 2] The notion of factorizing language does not depend on the al-
phabet A: if X factorizes A∗, then X factorizes any B∗ with B ⊇ A. The hypothesis
that the product is unambiguous is essential in order to have a non trivial definition:
without this hypothesis, any language X would be factorizing, by taking Y = A∗.

Example 2.3 Bisections are pairs (X, Y ), with X, Y ⊆ A∗ such that X∗Y ∗ = A∗.
A simple example is the pair (a∗b, a), for A = {a, b}. Hence, (a∗b)∗ is a factorizing
language. Other examples of bisections and results about this problem can be found
in [3, 14, 17].

Many examples of factorizing languages can be found in [1, 2]. One of the main
results of these papers is the following theorem.

Theorem 2.4 It is decidable whether a regular language X ⊆ A∗ factorizes A∗ or
not. For any X ⊆ A∗, there exists at most one language Y such that X Y = A∗.

Recall that a word x ∈ A∗ is a prefix (resp. proper prefix) of a word w ∈ A∗ if
w = xy, with y ∈ A∗ (resp. y ∈ A+). A subset C of A+ is a prefix code if no word in
C is a proper prefix of another word in C. The next proposition will be used later
and its proof is in [2]. It gives a condition for stating if a language X is factorizing.

Proposition 2.5 Let X ⊆ A∗, C ⊆ A∗ be a prefix code with X ⊆ C∗. Then, X
factorizes A∗ if and only if X factorizes C∗.

Remark 2.6 The previous proposition can also be enunciated as follows. Let π be
any bijection between C and an alphabet AC and denote π the morphism between
C∗ and A∗C naturally induced by it. Then X ⊆ C∗ factorizes A∗ if and only if π(X)
factorizes A∗C.

In order to decide whether a finite language X is factorizing, let us introduce
some notations and definitions. One can find them in [2] with several examples and
other results.

Let w ∈ A∗ be a word and X ⊆ A∗ be a language. An even prefix sequence
of w with respect to X is a sequence (x1, x2, . . . , x2k) such that xi ∈ X \ 1 for
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i ∈ {1, . . . , 2k}, k ≥ 0 and x = x1 · · · x2k is a prefix of w. The set of the even prefix
sequences of w with respect to X is denoted by EX(w). An odd prefix sequence
of w with respect to X is a sequence (x1, x2, . . . , x2k+1) such that xi ∈ X \ 1 for
i ∈ {1, . . . , 2k + 1}, k ≥ 0 and x = x1 · · ·x2k+1 is a prefix of w. The set of the
odd prefix sequences of w with respect to X is denoted by OX(w). Set dX(w) =
card(EX(w))− card(OX(w)).

Moreover, let us associate to X, the formal power series s(X) = X−1A∗ and the
subset Z(X) of A∗

Z(X) = {w = xz | x ∈ ((X − 1)2)∗, z = z1z2 ∈ X − 1, z2 ∈ A+, xz1 ∈ X − 1}.

One can prove the following theorem.

Theorem 2.7 The following conditions hold

1. dX = s(X).

2. A language X is factorizing if and only if for any word w ∈ A∗, dX(w) ∈ {0, 1}.

3. A language X is factorizing if and only if s(X) ∈ N〈〈A〉〉.

4. A language X is factorizing if and only if for any word w ∈ X + Z(X),
dX(w) ∈ {0, 1}.

5. A language X is factorizing if and only if for any word w ∈ X + Z(X),
(s, w) ∈ N.

Proof. We just prove 2)⇔ 3) as one can find a proof of 1), 2), 4), 5) in [2]. Obviously,
2) ⇒ 3). Conversely, suppose that s(X) ∈ N〈〈A〉〉. Then, we have X · s(X) = A∗.
This relation implies that the formal power series s(X) has coefficients 0, 1, i.e.,
dX(w) ∈ {0, 1} for any w ∈ A∗.

Finally, we recall the characterization of the factorizing languages having cardi-
nality three given in [1, 2].

Theorem 2.8 [1, 2] Let X = 1 + v + w, with v 6= 1, w 6= 1, v, w ∈ A∗. Then, X
factorizes A∗ if and only if one of the following cases holds:

1. v + w is a prefix code.

2. w = v2.

3. w = v2ku, with k ≥ 1, u 6= 1 and v + u a prefix code.

In case 1), Y = ((v+w)2)∗(A∗− (v+w)A∗); in case 2), Y = (v3)∗(A∗−vA∗) and in
case 3) Y = Y ∗0 (uA∗+v2uA∗+. . .+v2k−2uA∗+(v2)∗), where Y0 = (v2)∗((X−1)2−v2).
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3 Krasner factorizations

In this section we will investigate the relations between Krasner factorizations of Zn
and factorizations of A∗. We will see that any factorization (X, Y ) of a∗, with finite
X, can be constructed by using Krasner pairs (Proposition 3.2). Moreover we will
extend Krasner algorithm to the factorizations of An (Proposition 3.11).

We recall that a factorization of the cyclic group Zn is a pair (T,R) of subsets of
Zn such that any z ∈ Zn can be written uniquely as a sum of an element of T and
an element of R [12]. Then, t+ r = z (mod n). A particular class of factorizations
of Zn has been constructed by Krasner [15]. A Krasner factorization (I, J) of Zn is
a pair of subsets of {0, . . . , n− 1} such that any z ∈ {0, . . . , n − 1} can be written
uniquely as z = i + j, with i ∈ I , j ∈ J . Krasner constructed such pairs (I, J) in
[15]. We recall here a recursive version of this algorithm, since it is more useful for
our aims.

Remark 3.1 [11, 16] Let (I, J) be a pair of subsets of {0, . . . , n − 1}, I 6= {0},
J 6= {0}. Then, (I, J) is a Krasner factorization of Zn if and only if there exists a
divisor h of n, h 6= 1, and a Krasner factorization (I1, J1) of Zn/h such that

I = hJ1, J = hI1 + {0, . . . , h− 1}.

Moreover 1 ∈ J if and only if 1 ∈ J1.
Let us see how this notion is related to the factorizations of A∗. For a subset

X of A∗ and a subset I of N, we set XI = {xi | x ∈ X, i ∈ I}. Let (I, J) be a
Krasner factorization of Zn, n ∈ N. As it has been pointed out in [1, 2] we have
A∗ = X · Y , with X = AI , Y = AJ (An)∗. In the next proposition we will state that
all factorizations of a∗, with finite X, can be constructed in this way.

Proposition 3.2 Let X ⊆ a∗ be a finite factorizing language. Then, there exists
a Krasner factorization (I, J) of Zn such that X = aI . Moreover, X · Y = a∗ with
Y = aJ(an)∗.

Notice that if (X, Y ) is a factorization of a∗, then there exists a factorization
(I, P ) of the set N of natural numbers such that X = aI , Y = aP . Here, a pair
(I, P ) of subsets of N is a factorization of N if any element n ∈ N can be written
uniquely as a sum of an element of I and an element of P . Then, Proposition 3.2
can also be stated as follows.

Proposition 3.3 Let (I, P ) be a factorization of N where I is a finite set. Then,
there exists a Krasner factorization (I, J) of Zn such that P = J + {mn | m ∈ N}.

Proof. We have 0 ∈ I ∩ P and 1 ∈ I ∪ P . Suppose 1 ∈ I (in the other case,
just replace I by P in the following proof). Let h be the greatest integer such that
{0, . . . , h− 1} ⊆ I and denote I as a union of intervals of consecutive integers:

I = ∪si=1(ki + {0, . . . , hi})

with ki + hi + 1 < ki+1, for i ∈ {1, . . . , s− 1}.

Remark 3.4 k1 = 0, h1 = h− 1.



30 M. Anselmo – C. De Felice – A. Restivo

Remark 3.5 h ∈ P .

Lemma 3.6 h1 = h2 = . . . = hs = h− 1.

Proof. By contradiction, suppose that there exists j ∈ {1, . . . , s} such that hj 6=
h− 1. We have two cases

(∗) hj > h− 1
(∗∗) hj < h− 1.

(*) Suppose that there exists j ∈ {1, . . . , s} such that hj > h−1. Then kj , kj+h ∈ I
and we have two different factorizations for kj + h in I + P

kj + h = (kj + h) + 0,

a contradiction.
(**) Suppose that there exists j ∈ {1, . . . , s} such that hj < h − 1 and take j
minimum with respect to this condition. Consider kj +hj +1. By hypothesis, there
exists p ∈ P and i ∈ I such that

i+ p = kj + hj + 1.

We have p 6= 0 and then p ≥ h. Consequently i ≤ kj + (hj − h+ 1) < kj .
Then there exists j′ ∈ {1, . . . , s}, j′ < j, such that i ∈ kj′ + {0, . . . , hj′}. By the
minimality of j we have hj′ = h − 1, i.e.,

i ∈ kj′ + {0, . . . , h− 1} ⊆ I.

Thus, p + kj′ + {0, . . . , h − 1} is a set of h consecutive integers containing p + i =
kj + hj + 1; so p + kj′ + {0, . . . , h − 1} contains either hj + kj or hj + kj + h.
Consequently, there exists h′ ∈ {0, . . . , h− 1} such that (kj′ +h′)+ p = (hj + kj)+ 0
or (kj′+h

′)+p = (kj+hj)+h. This is a contradiction (0, h ∈ P , kj′+h
′ ≤ kj′+hj′ <

kj ≤ kj + hj).

Lemma 3.7
∀p ∈ P, p = 0 (mod h)

∀j ∈ {1, . . . , s}, kj = 0 (mod h).

Proof. By contradiction, suppose that there exists j ∈ {1, . . . , s} such that kj 6= 0
(mod h) or p ∈ P such that p 6= 0 (mod h). Take the minimum integer verifying
this condition.
Then, there exist q ∈ N, r ∈ {1, . . . , h− 1} such that

kj = hq + r (resp. p = hq + r).

In virtue of Remark 3.4 and Lemma 3.6, we have hq 6∈ I , hq 6∈ P , otherwise hq + r
would have two different factorizations in I+P (either hq ∈ P , r ∈ I , or hq ∈ I and
so hq+ {0, . . . , h− 1} ⊆ I). Then, there exists i ∈ I \ 0, p′ ∈ P \ 0 with hq = i+ p′,
i.e.,

i = hq1 + r1, p′ = hq2 + r2.
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By using p′ < kj, i < kj (resp. p′ < p, i < p), we get r1 = r2 = 0,

i = hq1 = kj′, p′ = hq2, q1 + q2 = q, j′ < j.

Thus, according to Lemma 3.6,

hq + r = kj + 0 = (hq1 + r) + hq2

(resp. hq + r = 0 + p = (hq1 + r) + hq2),

would be two different factorizations of hq + r in I + P , a contradiction.

End of the proof. We prove the conclusion by induction over the cardinality of I .
We have either

I = ∪si=1(qih+ {0, . . . , h− 1}), P = ∪∞i=1q
′
ih (1)

or

I = ∪si=1qih, P = ∪∞i=1(q
′
ih+ {0, . . . , h− 1}). (2)

If I = {0, . . . , h− 1} (resp. I = {0}) then the conclusion holds by taking n = h and
J = {0} (resp. J = {0, . . . , h− 1}).
Otherwise, consider (I1, P1) with I1 = {q1, . . . , qs}, P1 = {q′1, . . .}. Obviously (I1, P1)
is a factorization of N.
Suppose that (1) holds. We have card(I1) < card(I). Then, by using the induction
hypothesis, there exists J1, with (I1, J1) a Krasner factorization of Zn and P1 = J1 +
{mn | m ∈ N}. Thus, according to Remark 3.1, (I, hJ1) is a Krasner factorization of
Znh and P = hP1 = hJ1 +{mnh | m ∈ N}. Now suppose that (2) holds. Notice that
1 ∈ I1, i.e., (I1, P1) is a factorization of N such that (1) holds and card(I) = card(I1).
We can apply the argument above and get a Krasner factorization (I1, h

′J2) of Zn
with P1 = h′J2 + {mn | m ∈ N}. Then, in virtue of Remark 3.1, (hI1, hh

′J2 +
{0, . . . , h− 1}) = (I, hh′J2 + {0, . . . , h− 1}) is a Krasner factorization of Znh and it
holds P = hP1 + {0, . . . , h− 1} = hh′J2 + {0, . . . , h− 1}+ {mnh | m ∈ N}.

Remark 3.8 Notice that Proposition 3.3 is well known for the factorizations (I, P )
of the cyclic group Z. Indeed, let I, P ⊆ Z be such that (I, P ) is a factorization
of Zn. It is well known that if I is finite then P is periodic [12, 13]. Thus, P
is the direct sum P ′+ < n > of a finite subset P ′ of Z and a cyclic subgroup
< n >= {mn | m ∈ Z} of Z [12, 13]. Moreover, up to a translation, we can suppose
I ⊂ N. Consequently I + P ′ = [−n + 1, n − 1] (direct sum) and P ′ = J ∪ J ′ with
(I, J) a Krasner factorization of Zn. Proposition 3.3 states that any factorization of
N can be obtained starting from a factorization of Z. We are not been able to give
a direct proof of this result.

Remark 3.9 Notice that Lemma 3.6 has been proved for finite I, P in [15]. The
proof is the same in the two cases. It has been reported here for the sake of the
completeness.
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Remark 3.10 Factorizations (I, P ) of N exist, with I, P both infinite sets. So,
Proposition 3.2 (resp. Proposition 3.3) does not hold without the hypothesis on X
(resp. I). As a counterexample, consider the unambiguous factorization (X, Y ) of
a∗ with X = (1 + a)(1 + a4)(1 + a16) . . . and Y = (1 + a2)(1 + a8)(1 + a32) . . . (see
[2, 13]).

The next proposition generalizes Krasner’s algorithm to An.

Proposition 3.11 Let X, Y ⊆ A∗ be two languages and n ≥ 1 be a positive
integer. Suppose that

X · Y = (An − 1)/(A− 1) = 1 +A + . . .+ An−1.

Then, there exists a Krasner factorization (I, J) of Zn such that X = AI , Y = AJ .

Proof. Let us prove that X = AI , Y = AJ , for a pair (I, J) of subsets of N. Then
(I, J) will be a Krasner factorization and we have done. Indeed, let x′ ∈ X (resp.
y′ ∈ Y ) be a word of maximal length in X (resp. Y ). Then, |x′|+ |y′| = n − 1 and
so

An−1 = {x ∈ X | |x| = |x′|}{y ∈ Y | |y| = |y′|} ⊆ A|x
′|A|y

′| = An−1,

which implies

A|x
′| = {x ∈ X | |x| = |x′|} ⊆ X, A|y

′| = {y ∈ Y | |y| = |y′|} ⊆ Y.

By contradiction, suppose that there exist X1, Y1 ⊆ A∗, I ′, J ′ ⊆ N such that

X = AI
′
+X1, Y = AJ

′
+ Y 1,

with i = max{|x| | x ∈ X1} < minI ′, j = max{|y| | y ∈ Y1} < minJ ′, Ai \X1 6= ∅
or Aj \ Y1 6= ∅.
Thus, the product X Y verifies the following equation

X Y = AI′AJ
′
+X1A

J ′ + AI
′
Y 1 +X1Y 1 = 1 + A + . . .+ An−1. (3)

Suppose that Aj\Y1 6= ∅ (a similar argument holds in the other case). Let y1, y2 ∈ Aj

be such that y1 ∈ Y1, y2 6∈ Y1 and, as before, let x′ be a word of maximal length in
X. Obviously, we have

(AI
′
Y 1, x

′y1) = 1, (4)

and, by using |x′y2| = |x′y1| ≤ n− 1, we also get

(X Y , x′y2) = 1,

i.e., in virtue of (3),

(AI
′
AJ
′
+X1A

J ′ + AI′Y 1 +X1Y 1, x
′y2) = 1. (5)

On the other hand, since x′ (resp. y2) has length equal to the maximal length in X
(resp. Y1) and y2 6∈ Y1, we get

((AI′ +X1)Y 1, x
′y2) = (X Y 1, x

′y2) = 0.
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Thus, according to (5),
(AI′AJ ′ +X1A

J ′ , x′y2) = 1.

Recall that |y2| < minJ ′. Then, by using the previous equality, there exist x1, x2 ∈
A∗ with x1x2 = x′ and x2 6= 1 such that

(AI
′
+X1, x1) = 1 = (AJ ′ , x2y2). (6)

Finally, as |y2| = |y1|,

(AJ
′
, x2y1) = 1. (7)

By using these relations, we have a contradiction. Indeed, according to (3),

1 ≥ (X Y , x′y1) ≥ (AI
′
AJ ′ +X1A

J ′ + AI′Y 1, x
′y1)

and, by using (4), (6) and (7),

1 ≥ (X Y , x′y1) ≥ (AI′AJ
′
+X1A

J ′ , x′y1) + (AI′Y 1, x
′y1) ≥ 2.

Let C ⊆ A∗ be a prefix code and (I, J) be a Krasner factorization of Zn. Then CI

will be referred to as a Krasner polynomial. As it has been pointed out, a Krasner
polynomial is a factorizing language. This result can be seen as a generalization
of cases 1) and 2) in Theorem 2.8. Analogously, the next proposition generalizes
the third case in the same theorem. Moreover, it shows that a generalization of
Proposition 3.2, for alphabets A with card(A) > 1, requires more than Krasner
polynomials. Proof is essentially the same for proving case 3) of Theorem 2.8.

Proposition 3.12 Let C ⊆ A∗, u ∈ A∗, with C + u a prefix code. Then, for any
k ∈ N, k ≥ 1, 1 + C + C2ku is a factorizing language.

Proof. Let AC be any alphabet having the same cardinality than C . By Proposition
2.5 and Remark 2.6 it suffices to prove that X = 1 + AC + A2k

C b factorizes A∗ =
(AC ∪ b)∗. By Theorem 2.7 this is equivalent to prove that the formal power series

s = ((X − 1)2)∗(1− (X − 1))A∗ = (A2
C + (X − 1)2 − A2

C)∗(1− (X − 1))A∗

has non-negative coefficients.
By using the equality of power series (y + z)∗ = (y∗z)∗y∗ with y = A2

C , z = (X −
1)2 − A2

C , we get

s = ((A2
C)∗((X − 1)2 −A2

C))∗(A2
C)∗(1− (X − 1))A∗. (8)

Let us prove that (A2
C)∗(1− (X − 1))A∗ has non-negative coefficients. Indeed,

(A2
C)∗(1− (X − 1))A∗ = (A2

C)∗(1− AC − A2k
C b) A

∗

= (A2
C)∗ + (A2

C)∗ACA
∗ + (A2

C)∗b A∗

−(A2
C)∗ACA

∗ − (A2
C)∗A2k

C b A
∗ (as A = AC ∪ b)

= (A2
C)∗ + (A2

C)∗b A∗ − (A2
C)∗A2k

C b A
∗

= (A2
C)∗ + (A2

C)∗(1− A2k
C )b A∗

= (A2
C)∗ + [(1− A2k

C )/(1− A2
C)]b A∗

= (A2
C)∗ + (1 + A2

C + . . . + A2k−2
C )b A∗.
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By using this equation, (8) becomes

s = ((A2
C)∗((X − 1)2 − A2

C))∗((A2
C)∗ + (1 + A2

C + . . . + A2k−2
C )b A∗) =

((A2
C)∗((A2k

C b)2 + A2k
C b AC + ACA

2k
C b))∗((A2

C)∗ + (1 + A2
C + . . .+ A2k−2

C )b A∗),

which proves that s has non-negative coefficients.

We end this section with the following open problem.

Problem 3.13 Can we generalize Proposition 3.11 to a Krasner polynomial ?

4 Strong factorizing languages

In this section we will introduce a class of factorizing languages, the strong factorizing
languages, which are strictly related to some codes, the factorizing codes.

Thanks to the characterization of factorizing languages with three words (The-
orem 2.8), we will characterize strong factorizing languages having the same cardi-
nality (Propositions 4.7, 4.8 and 4.12). As a byproduct, we will prove the existence
of factorizing languages which are not strong factorizing (Proposition 4.12).

First, let us recall some definitions which we need in the sequel. We recall that
a subset C of A∗ is a code if for any c1, . . . , ch, c

′
1, . . . , c

′
k ∈ C

c1 · · · ch = c′1 · · · c′k ⇒ h = k; ∀i ∈ {1, . . . , h} ci = c′i.

An important class of codes is the class of maximal codes. A code C is maximal
over A if for any code C ′ over A

C ⊆ C ′ ⇒ C = C ′.

Many deep results about codes have been proved (see [3] for a complete survey
on this topic and [8] for a list of open problems in this area). Nevertheless, the
structure of these objects is not yet completely investigated. In particular, twenty
years ago Schützenberger gave the following conjecture which is still open.

Conjecture 4.1 [3, 8, 21] Any finite maximal code is factorizing.

We recall that a code C is factorizing (over A) if there exist two finite subsets
P , S of A∗ such that

S C∗P = A∗.

As an example, maximal prefix codes C are factorizing, by taking S = 1 and P as
the set of the proper prefixes of the elements inC . We will refer to [6, 8, 11, 18, 19, 21]
for some partial results about this conjecture.

The notion of strong factorizing language is related to the notion of factorizing
code.

Definition 4.2 A finite subset S of A∗ is a strong factorizing language if there exist
two finite subsets P,C of A∗, C being a code, such that:

S C∗P = A∗.
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Remark 4.3 If S is a strong factorizing language, then S is a factorizing language
and we have S Y = A∗, where Y = C∗P . Moreover, C is a factorizing code.

Obviously, the construction of the factorizing codes is related to the construction
of the strong factorizing languages which, in turn, could give information on the
factorization conjecture. This observation naturally suggests the following questions.

Problem 4.4 Is it decidable whether a language S is a strong factorizing language?

Problem 4.5 Can we characterize the structure of a strong factorizing language S?

In [10] a strong factorizing language S is called a polynomial having solutions.
This terminology is motivated by the following result.

Proposition 4.6 [4] For finite subsets P, S, C of A∗, we have S C∗P = A∗ if and
only if we have P (A− 1)S = C − 1. Moreover, if P (A− 1)S + 1 has non-negative
coefficients, then it is the characteristic series of a finite maximal code C .

Let s be a formal power series with non-negative integer coefficients and denote
it by s ≥ 0. In the particular case of a strong factorizing language S, we have that
the inequality P (A− 1)S + 1 ≥ 0 has at least one solution P .

Notice that there exist languages which are not strong factorizing. Take, as
an example, S = 1 + a + ab. This language is not factorizing and so it is not
strong factorizing [2]. A more interesting example of a language which is not strong
factorizing is given in Proposition 4.12 below. Indeed, we will compare the class of
factorizing languages with the one of strong factorizing languages and we show that
they are different.

The following results are related to Theorem 2.8. Propositions 4.7, 4.8 show that
in the first and in the second case of this theorem, X is also a strong factorizing
language. Moreover, we will state that in the third case X is not a strong factorizing
language (Proposition 4.12).

Proposition 4.7 Let S = 1+C with C a prefix code. Then S is a strong factorizing
language.

Proof. Let P be the set of the proper prefixes of the elements of C . Notice that

P − 1 ≤ P − 1 + C ≤ P A ⇒ (P − 1)C ≤ P A C.

By using the previous relations, we get

1 + P (A− 1)S = 1 + P (A− 1)(1 + C) =

P A− (P − 1)− C + P A C − (P − 1)C ≥ 0.

Proposition 4.8 Let S = 1 + v+ v2, with v ∈ A∗. Then, S is a strong factorizing
language.
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Proof. The set P of the proper prefixes of v verifies

1 + P A− P − v ≥ 0.

In virtue of this inequality, we get

0 ≤ (1 + P A− P − v) + (1 + P A− P − v)v + (1 + P A− P − v)v2 =

1 + P A− P + P Av − Pv + P Av2 − Pv2 − v3 ≤ 1 + P (A− 1)(1 + v + v2).

Propositions 4.7 and 4.8 naturally suggest the following question.

Problem 4.9 Can we generalize the previous results to a Krasner polynomial S =

CI ?

In the following examples we consider some strong factorizing languages and we
compare the techniques introduced in Theorem 2.8 with the techniques introduced
in Propositions 4.7, 4.8.

Example 4.10 Let A = {a, b} and S = 1 + a + ba. We have S = 1 + C , with
C a prefix code. Then, S is strong factorizing, in virtue of Proposition 4.7. By
taking P = 1, one has P (A − 1)S + 1 = a2 + aba + b + bba = C ′. According to
Proposition 4.6, we have that S is factorizing, by taking as Y the language C ′∗P =
(a2 + aba+ b+ bba)∗. This is the same language Y = ((a+ ba)2)∗(A∗− (a+ ba)A∗)
= (aa + aba + baa + baba)∗(bbA∗ + b + 1) that we obtain by using Theorem 2.8.
In order to prove Y ⊆ C ′∗P = C ′∗, notice that (a + ba)2 ⊆ C ′∗. In addition, C ′

being a maximal suffix code, for any w ∈ A∗, we have A∗bbbw ∩ C ′∗ 6= ∅ and so
bbA∗ ⊆ C ′∗. Conversely, by using the equality of power series (y + z)∗ = (y∗z)∗y∗

= y∗ + y∗z(y∗z)∗y∗, we have C ′∗ = (a2 + aba + b + bba)∗ = (a2 + aba + b)∗ +
(a2 + aba+ b)∗bba((a2 + aba+ b)∗bba)∗(a2 + aba + b)∗ ⊆ Y .

Example 4.11 Let A = {a} and S = 1 + ak + a2k, k ≥ 1. In virtue of Proposition
4.8, S is strong factorizing. By taking P = (1 + a + a2 + . . . + ak−1), we have
C = P (a− 1)(1 + ak + a2k) + 1 = (1 + a+ a2 + . . .+ ak−1)(a− 1)(1 + ak + a2k) + 1
= a3k. According to Proposition 4.6, we have that S is factorizing, by taking as Y
the language C∗P = (a3k)∗(1 + a + . . .+ ak−1). This is the same language that we
obtain by using Theorem 2.8.

Let S = 1+v+v2ku, with k ≥ 1, u 6= 1 and {v, u} a prefix code. The next propo-
sition states that S is not a strong factorizing language. The proof is decomposed
into several intermediate results.

Proposition 4.12 Let S = 1+v+v2ku, with k ≥ 1, u 6= 1 and v+u a prefix code.
Then, S is not a strong factorizing language.

In the sequel, we will use the following notations. We will denote by P0 the set of
the proper prefixes of v and by pr the prefix of v of length r, with r ∈ {0, . . . , n−1},
n = |v|. In the next lemma, we suppose that vhpr can be written as a product of
two words p and v2ku. Roughly, we prove that a factorization pr′v

′ of v also exists,
with pr′ 6= 1, pr′ suffix of p and v′ 6= 1, v′ prefix of v2ku.
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Lemma 4.13 Let P ′ be a finite subset of A∗. Suppose that

(P ′v2ku, vhpr) > 1,

with h ∈ N and pr ∈ P0. Then, there exist h′ ∈ N, h′ < h and pr′ ∈ P0 \ 1 such that

vh
′
pr′ ∈ P ′, vhpr = vh

′
pr′v

2ku.

Proof. According to the hypothesis, there exists p ∈ P ′ such that

pv2ku = vhpr .

Then, there exists h′ ∈ N and pr′ ∈ P0 such that p = vh
′
pr′. We have h′ < h,

otherwise pr′v
2ku = pr , a contradiction. Moreover, we have pr′ 6= 1, otherwise

p = vh
′ ⇒ v2ku = vh−h

′
pr ⇒ u = vh−h

′−2kpr,

a contradiction, since {v, u} is a prefix code.

The next corollary is obtained by taking P ′ = PA in Lemma 4.13.

Corollary 4.14 Let P be a finite subset of A∗. Let pr ∈ P0 and h ∈ N. If
(P Av2ku, vhpr) > 1, then there exist h′ ∈ N, h′ < h, pr′ ∈ P0, a ∈ A such that

pr′a ∈ P0, vh
′
pr′ ∈ P, vhpr = vh

′
pr′av

2ku.

The next lemma adds some more informations on the structure of P . It has been
proved in [10]. We report here the proof for the sake of the completeness.

Lemma 4.15 Let S be a strong factorizing language. Let S1 be the set of the
words in S \ 1 of minimal length and let P1 be the set of the proper prefixes of the
words in S1. For a finite subset P of A∗such that P (A− 1)S + 1 ≥ 0 we have

1 ∈ P ∩ S, P1 ⊆ P.

Proof. It is obvious that 1 ∈ P ∩ S. Let us prove that P1 ⊆ P . Let vi ∈ S1. As
(P, 1) = 1, we get

1 ≤ (P S, vi) ≤ (1 + P A S, vi).

According to this relation, there exist p ∈ P, a ∈ A, vj ∈ S such that

vi = pavj,

and, by using the definition of S1, we get vj = 1. Thus, P contains the proper prefix
of maximal length of vi. By contradiction, suppose that there exists a proper prefix
p of vi with p ∈ P \PA, p 6= 1. Moreover, take p of maximal length with respect to
this condition. Again, as (S, 1) = 1,

1 ≤ (P S, p) ≤ (1 + P A S, p),

i.e., there exist p′ ∈ P, a ∈ A, vj ∈ S such that

p = p′avj.

As we supposed p ∈ P \ PA, then vj 6= 1. Thus, |vj| < |p| < |vi|, a contradiction.
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Ab absurdo, we are supposing that S = 1+v+v2ku is a strong factorizing language,
i.e., there exists a finite subset P of A∗ such that P (A − 1)S + 1 ≥ 0. Under this
hypothesis we prove two lemmata; the former is needed for proving the latter.

Lemma 4.16 Let P be a finite subset of A∗ such that

P (A− 1)(1 + v + v2ku) + 1 ≥ 0,

let w ∈ A+ be such that

(P A v2ku, w) = 1 ⇒ (P v2ku, w) = 1.

Then
(P + P v, w) ≤ (P A+ P A v, w).

Proof. Suppose (P A v2ku, w) = 0. Then, according to the hypothesis,

(P + P v, w) ≤ (P + P v + P v2ku, w) ≤

(P A + P A v + P A v2ku, w) = (P A+ P A v, w).

Otherwise, (P A v2ku, w) = 1. Thus, again by using the hypothesis,

(P + P v, w) ≤ (P A + P A v + P A v2ku− P v2ku, w) = (P A+ P A v, w).

The next lemma gives a precise description of the set P ∩ v∗P0.

Lemma 4.17 Let P be a finite subset of A∗ such that

P (A− 1)(1 + v + v2ku) + 1 ≥ 0.

Then, there exists h ∈ N such that v∗P0 ∩ P = (1 + v2 + . . .+ v2h)P0.

Proof. In virtue of Lemma 4.15, we have P0 ⊆ P . By contradiction, suppose that the
conclusion does not hold and let h′ be the minimal counterexample. Precisely, we
suppose that there exist h, h′ ∈ N, with h′ > 2h, such that (1+v2+. . .+v2h)P0 ⊆ P ,
vh1P0 ∩ P = ∅ for 2h < h1 < h′, vh

′
pr ∈ P and one of the following cases holds:

(∗) h′ odd
(∗∗) h′ even and vh

′
P0 6⊆ P

(∗ ∗ ∗) h′ even, vh
′
P0 ⊆ P and h′ > 2h + 2.

First, notice that

(P A v2ku, vh
′
pr) = 1 ⇒ (P v2ku, vh

′
pr) = 1. (9)

Indeed, due to Corollary 4.14, if (P A v2ku, vh
′
pr) = 1 then vh

′
pr = vh

′′
pr′av

2ku,
with vh

′′
pr′ ∈ P , h′′ < h′ and pr′a ∈ P0. By using the hypothesis on h′, we get

vh
′′
pr′a ∈ P and (P v2ku, vh

′
pr) = 1. In virtue of Lemma 4.16, relation (9) implies

(P + P v, vh
′
pr) ≤ (P A + P A v, vh

′
pr). (10)
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Now, take r minimal with respect to the condition vh
′
pr ∈ P .

(∗) Then, for pr 6= 1, by using (10) we get

1 = (P, vh
′
pr) ≤ (P + P v, vh

′
pr) ≤ (P A+ P A v, vh

′
pr) = (P A v, vh

′
pr) ≤ 1.

Thus, (P A v, vh
′
pr) = 1 and (P v, vh

′
pr) = 0 which implies vh

′−1pr ∈ PA, vh
′−1pr 6∈

P ; a contradiction.
On the other hand, for pr = 1, we get (P A v, vh

′
) = 0 since, h′ − 2 being odd,

vh
′−2pn−1 6∈ P . Thus, in virtue of (10),

1 = (P, vh
′
) ≤ (P + P v, vh

′
) ≤ (P A+ P A v, vh

′
) = (P A, vh

′
) ≤ 1, (11)

which implies (P A, vh
′
) = 1, i.e., vh

′−1pn−1 ∈ P . By using the hypothesis, vh
′−1 ∈ P

and (11) becomes

1 = (P, vh
′
) ≤ (P + P v, vh

′
) = 2 ≤ (P A, vh

′
) = 1,

i.e., a contradiction.
(∗∗) Notice that for no pr ∈ P0\1 we have vh

′
pr ∈ P \PA. Indeed, by using (10), we

would have (P A v, vh
′
pr) = 1, i.e., vh

′−1pr−1 ∈ P with h′ − 1 odd, a contradiction.
In particular, for the minimal r we have pr = 1, i.e., vh

′ ∈ P . Moreover, vh
′
pn−1 6∈ P ,

otherwise vh
′
P0 ⊆ P .

On the other hand, again

(P A v2ku, vh
′+1) = 1 ⇒ (P v2ku, vh

′+1) = 1. (12)

Indeed, due to Corollary 4.14, if (P A v2ku, vh
′+1) = 1 then vh

′+1 = vh
′′
pr′av

2ku,
with vh

′′
pr′ ∈ P , h′′ < h′ + 1 and pr′a ∈ P0. Notice that h′′ < h′ since k ≥ 1. By

using the hypothesis on h′, we get vh
′′
pr′a ∈ P and (P v2ku, vh

′+1) = 1.
In virtue of Lemma 4.16, relation (12) implies

(P A + P A v, vh
′+1) ≥ (P + P v, vh

′+1). (13)

Now, (P + P v, vh
′+1) ≥ 1, since vh

′ ∈ P . Moreover, (P A, vh
′+1) = 0 since

vh
′
pn−1 6∈ P and (P A v, vh

′+1) = 0 since vh
′ 6∈ PA, h′ being even. This contradicts

(13).
(∗ ∗ ∗) In this case, we have (P, vh

′
) = 1, (P A v, vh

′
) = 0 and (P A, vh

′
) = 0. Thus,

by using (10), we get

0 = (P A + P A v, vh
′
) ≥ (P + P v, vh

′
) = 1,

i.e., a contradiction.

We know that (P, 1) = (P, v0) = 1. Let h ∈ N be the maximal integer such that
vh ∈ P . The next lemmata prove some relations on h we need for completing the
proof.

Lemma 4.18 For any proper prefix u1 of u,

(P A v2ku, v2k+hu1) = 1 ⇒ (P v2ku, v2k+hu1) = 1.



40 M. Anselmo – C. De Felice – A. Restivo

Proof. Suppose that (P A v2ku, v2k+hu1) = 1. Then, by definition, there exist
h′ ∈ N, pr′ ∈ P0, a ∈ A, with h′ < h and pr′a prefix of v, such that

vh
′
pr′ ∈ P, vh

′
pr′av

2ku = v2k+hu1. (14)

If r′ 6= n − 1, then pr′a ∈ P0 and (P v2ku, v2k+hu1) = 1, according to Lemma 4.17.
Otherwise, by using (14),

vh
′+1u = vhu1 ⇒ u = vh−h

′−1u1,

a contradiction, since {u, v} is a prefix code and u1 6= u.

Lemma 4.19 For any prefix u1 of u, with 0 < |u1| < |v|, we have

(P A v, vhv2ku1) = 0.

Proof. By contradiction, suppose

(P A v, vhv2ku1) = 1.

Then, we have v2k+h−1pr ∈ PA, with pr ∈ P0 \ 1 and |pr| = |u1|. By using Lemma
4.17, we obtain v2k+h−1 ∈ P which implies 2k + h− 1 ≤ h; a contradiction.

End of the proof. Recall that h is the maximal integer such that vh ∈ P . According
to Lemma 4.17, h is even and we have

(P A v2ku, vhv2ku) = 0. (15)

Moreover, as vh ∈ P , we get

(P v2ku, vhv2ku) = 1. (16)

Then, by using (15) and (16), we get

(P A+ P A v, vhv2ku) = (P A+ P A v + P A v2ku, vhv2ku) ≥
(P + P v + P v2ku, vhv2ku) = (P + P v, vhv2ku) + 1.

Thus, (P A, vhv2ku) = 1 or (P A v, vhv2ku) = 1. Let us prove that, in both of cases,
there exists a proper prefix u1 of u, u1 6= 1, such that

(P , vhv2ku1) = 1. (17)

This is obvious if (P A, vhv2ku) = 1, as the definition of h implies |u| > 1. So,
suppose (P A v, vhv2ku) = 1. For proving (17), it suffices to notice that |u| > |v|+1,
which holds in virtue of Lemmata 4.17, 4.19 and according to the definition of h.
Let u1 be the proper prefix of u, u1 6= 1, of minimal length verifying (17). We have

(P A+ P A v + P A v2ku, vhv2ku1) ≥ (P + P v + P v2ku, vhv2ku1).

According to Lemmata 4.16, 4.18 and by using (17), we have

(P A+ P A v, vh+2ku1) ≥ (P v, v2k+hu1) + 1.

Then, (P A, vhv2ku1) = 1 or (P A v, vhv2ku1) = 1. Let us prove that, in both of
cases, we have a contradiction.
This is obvious if (P A, vhv2ku1) = 1, as the definition of h implies |u1| > 1 and the
definition of u1 implies |u1| = 1. So, suppose (P A v, vhv2ku1) = 1. Thus, in virtue
of Lemmata 4.17, 4.19 and according to the definition of h, we have |u1| > |v|+ 1,
which contradicts the definition of u1.
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We end this section with a lemma and a remark. Let S be a strong factorizing
language and let P,C be finite subsets of A∗, with C a finite maximal code, such
that

S C∗ P = A∗.

Looking at this equation, it is trivial to notice that P ∩ S = {1}; otherwise, for a
non empty word w ∈ P ∩ S, we get

(S C∗ P,w) ≥ 2, (A∗, w) = 1.

Thus, we have proved the following lemma.

Lemma 4.20 Let S be a strong factorizing language. For any finite subset P of
A∗ such that P (A− 1)S + 1 ≥ 0, we have P ∩ S = {1}.

Remark 4.21 We recall that 1+v is a strong factorizing language [10]. In the same
paper the author also described the complete structure of all finite subsets P of A∗

such that P (A− 1)(1 + v) + 1 ≥ 0. Lemma 4.17 gives a more precise description of
some particular subsets P verifying the above relation. Precisely, we notice that for a
finite subset P of v∗P0, we have P (A−1)(1+v)+1 ≥ 0 if and only if there exists h ∈ N
such that P = (1+v2 + . . .+v2h)P0. Indeed, assume that P = (1+v2 + . . .+v2h)P0.
It is a straightforward verification that P (A − 1)(1 + v) + 1 ≥ 0. Conversely, let
P ⊆ v∗P0 be such that P (A−1)(1+v)+1 ≥ 0. For getting P = (1+v2+. . .+v2h)P0,
we have just to take the proof of Lemma 4.17, by skipping in it the relations (9) and
(12). Moreover, denote by C the corresponding finite maximal code, verifying

(1 + v) C∗ P = A∗.

Then, v2h+2 ∈ C . Indeed,

(P v, v2h+2) = 0 = (P, v2h+2) = (P A, v2h+2), (P A v, v2h+2) = 1.

By using this relation, thanks to Proposition 4.6, we get

(C − 1, v2h+2) = (P A+ P A v, v2h+2)− (P + P v, v2h+2) = 1.
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