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Abstract

Let M be a compact 3-dimensional totally real submanifold of the nearly
Kaehler 6-sphere. If the Ricci curvature of M satisfies Ric(M) > 23, then M
is a totally geodesic submanifold ( and Ric(M)= 2).

1. Introduction

On a 6-dimensional unit sphere S° we can construct a nearly Kaehler structure J
by making use of the Cayley number system (see [3] or [7]).

Let M be a compact 3-dimensional Riemannian manifold. M is called a totally
real submanifold of S¢ if J(TM) C T+M, where TM and T+M are the tangent
bundle and the normal bundle of M in S%, respectively. In [2], Ejiri proved that
a 3-dimensional totally real submanifold of S is orientable and minimal. In [1],
Dillen-Opozda-Verstraelen-Vrancken proved the following sectional curvature pinch-
ing theorem
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Theorem 1([1]). Let M be a compact 3-dimensional totally real submanifold of
S6. If the sectional curvature K of M satisfies

1
— < K<1 1
TR (1)

then M is a totally geodesic submanifold (i.e. K =1 on M ).
In this paper, we prove the following Ricci curvature pinching Theorem

Theorem 2. Let M be a compact 3-dimensional totally real submanifold of S°.
If the Ricci curvature of M satisfies

. 53
Ric(M) > 61’ (2)

then M s a totally geodesic submanifold (i.e. Ric(M) =2 on M).

2. Preliminaries

Suppose that M is an n-dimensional submanifold in an (n + p)-dimensional unit
sphere S™"?. 'We denote by UM the unit tangent bundle over M and by UM, its
fibre at p € M. We denote by <, > the metric of S"*? as well as that induced on M.
If h is the second fundamental form of M and A, the Weingarten endomorphism
associated to a normal vector &, we define

L:T,M+—T,M and T:T,M xT,;M+— R

by the expressions

Lo => Apweyei and T(,n) = traceAcA,,

i=1
where Tle is the normal space to M at p and ey, ..., e, is an orthonormal basis of
T,M.

In [5], Montiel-Ros-Urbano proved the following results

Lemma 1([5]). Let M be an n-dimensional compact minimal submanifold in
S™tP. We have

4
0= "%

(TR0, 0)fdv+ (n+4) [ | Ayl

3 UM

—4 < Lv, Apppyv > dv — 2 T(h(v,v), h(v,v))dv (3)

UM UM

+2 (< Lv,v > —|h(v,v)[})dv,
UM

where dv denotes the canonical locally product measure on the unit tangent bundle
UM over M.
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Lemma 2([5]). Let M be an n-dimensional compact minimal submanifold in
S"tP. Then, for any p € M, we have

< Lv, Appayv > dvy = Lo|%dv,, 4
S < L Anioaye > dy Lofdy, 0

n—+2Jum,

h 2dv, = L
/UMP| (v,v)|"dv, ) UMp< v, v > duyp, (5)

1
<Lvv>d :—/ h|2du,, 6
L% O L (6)

/U o Al = —— /U < Lo Ay > doy, (7)

and the equality in (7) holds if and only if Lv = "2 Appwyv for any v € UM,,.

It is well-known that we can construct a nearly Kaehler structure J on a 6-
dimensional unit sphere S® by making use of the Cayley system (see [3], [7] or [1]
for details). Let G be the (2,1)-tensor field on S® defined by

G(X,Y) = (VxJ)Y, (8)

where X, Y € T(S%) and V is the Levi-Civita connection on S°®. This tensor field
has the following properties (see [1])

G(X,X) =0, 9)
G(X,Y) + G(Y, X) =0, (10)
G(X,JY)+ JG(X,Y) = 0. (11)

3. 3-dimensional totally real submanifolds of SO

Let M be a 3-dimensional totally real submanifold of S%. In [2], Ejiri proved that
M is orientable and minimal, and that G(X,Y") is orthogonal to M, i.e.

GX,Y)eT*M,  for X,Y €TM. (12)

We denote the Levi-Civita connection of M by V. The formulas of Gauss and
Weingarten are then given by

VxY =VxY +h(X,Y), (13)

Vxé=—AcX + Dx¢, (14)
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where X and Y are vector fields on M and ¢ is a normal vector field on M. The
second fundamental form A is related to A by

<hX,Y),E>=< AX)Y >. (15)
From (12)-(14), we find

Dx(JY) = G(X,Y) + JVxY, (16)

A;xY = —=Jh(X,Y). (17)

Since M is a 3-dimensional totally real submanifold of S¢, JT+M = TM and
JTM = T+M. We can easily verify that (17) is equivalent to

<hX,Y),JZ >=< h(X,Z),]Y >=< h(Y,Z),JX > . (18)

Let S and R be the Ricci tensor and the scalar curvature of M. It follows from
the Gauss equation that

S(X,Y)=2< XY >—-<LX)Y >, (19)

R=6—|hf, (20)

where |h|? is the length square of h.
In order to prove our Theorem 2, we also need the following lemma which comes
from lemma 2 and lemma 6 of [1]

Lemma 3([1]). Let M be a compact 3-dimensional totally real submanifold of

S6. Then we have

|h(v,v)|*dv.
(21)

2, 9 2 9
/UM|(Vh)('U,'U,'U)| dv—4/ < (VR)(v,0,v), Jo>2 do +

UM 28 Jum

4. Proof of Theorem 2

Let M be a 3-dimensional totally real submanifold of S. By Ejiri’s result [2], we
know that M is orientable and minimal. Let n = 3 in lemma 1, we get by use of (5)
and (6)

7 2
0 = = [(VR)(v,v,v)’dv + —/ |h|*dv — 2/ T(h(v,v), h(v,v))dv
3 Jum S Jum UM

—1—7/ | Abo,yv]*dv — 4/ < Lv, Apayv > dv. (22)
UM UM
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Let @ be the function which assigns to each point of M the infimum of the Ricci
curvature of M at that point. Then Ric(M) > @, at p € M. jFrom (19) and (20),

we have
0<<Lv,v><2-Q (23)

for all v € UM. 1If ey, ey, e3 is an orthonormal basis of T,M, p € M such that
Le; = \je;, we have \; =< Le;, e; >> 0 and

3 3
ILo[* =) A <, >°< (2-Q) Y N <wv,e,>*=(2-Q) < Lv,v >,  (24)

i=1 =1

where the equality implies that \; = 2— @ for all : = 1, 2, 3, i.e. the Ricci curvature
of M is equal to QQ at p € M.
By (7), (4), (24) and (6), we have

7/ Ancomvl2d —4/ < Lv, Appy o > d
UMp| h(,)'U| Up UM, Uy An(vw)V Up

6
> —% /UMP < Lv, Apwmyv > duy

12

== Lo|? 2
25 UMp| /U| d/Up (5)
12

Z—%(Q—Q)/UMP<L’U,’U>d’Up
4

=——(2- h|*dv,.
35 (2= Q) [ Ihld,

where the equality implies that M is Einsteinian.

Combining (25) with (22), we get

7 2 4
0 = 5[ 1m0 [ (- @ Q)h

-2 T(h(v,v), h(v,v))dv. (26)

UM

Let h(v,v) = |h(v,v)|&, for some unit normal vector . From (18) and (23)

T(h(’l),’l)),h(’l},’l))) = |h(’l),’l))|2T(€,€)
= |h(v,v)|]* < L(JE), JE > (27)
< (2= Q) V)
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Putting (27) and (21) into (26), we obtain by use of (5) and (6)

21
0o > Z/ (Vh)(v,v,v), Jv >* d’U—l—/ |h(v,v)[*dv

v G- @-@hPdr—2 [ (- Q)h,0)dv

- QZ/ (Vh)(v,v,v), Jv >* d’u+/ %(2—@)]|h|2dv (28)
G Q)lh(v,v)do
= QZ/ (v,v,v), Jv >* dv + % (64@ — 53)|h|*dv.

Thus, under the hypothesis (2), (28) must be an equality, which implies that (24)
and (25) are equalities. Hence, M is Einsteinian. It follows from (28) that either
|h|?> =0, i.e. M is totally geodesic, in this case, Ric(M) = 2; or

53

on M. In the latter case, since M is a 3-dimensional Einsteinian manifold, we know
that the sectional curvature of M is

53

128

K

on M, but by Theorem 1 of [1] or a result of Ejiri [2], this case can not happen. We
conclude that M is totally geodesic. We complete the proof of Theorem 2.

Remark 1. By Myers’ Theorem, we can assume ”complete” instead of ”compact”
in Theorem 2.

Remark 2. For a compact minimal 3-dimensional submanifold M of (3 + p)-
dimensional unit sphere S if the Ricci curvature of M satisfies Ric(M) > 1, the
author [4] obtained a classification theorem.

Remark 3. F.Dillen, L.Verstraelen and L. Vrancken obtained a sharper result than
Theorem 1 in their paper ”Classification of totally real 3-dimensional submanifolds
of S with K > 1/16” , J. Math. Soc. Japan, 42(1990), 565-584.
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