A characteristic property of self-orthogonal codes and its application to lattices

Zhe-Xian Wan

Abstract

Let p be an odd prime, $\zeta = e^{2\pi i/p}$, D be the ring of algebraic integers in the field $Q(\zeta)$, and $P = (1 - \zeta)$ be the principal ideal of D generated by $1 - \zeta$. For a p-ary linear code C of length n, define the lattice $\Lambda_C = \{p^{-1/2}(\mathbf{c} + \mathbf{z}) \mid \mathbf{c} \in C, \ \mathbf{z} \in P^n\}$. It is proved that Λ_C is even if and only if C is self-orthogonal and that Λ_C is even unimodular if and only if C is self-dual. The proof rests on the following remark that for an odd prime power q a q-ary linear code Cis self-orthogonal if and only if $\mathbf{c} \cdot \mathbf{c} = 0$ for all $\mathbf{c} \in C$. Finally, irreducible root lattices arising as Λ_C from p-ary linear codes C are completely determined.

1 Introduction

Let q be a prime power, n be a positive integer, and \mathbb{F}_q^n be the n-dimensional row vector space over the finite field \mathbb{F}_q with q elements. A k-dimensional subspace of \mathbb{F}_q^n is called a q-ary linear [n, k]-code. For any $\mathbf{x} = (x_1, \ldots, x_n), \mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{F}_q^n$, define

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + \dots + x_n y_n.$$

Let C be a q-ary linear [n, k]-code. Define

$$C^{\perp} = \{ \mathbf{x} \in \mathbb{F}_{a}^{n} \mid \mathbf{x} \cdot \mathbf{y} = 0 \text{ for all } \mathbf{y} \in C \}.$$

Then C^{\perp} is an (n-k)-dimensional subspace of \mathbb{F}_q^n and called the *dual code* of C. If $C \subseteq C^{\perp}$, then C is called *self-orthogonal*. If $C = C^{\perp}$, then C is called *self-dual*.

Bull. Belg. Math. Soc. 5 (1998), 477-482

Received by the editors August 1997.

Communicated by James Hirschfeld.

¹⁹⁹¹ Mathematics Subject Classification. 05, 94.

Key words and phrases. self-orthogonal code, cyclotomic field, lattice, irreducible root lattice.

In the present paper it is remarked that when q is a power of an odd prime, a q-ary linear code C is self-orthogonal if and only if $\mathbf{c} \cdot \mathbf{c} = 0$ for all $\mathbf{c} \in C$. Then this remark is applied to the study of lattices.

Let p be an odd prime, $\zeta = e^{2\pi i/p}$, $\mathbb{Q}(\zeta)$ be the cyclotomic field of pth roots of unity, D be its ring of algebraic integers, and $P = (1 - \zeta)$ be the principal ideal of D generated by $1 - \zeta$.

For a *p*-ary linear [n, k]-code *C*, define the lattice

$$\Lambda_C = \{ p^{-1/2} (\mathbf{c} + \mathbf{z}) \mid \mathbf{c} \in C, \ \mathbf{z} \in P^n \},\$$

where **c** is regarded as a vector whose components are integers $0, 1, \ldots, p-1$. Then it is proved that Λ_C is even if and only if C is self-orthogonal and that Λ_C is even unimodular if and only if C is self-dual. This improves a proposition of [1].

Finally, let Λ be an irreducible root lattice in \mathbb{R}^n . Then it is proved that $\Lambda \simeq \Lambda_C$ for a *p*-ary code *C* of length *n*, where *p* is an odd prime, if and only if Λ is of type A_{p-1} , E_6 (when p = 3 and n = 3), or E_8 (when p = 3 and n = 4, or p = 5 and n = 2).

2 A characteristic property of self-orthogonal codes

Proposition 1

Let q be a power of an odd prime and C be a q-ary linear code. Then C is selforthogonal if and only if $\mathbf{c} \cdot \mathbf{c} = 0$ for all $\mathbf{c} \in C$.

Proof. Assume that $\mathbf{c} \cdot \mathbf{c} = 0$ for all $\mathbf{c} \in C$. For any $\mathbf{c}, \mathbf{c}' \in C$, since C is linear, $\mathbf{c} + \mathbf{c}' \in C$. Then

$$\mathbf{c} \cdot \mathbf{c} = \mathbf{c}' \cdot \mathbf{c}' = (\mathbf{c} + \mathbf{c}') \cdot (\mathbf{c} + \mathbf{c}') = 0,$$

which implies $2\mathbf{c} \cdot \mathbf{c}' = 0$. Since q is odd, we have $\mathbf{c} \cdot \mathbf{c}' = 0$ for all $\mathbf{c}, \mathbf{c}' \in C$. Therefore $C \subset C^{\perp}$.

The converse part is trivial.

Proposition 1 should be known, but the author could not find a reference, so let its proof be here.

The following example shows that Proposition 1 does not always hold when q is even.

Example

Let

$$C = \{(0,0,0), (1,1,0), (1,0,1), (0,1,1)\} \subseteq \mathbb{F}_2^3$$

Clearly, C is a binary linear [3, 2]-code with the property that $\mathbf{c} \cdot \mathbf{c} = 0$ for all $\mathbf{c} \in C$, but $C \not\subseteq C^{\perp}$.

For the following proposition, see, for example, [1], p. 9 or [4], p. 26.

Proposition 2

Let q be a prime power and C be a q-ary linear [n, k]-code. Then C is self-dual if and only if n is even, k = n/2, and $C \subseteq C^{\perp}$.

3 Application to lattices

Let p be an odd prime, $\zeta = e^{2\pi i/p}$, $\mathbb{Q}(\zeta)$ be the cyclotomic field of pth roots of unity, and D be its ring of algebraic integers. It may be shown (see, for example, [3], Chapter 13, §2) that

$$\mathbb{Q}(\zeta) = \mathbb{Q} + \mathbb{Q}\zeta + \dots + \mathbb{Q}\zeta^{p-2},$$

$$D = \mathbb{Z} + \mathbb{Z}\zeta + \dots + \mathbb{Z}\zeta^{p-2},$$

where both sums are direct. Also the ideal $P = (1 - \zeta)$ is a prime ideal of D, $\overline{P} = P$, and $D/P \simeq \mathbb{F}_p$. Define a bilinear form on $\mathbb{Q}(\zeta)$ by

$$(x,y) = \operatorname{Tr}_{\mathbb{Q}(\zeta)/\mathbb{Q}}(x\overline{y}) \text{ for all } x, y \in \mathbb{Q}(\zeta),$$

where \bar{y} denotes the complex conjugate of y. It was proved (see, for example, [1], §5.1 or [2]) that it is a positive definite symmetric bilinear form on $\mathbb{Q}(\zeta)$, that D is a (p-1)-dimensional lattice with disc $D = p^{p-2}$, and that $p^{-1/2}P$ is a (p-1)-dimensional lattice of type A_{p-1} .

Let *n* be an integer ≥ 2 ,

$$\mathbb{Q}(\zeta)^n = \{ \mathbf{x} = (x_1, \dots, x_n) \mid x_i \in \mathbb{Q}(\zeta) \}$$

and define

$$(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} (x_i, y_i) \text{ for all } \mathbf{x}, \mathbf{y} \in \mathbb{Q}(\zeta).$$

Then (\mathbf{x}, \mathbf{y}) is a positive definite symmetric bilinear form on $\mathbb{Q}(\zeta)^n$. Moreover, D^n is an n(p-1)-dimensional lattice with disc $D^n = p^{n(p-2)}$, and $p^{-1/2}P^n$ is an n(p-1)-dimensional lattice of type nA_{p-1} .

Define a map $\rho: D^n \to (D/P)^n \simeq \mathbb{F}_p^n$ by

$$\rho(x_1, \dots, x_n) = (x_1 + P, \dots, x_n + P)$$
 for all $(x_1, \dots, x_n) \in D^n$.

Clearly, ρ is a surjective homomorphism of additive groups. Let C be a p-ary linear [n, k]-code. Define

$$\Lambda_C = p^{-1/2} \rho^{-1}(C) = \{ p^{-1/2} (\mathbf{c} + \mathbf{z}) \mid \mathbf{c} \in C, \ \mathbf{z} \in P^n \},$$

where **c** is regarded as a vector whose components are integers $0, 1, \ldots, p-1$. Then we have

Proposition 3

Let p be an odd prime and C be a p-ary linear [n, k]-code. Then Λ_C is an n(p-1)dimensional lattice containing the lattice $p^{-1/2}P^n$ of type nA_{p-1} and with disc $\Lambda_C = p^{n-2k}$. Moreover,

- (i) Λ_C is even if and only if C is self-orthogonal.
- (ii) Λ_C is even unimodular if and only if C is self-dual.

Proof. We have $|\mathbb{F}_p^n/C| = p^{n-k}$. By the 2nd isomorphism theorem (see [5], p. 150)

$$D^n/\rho^{-1}(C) \simeq \mathbb{F}_p^n/C.$$

Therefore $|D^n/\rho^{-1}(C)| = p^{n-k}$. Since D^n is an n(p-1)-dimensional lattice, so is $\rho^{-1}(C)$. It follows that $\Lambda_C = p^{-1/2}\rho^{-1}(C)$ is also an n(p-1)-dimensional lattice. We have

disc
$$\Lambda_C$$
 = $((p^{-1/2})^{n(p-1)})^2$ disc $\rho^{-1}(C)$
= $p^{-n(p-1)}$ disc $D^n | D^n / \rho^{-1}(C) |^2$
= $p^{-n(p-1)} p^{n(p-2)} p^{2(n-k)}$
= p^{n-2k} . (1)

(i) For any $\mathbf{x} \in \Lambda_C$, \mathbf{x} can be expressed as

$$\mathbf{x} = p^{-1/2}(\mathbf{c} + \mathbf{z}), \text{ where } \mathbf{c} \in C, \ \mathbf{z} \in P^n$$

Then

$$(\mathbf{x}, \mathbf{x}) = p^{-1} \left(\operatorname{Tr}(\mathbf{c} \cdot \mathbf{c}) + \operatorname{Tr}(\mathbf{c}(\mathbf{z} + \bar{\mathbf{z}})) + \operatorname{Tr}(\mathbf{z}\bar{\mathbf{z}}) \right)$$

where $\operatorname{Tr} = \operatorname{Tr}_{\mathbb{Q}(\zeta)/\mathbb{Q}}$. It is easy to verify that

$$\operatorname{Tr}(\mathbf{c} \cdot \mathbf{c}) = (p-1)(\mathbf{c} \cdot \mathbf{c})$$

and

$$\operatorname{Tr}(y+\bar{y}), \operatorname{Tr}(y\bar{y}) \in 2p\mathbb{Z}$$
 for all $y \in P$.

Thus,

$$(\mathbf{x}, \mathbf{x}) = p^{-1}((p-1)(\mathbf{c} \cdot \mathbf{c}) + 2pr), \text{ where } r \in \mathbb{Z}$$
$$= p^{-1}(p-1)(\mathbf{c} \cdot \mathbf{c}) + 2r.$$

Therefore,

$$\begin{aligned} (\mathbf{x}, \mathbf{x}) \in 2\mathbb{Z} & \Leftrightarrow \quad p \mid \mathbf{c} \cdot \mathbf{c} \\ & \Leftrightarrow \quad \mathbf{c} \cdot \mathbf{c} = 0 \quad \text{in} \quad \mathbb{F}_p. \end{aligned}$$

Hence, Λ_C is even if and only if $\mathbf{c} \cdot \mathbf{c} = 0$ for all $\mathbf{c} \in C$. By Proposition 1, Λ_C is even if and only if C is self-orthogonal.

(ii) By (1), disc $\Lambda_C = 1$ if and only if n = 2k, i.e., n is even and k = n/2. By Proposition 2 and (i),

$$\begin{array}{ll} C \text{ is self-dual} & \Leftrightarrow & n \text{ is even}, \, k = n/2, \, \text{and} \, C \subseteq C^{\perp} \\ & \Leftrightarrow & \text{disc} \, \Lambda_C = 1 \, \text{and} \, \Lambda_C \text{ is even} \\ & \Leftrightarrow & \Lambda_C \text{ is even unimodular.} \end{array}$$

480

The "if" parts of Proposition 3 can be found in [1], i.e., Proposition 5.2 of [1], p. 135.

Let Λ be a lattice in \mathbb{R}^n . Define

$$\Lambda^* = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{y} \in \mathbb{Z} \text{ for all } \mathbf{y} \in \Lambda \}.$$

Then Λ^* is also a lattice in \mathbb{R}^n , called the *dual lattice* of Λ . Λ is called *integral* if $\mathbf{x} \cdot \mathbf{y} \in \mathbb{Z}$ for all $\mathbf{x}, \mathbf{y} \in \Lambda$. For an integral lattice Λ , $\Lambda \subseteq \Lambda^*$ and Λ^*/Λ is a finite abelian group. Λ is called *even* if $\mathbf{x} \cdot \mathbf{x} \in 2\mathbb{Z}$ for all $\mathbf{x} \in \Lambda$. If Λ is even then it is integral.

Let Λ be an even lattice. A vector of square length 2 in Λ is called a *root* of Λ . If Λ is generated by all its roots, Λ is called a *root lattice*. If Λ cannot be written as the direct sum of two sublattices Λ_1 and Λ_2 such that $(\mathbf{x}_1, \mathbf{x}_2) = 0$ for all $\mathbf{x}_1 \in \Lambda_1$ and $\mathbf{x}_2 \in \Lambda_2$, Λ is called *irreducible*. It is known that irreducible root lattices are of types $A_n (n \geq 1)$, D_n (*n* even and ≥ 4), $E_n (n = 6, 7, 8)$, (cf. Theorem 1.2 of [1], p. 20). If irreducible root lattices Λ and Λ' are of the same type, we write $\Lambda \simeq \Lambda'$.

As in the binary case we can study which irreducible root lattices arise as lattices Λ_C from *p*-ary codes *C*.

Lemma 1

Let C be a p-ary linear code, then $\Lambda_C^* = \Lambda_{C^{\perp}}$.

Proof. Let $\mathbf{x} = p^{-1/2}(\mathbf{c} + \mathbf{z}) \in \Lambda_C$ and $\mathbf{y} = p^{-1/2}(\mathbf{c}' + \mathbf{z}') \in \Lambda_{C^{\perp}}$, where $\mathbf{c} \in C$, $\mathbf{c}' \in C^{\perp}$, and $\mathbf{z}, \mathbf{z}' \in P^n$. Then

$$(\mathbf{x}, \mathbf{y}) = p^{-1} \operatorname{Tr}(\mathbf{c} \cdot \mathbf{c}' + \mathbf{c} \cdot \overline{\mathbf{z}'} + \mathbf{z} \cdot \mathbf{c}' + \mathbf{z} \cdot \overline{\mathbf{z}'}).$$

For $\mathbf{c} \in C$ and $\mathbf{c}' \in C^{\perp}$ we have $\mathbf{c} \cdot \mathbf{c}' = 0$ in \mathbb{F}_p . Computed in \mathbb{C} , $\mathbf{c} \cdot \mathbf{c}' \equiv 0$ (mod p). Since $\mathbf{z}, \mathbf{z}' \in P^n$ and $\overline{P^n} = P^n$, we have $\mathbf{c} \cdot \overline{\mathbf{z}'}, \mathbf{z} \cdot \mathbf{c}', \mathbf{z} \cdot \overline{\mathbf{z}'} \in P$. Thus $\operatorname{Tr}(\mathbf{c} \cdot \mathbf{c}' + \mathbf{c} \cdot \overline{\mathbf{z}'} + \mathbf{z} \cdot \mathbf{c}' + \mathbf{z} \cdot \overline{\mathbf{z}'}) \in p\mathbb{Z}$. Therefore $(\mathbf{x}, \mathbf{y}) \in \mathbb{Z}$. This proves $\Lambda_{C^{\perp}} \subseteq \Lambda_{C}^{*}$.

Let dim C = k. By Proposition 3, disc $\Lambda_C = p^{n-2k}$ and disc $\Lambda_{C^{\perp}} = p^{2k-n}$. But disc $\Lambda_C^* = (\operatorname{disc} \Lambda_C)^{-1} = p^{2k-n}$. Therefore disc $\Lambda_{C^{\perp}} = \operatorname{disc} \Lambda_C^*$. Hence $\Lambda_{C^{\perp}} = \Lambda_C^*$.

Proposition 4

Let Λ be an irreducible root lattice in \mathbb{R}^n . Then $\Lambda \simeq \Lambda_C$ for a *p*-ary linear code *C* of length *n*, where *p* is an odd prime if and only if Λ is of type A_{p-1} , E_6 (when p = 3 and n = 3), or E_8 (when p = 3 and n = 4, or p = 5 and n = 2).

Proof. Assume that $\Lambda \simeq \Lambda_C$ for a *p*-ary linear code *C* of length *n*, where *p* is an odd prime. For any *p*-ary linear code *C'* of length *n*, let $\mathbf{x} \in L_{C'}$, then $\mathbf{x} = p^{-1/2}(\mathbf{c}' + \mathbf{z})$, where $\mathbf{c}' \in C$ and $\mathbf{z} \in P^n$. Thus $p\mathbf{x} = p^{-1/2}(p(\mathbf{c}' + \mathbf{z}))$ and $p(\mathbf{c}' + \mathbf{z}) \in P^n$. Therefore $p\Lambda_{C'} \subseteq p^{-1/2}P^n \subseteq \Lambda_C$. Since $\Lambda_C^* = \Lambda_{C^{\perp}}$, we have, in particular, $p\Lambda_C^* \subseteq \Lambda_C$. But Λ_C^*/Λ_C is a finite abelian group. So

$$\Lambda_C^*/\Lambda_C \simeq (\mathbb{Z}/p\mathbb{Z})^\ell \text{ for some } \ell \ge 0.$$
 (2)

By inspecting the irreducible root lattices one by one we find that only A_{p-1} , E_6 (when p = 3), and E_8 satisfy the condition (2). Moreover, if $E_6 \simeq \Lambda_C$ for a *p*-ary linear code *C* of length *n*, then 6 = (p-1)n, which implies p = 3 and n = 3. If $E_8 \simeq \Lambda_C$ for a *p*-ary linear code *C* of length *n*, then 8 = (p-1)n. It follows that p = 3 and n = 4 or p = 5 and n = 2. Therefore Λ is of type A_{p-1}, E_6 (when p = 3 and n = 3), or E_8 (when p = 3 and n = 4, or p = 5 and n = 2).

Conversely, assume that Λ is of type A_{p-1} , E_6 , or E_8 . If Λ is of type A_{p-1} , let C be the 1-dimensional code $\{0\}$ consisting of 0 only; then $\Lambda_C = p^{-1/2}P$, which is of type A_{p-1} . If Λ is of type E_6 , let $C = \mathbb{F}_3(1, 1, 1)$; then $\Lambda \simeq \Lambda_C$. If Λ is of type E_8 , let $C = \mathbb{F}_3(1, 0, 1, 1) + \mathbb{F}_3(0, 1, 1, 2)$ or $\mathbb{F}_5(1, 2)$; then $\Lambda \simeq \Lambda_C$.

References

- [1] W. Ebeling. Lattices and Codes. Vieweg, Wiesbaden, 1994.
- [2] F. Hirzebruch. A letter to N. J. A. Sloane on 19 August, 1986. In Gesammelte Abhandlungen, Collected Papers, pages 796–798. Band II. Springer, Berlin, 1987.
- [3] K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory. Springer, New York, 2nd edition, 1990.
- [4] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam, 1977.
- [5] B. L. van der Waerden. Algebra I. Springer, Berlin, 6 Auflage, 1964.

Zhe-Xian Wan Department of Information Technology Lund University P.O. Box 118 S-221 00 Lund Sweden email: wan@it.lth.se