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Abstract

Let p be an odd prime, ζ = e2πi/p, D be the ring of algebraic integers in
the field Q(ζ), and P = (1− ζ) be the principal ideal of D generated by 1− ζ.
For a p-ary linear code C of length n, define the lattice ΛC = {p−1/2(c + z) |
c ∈ C, z ∈ Pn}. It is proved that ΛC is even if and only if C is self-orthogonal
and that ΛC is even unimodular if and only if C is self-dual. The proof rests
on the following remark that for an odd prime power q a q-ary linear code C
is self-orthogonal if and only if c · c = 0 for all c ∈ C. Finally, irreducible root
lattices arising as ΛC from p-ary linear codes C are completely determined.

1 Introduction

Let q be a prime power, n be a positive integer, and Fnq be the n-dimensional row
vector space over the finite field Fq with q elements. A k-dimensional subspace of Fnq
is called a q-ary linear [n, k]-code. For any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fnq ,
define

x · y = x1y1 + · · · + xnyn.

Let C be a q-ary linear [n, k]-code. Define

C⊥ = {x ∈ Fnq | x · y = 0 for all y ∈ C}.

Then C⊥ is an (n− k)-dimensional subspace of Fnq and called the dual code of C . If
C ⊆ C⊥, then C is called self-orthogonal. If C = C⊥, then C is called self-dual.
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In the present paper it is remarked that when q is a power of an odd prime, a
q-ary linear code C is self-orthogonal if and only if c · c = 0 for all c ∈ C . Then this
remark is applied to the study of lattices.

Let p be an odd prime, ζ = e2πi/p,Q(ζ) be the cyclotomic field of pth roots of
unity, D be its ring of algebraic integers, and P = (1− ζ) be the principal ideal of
D generated by 1− ζ.

For a p-ary linear [n, k]-code C , define the lattice

ΛC = {p−1/2(c + z) | c ∈ C, z ∈ P n},

where c is regarded as a vector whose components are integers 0, 1, . . . , p− 1. Then
it is proved that ΛC is even if and only if C is self-orthogonal and that ΛC is even
unimodular if and only if C is self-dual. This improves a proposition of [1].

Finally, let Λ be an irreducible root lattice in Rn. Then it is proved that Λ ' ΛC

for a p-ary code C of length n, where p is an odd prime, if and only if Λ is of type
Ap−1, E6 (when p = 3 and n = 3), or E8 (when p = 3 and n = 4, or p = 5 and
n = 2).

2 A characteristic property of self-orthogonal codes

Proposition 1
Let q be a power of an odd prime and C be a q-ary linear code. Then C is self-
orthogonal if and only if c · c = 0 for all c ∈ C .

Proof. Assume that c · c = 0 for all c ∈ C . For any c, c′ ∈ C , since C is linear,
c + c′ ∈ C . Then

c · c = c′ · c′ = (c + c′) · (c + c′) = 0,

which implies 2c ·c′ = 0. Since q is odd, we have c ·c′ = 0 for all c, c′ ∈ C . Therefore
C ⊆ C⊥.

The converse part is trivial. �

Proposition 1 should be known, but the author could not find a reference, so let
its proof be here.

The following example shows that Proposition 1 does not always hold when q is
even.

Example

Let

C = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} ⊆ F 3
2 .

Clearly, C is a binary linear [3, 2]-code with the property that c ·c = 0 for all c ∈ C ,
but C 6⊆ C⊥.

For the following proposition, see, for example, [1], p. 9 or [4], p. 26.

Proposition 2
Let q be a prime power and C be a q-ary linear [n, k]-code. Then C is self-dual if
and only if n is even, k = n/2, and C ⊆ C⊥.
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3 Application to lattices

Let p be an odd prime, ζ = e2πi/p,Q(ζ) be the cyclotomic field of pth roots of unity,
and D be its ring of algebraic integers. It may be shown (see, for example, [3],
Chapter 13, §2) that

Q(ζ) = Q+Qζ + · · ·+Qζp−2,

D = Z + Zζ + · · ·+ Zζp−2,

where both sums are direct. Also the ideal P = (1−ζ) is a prime ideal of D, P̄ = P ,
and D/P ' Fp. Define a bilinear form on Q(ζ) by

(x, y) = TrQ(ζ)/Q(xȳ) for all x, y ∈ Q(ζ),

where ȳ denotes the complex conjugate of y. It was proved (see, for example, [1],
§5.1 or [2]) that it is a positive definite symmetric bilinear form on Q(ζ), that D
is a (p − 1)-dimensional lattice with disc D = pp−2, and that p−1/2P is a (p − 1)-
dimensional lattice of type Ap−1.

Let n be an integer ≥ 2,

Q(ζ)n = {x = (x1, . . . , xn) | xi ∈ Q(ζ)}

and define

(x,y) =
n∑
i=1

(xi, yi) for all x,y ∈ Q(ζ).

Then (x,y) is a positive definite symmetric bilinear form on Q(ζ)n. Moreover, Dn

is an n(p−1)-dimensional lattice with disc Dn = pn(p−2), and p−1/2P n is an n(p−1)-
dimensional lattice of type nAp−1.

Define a map ρ : Dn → (D/P )n ' Fnp by

ρ(x1, . . . , xn) = (x1 + P, . . . , xn + P ) for all (x1, . . . , xn) ∈ Dn.

Clearly, ρ is a surjective homomorphism of additive groups. Let C be a p-ary linear
[n, k]-code. Define

ΛC = p−1/2ρ−1(C)

= {p−1/2(c + z) | c ∈ C, z ∈ P n},

where c is regarded as a vector whose components are integers 0, 1, . . . , p− 1. Then
we have

Proposition 3
Let p be an odd prime and C be a p-ary linear [n, k]-code. Then ΛC is an n(p− 1)-

dimensional lattice containing the lattice p−1/2P n of type nAp−1 and with disc ΛC =
pn−2k. Moreover,

(i) ΛC is even if and only if C is self-orthogonal.
(ii) ΛC is even unimodular if and only if C is self-dual.
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Proof. We have | Fnp /C |= pn−k . By the 2nd isomorphism theorem (see [5], p. 150)

Dn/ρ−1(C) ' Fnp /C.

Therefore | Dn/ρ−1(C) |= pn−k . Since Dn is an n(p − 1)-dimensional lattice, so is
ρ−1(C). It follows that ΛC = p−1/2ρ−1(C) is also an n(p − 1)-dimensional lattice.
We have

disc ΛC = ((p−1/2)n(p−1))2 disc ρ−1(C)

= p−n(p−1) disc Dn | Dn/ρ−1(C) |2

= p−n(p−1)pn(p−2)p2(n−k)

= pn−2k. (1)

(i) For any x ∈ ΛC, x can be expressed as

x = p−1/2(c + z), where c ∈ C, z ∈ P n.

Then

(x,x) = p−1 (Tr(c · c) + Tr(c(z + z̄)) + Tr(zz̄)) ,

where Tr = TrQ(ζ)/Q. It is easy to verify that

Tr(c · c) = (p− 1)(c · c)

and

Tr(y + ȳ),Tr(yȳ) ∈ 2pZ for all y ∈ P.
Thus,

(x,x) = p−1((p− 1)(c · c) + 2pr), where r ∈ Z
= p−1(p− 1)(c · c) + 2r.

Therefore,

(x,x) ∈ 2Z ⇔ p | c · c
⇔ c · c = 0 in Fp.

Hence, ΛC is even if and only if c · c = 0 for all c ∈ C . By Proposition 1, ΛC is
even if and only if C is self-orthogonal.

(ii) By (1), disc ΛC = 1 if and only if n = 2k, i.e., n is even and k = n/2. By
Proposition 2 and (i),

C is self-dual ⇔ n is even, k = n/2, and C ⊆ C⊥

⇔ disc ΛC = 1 and ΛC is even

⇔ ΛC is even unimodular.

�
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The “if” parts of Proposition 3 can be found in [1], i.e., Proposition 5.2 of [1],
p. 135.

Let Λ be a lattice in Rn. Define

Λ∗ = {x ∈ Rn | x · y ∈ Z for all y ∈ Λ}.

Then Λ∗ is also a lattice in Rn, called the dual lattice of Λ. Λ is called integral if
x · y ∈ Z for all x,y ∈ Λ. For an integral lattice Λ, Λ ⊆ Λ∗ and Λ∗/Λ is a finite
abelian group. Λ is called even if x · x ∈ 2Z for all x ∈ Λ. If Λ is even then it is
integral.

Let Λ be an even lattice. A vector of square length 2 in Λ is called a root of Λ.
If Λ is generated by all its roots, Λ is called a root lattice. If Λ cannot be written as
the direct sum of two sublattices Λ1 and Λ2 such that (x1,x2) = 0 for all x1 ∈ Λ1

and x2 ∈ Λ2, Λ is called irreducible. It is known that irreducible root lattices are
of types An(n ≥ 1), Dn (n even and ≥ 4), En(n = 6, 7, 8), (cf. Theorem 1.2 of [1],
p. 20). If irreducible root lattices Λ and Λ′ are of the same type, we write Λ ' Λ′.

As in the binary case we can study which irreducible root lattices arise as lattices
ΛC from p-ary codes C .

Lemma 1
Let C be a p-ary linear code, then Λ∗C = ΛC⊥.

Proof. Let x = p−1/2(c + z) ∈ ΛC and y = p−1/2(c′ + z′) ∈ ΛC⊥, where c ∈ C ,
c′ ∈ C⊥, and z, z′ ∈ P n. Then

(x,y) = p−1 Tr(c · c′ + c · z′ + z · c′ + z · z′).

For c ∈ C and c′ ∈ C⊥ we have c · c′ = 0 in Fp. Computed in C, c · c′ ≡ 0
(mod p). Since z, z′ ∈ P n and P n = P n, we have c · z′, z · c′, z · z′ ∈ P . Thus
Tr(c · c′ + c · z′ + z · c′ + z · z′) ∈ pZ. Therefore (x,y) ∈ Z. This proves ΛC⊥ ⊆ Λ∗C.

Let dimC = k. By Proposition 3, disc ΛC = pn−2k and disc ΛC⊥ = p2k−n. But
disc Λ∗C = (disc ΛC)−1 = p2k−n. Therefore disc ΛC⊥ = disc Λ∗C. Hence ΛC⊥ = Λ∗C. �

Proposition 4
Let Λ be an irreducible root lattice in Rn. Then Λ ' ΛC for a p-ary linear code C
of length n, where p is an odd prime if and only if Λ is of type Ap−1, E6 (when p = 3
and n = 3), or E8 (when p = 3 and n = 4, or p = 5 and n = 2).

Proof. Assume that Λ ' ΛC for a p-ary linear code C of length n, where p is an odd
prime. For any p-ary linear code C ′ of length n, let x ∈ LC′ , then x = p−1/2(c′+ z),
where c′ ∈ C and z ∈ P n. Thus px = p−1/2(p(c′+z)) and p(c′+z) ∈ P n. Therefore
pΛC′ ⊆ p−1/2P n ⊆ ΛC. Since Λ∗C = ΛC⊥ , we have, in particular, pΛ∗C ⊆ ΛC . But
Λ∗C/ΛC is a finite abelian group. So

Λ∗C/ΛC ' (Z/pZ)` for some ` ≥ 0. (2)

By inspecting the irreducible root lattices one by one we find that only Ap−1, E6

(when p = 3), and E8 satisfy the condition (2). Moreover, if E6 ' ΛC for a p-ary
linear code C of length n, then 6 = (p − 1)n, which implies p = 3 and n = 3. If
E8 ' ΛC for a p-ary linear code C of length n, then 8 = (p − 1)n. It follows that
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p = 3 and n = 4 or p = 5 and n = 2. Therefore Λ is of type Ap−1, E6 (when p = 3
and n = 3), or E8 (when p = 3 and n = 4, or p = 5 and n = 2).

Conversely, assume that Λ is of type Ap−1, E6, or E8. If Λ is of type Ap−1, let C
be the 1-dimensional code {0} consisting of 0 only; then ΛC = p−1/2P , which is of
type Ap−1. If Λ is of type E6, let C = F3(1, 1, 1); then Λ ' ΛC . If Λ is of type E8,
let C = F3(1, 0, 1, 1) + F3(0, 1, 1, 2) or F5(1, 2); then Λ ' ΛC . �
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