Projective embedding of projective spaces

Alexander Kreuzer

Abstract

In this paper, embeddings $\phi: M \rightarrow P$ from a linear space (M, \mathfrak{M}) in a projective space (P, \mathfrak{L}) are studied. We give examples for $\operatorname{dim} M>\operatorname{dim} P$ and show under which conditions equality holds. More precisely, we introduce properties (\mathbf{G}) (for a line $L \in \mathfrak{L}$ and for a plane $E \subset M$ it holds that $|L \cap \phi(M)| \neq 1)$ and $(\mathbf{E})(\phi(E)=\overline{\phi(E)} \cap \phi(M)$, whereby $\overline{\phi(E)}$ denotes the by $\phi(E)$ generated subspace of $P)$. If (\mathbf{G}) and (\mathbf{E}) are satisfied then $\operatorname{dim} M=\operatorname{dim} P$. Moreover we give examples of embeddings of m-dimensional projective spaces in n-dimensional projective spaces with $m>n$ that map any $n+1$ independent points onto $n+1$ independent points. This implies that for a proper subspace T of M it holds $\phi(T)=\overline{\phi(T)} \cap \phi(M)$ if and only if $\operatorname{dim} T \leq n-1$, in particular (\mathbf{E}) holds for $n \geq 3$. (cf. 4.1)

1 Introduction

An embedding $\phi: M \rightarrow P$ of a linear space (M, \mathfrak{M}) in a linear space (P, \mathfrak{L}) is an injective mapping that maps collinear points onto collinear points and noncollinear points onto noncollinear points. There are lots of papers concerning the embedding of linear spaces in projective spaces (cf. [3, Chap.6]). Important results are that every locally projective space (M, \mathfrak{M}) of $\operatorname{dim} M \geq 4$ (cf. [7, 10, 17, 19]) and every locally projective space (M, \mathfrak{M}) of $\operatorname{dim} M=3$ satisfying the Bundle Theorem (cf. $[8,15])$ is embeddable in a projective space (P, \mathfrak{L}). Due to the construction of the projective space the mentioned Embedding Theorems have the useful property that for every subspace T of (M, \mathfrak{M}) there exists exactly one subspace U of (P, \mathfrak{L}) with $\phi(T)=U \cap \phi(M)$. This property is equivalent to the two properties $(\mathbf{G}),(\mathbf{E}) ;$

[^0]A linear space satisfying $(\mathbf{G}),(\mathbf{E})$ is called locally complete (cf. 2.4). For locally complete embeddings the dimension of M and P coincide (cf. 2.5). There are also projective embeddings of linear spaces which are not locally complete, but have the property that the dimension and order of M and P are equal (cf. [13, 14]). But there exist also embeddings which do not preserve the dimension. If $\phi(M)$ generates P, one obtaines $\operatorname{dim} M \geq \operatorname{dim} P$ (cf. 2.3), hence we have to consider only the case $\operatorname{dim} M>\operatorname{dim} P$. For example one can embed every linear space in a projective plane E by a free construction of E. (Then of course, E is not a Desarguesian plane.) Kalhoff constructed in [9] the embedding of any finite partial planes in a translation plane, and hence in a projective plane of Lenz class V.

In this paper we are interested in embeddings in Desarguesian projective planes and spaces. There are some papers which give a characterisation of embeddings of projective spaces in Desarguesian projective spaces. For a field K and the $(m+1)$-dimensional vector space $\left(K^{m+1}, K\right)$ over K, let $\mathrm{PG}(m, K)$ denote the m dimensional projective space over K with the 1 -dimensional vector subspaces as points and the 2-dimensional vector subspaces as lines. M. Limbos [16] has shown for finite projective spaces that every embedding of $\mathrm{PG}(m, K)$ in $\mathrm{PG}(n, L)$ with $m>n$ is a product of the trivial embedding of $\mathrm{PG}(m, K)$ in $\mathrm{PG}(m, L)$ for a field extension L of K, and a projection of $\mathrm{PG}(m, L)$ in the subspace $\mathrm{PG}(n, L)$. In [16] a geometric construction of embeddings is given and the proof that every embedding can be obtained by this construction. H. Havlicek [6] and C.A. Faure, A. Froelicher $[4,5]$ give a similar characterisation for the infinite case, but without a construction. For an arbitrary field K an example of an embedding of $\mathrm{PG}(m, K)$ in $\mathrm{PG}(m-1, L)$ for a field extension L of K is given by A. Brezuleanu, D.-C. Rădulescu [1, (5.8)]. For a finite field K, J. Brown gives in [2] an analytic example of an embedding $\phi: \mathrm{PG}(m, K) \rightarrow \mathrm{PG}(2, L)$ for a field extension L of K. This examples does not satisfy (E).

In this paper we answer the question, if there exists an embedding $\phi: P \rightarrow P^{\prime}$ of a Pappian projective space (P, \mathfrak{L}) in a Pappian projective space $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$ which does not preserve dimension, but satisfy property (\mathbf{E}). We show the corresponding statements for higher dimensions. We show that for $\operatorname{dim} P^{\prime}=n$ there are embeddings which map any $n+1$ independent points of P onto $n+1$ independent points of P^{\prime}. It follows that the image of an $(n-1)$-dimensional subspace T of P generates an $(n-1)$-dimensional subspace $\overline{\phi(T)}$ of P^{\prime} with $\phi(T)=\overline{\phi(T)} \cap \phi(P)$. We remark that there exist also embeddings of projective spaces in projective planes satisfying property (G).

2 Locally Complete Embeddings

A linear space $(P, \mathfrak{L}, \mathrm{I})$ will be defined as a set P of elements, called points, a distinct set \mathfrak{L} of elements, called lines, and an incidence relation I such that any two distinct points are incident with exactly one line and every line is incident with at least two points. Usually one identifies a line $L \in \mathfrak{L}$ with the set of points incident with L, hence the lines of $(P, \mathfrak{L}, \mathrm{I})=(P, \mathfrak{L})$ are subsets of P.

A subspace is a subset $U \subset P$ such that for all distinct points $x, y \in U$ the unique line incident with x, y is contained in U. Let \mathfrak{U} denote the set of all subspaces. For
every subset $X \subset P$ we define the following closure operator:

$$
\begin{align*}
{ }^{-}: \mathfrak{P}(P) \rightarrow \mathfrak{U}: X \mapsto \bar{X}:= & \bigcap^{U \in \mathfrak{U}} \begin{array}{l}
X \subset U
\end{array} \tag{1}\\
& U \\
& X \subset U
\end{align*}
$$

The closure of X is a subspace containing X. For $U \in \mathfrak{U}$ we call $\operatorname{dim} U:=$ $\inf \{|X|-1: X \subset U$ and $\bar{X}=U\}$ the dimension of U. A subspace of dimension two is a plane. A subset $X \subset P$ is independent if $x \notin \overline{X \backslash\{x\}}$ for every $x \in X$, and is a basis of a subspace U if X is independent and $\bar{X}=U$.

For two linear spaces (M, \mathfrak{M}) and (P, \mathfrak{L}), an injective mapping

$$
\begin{equation*}
\phi: M \rightarrow P, x \mapsto \phi(x) \tag{2}
\end{equation*}
$$

is called an embedding, if ϕ maps collinear points onto collinear points and noncollinear points onto noncollinear points, i.e., $\{\phi(G): G \in \mathfrak{M}\}=\{L \cap \phi(M): L \in \mathfrak{L}$ and $|L \cap \phi(M)| \geq 2\}$. Hence $(\phi(M),\{\phi(G): G \in \mathfrak{M}\})$ is the restriction of (P, \mathfrak{L}) to $\phi(M)$. Clearly:

Lemma 2.1 If ϕ is an embedding of (M, \mathfrak{M}) in (P, \mathfrak{L}), and ψ is an embedding of (P, \mathfrak{L}) in $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$, then $\psi \circ \phi$ is an embedding of (M, \mathfrak{M}) in $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$.

Let $Y \mapsto \bar{Y}$ denote the closure of (P, \mathfrak{L}) and $X \mapsto\langle X\rangle$ the closure of (M, \mathfrak{M}). By [12, (1.1)]:

Lemma 2.2 If ϕ is an embedding of (M, \mathfrak{M}) in (P, \mathfrak{L}), and U a subspace of (P, \mathfrak{L}) and $X \subset M$, then:

1. $\phi^{-1}(U \cap \phi(M))$ is a subspace of M.
2. $\phi(\langle X\rangle) \subset \overline{\phi(X)}$ and $\overline{\phi(\langle X\rangle)}=\overline{\phi(X)}$.
3. If $\phi(X)$ is independent in P, then X is independent in M.

Lemma 2.3 If $\phi: M \rightarrow P$ is an embedding of a linear space (M, \mathfrak{M}) in a linear space (P, \mathfrak{L}) satisfying $\overline{\phi(M)}=P$, then $\operatorname{dim} M \geq \operatorname{dim} P$.
 $\overline{\phi(\langle X\rangle)}=\overline{\phi(X)}$ by 2.2. Therefore $\phi(X)$ is a generating set of P with $|X|=|\phi(X)|$, hence $\operatorname{dim} P \leq \operatorname{dim} M$.

We call an embedding ϕ of (M, \mathfrak{M}) in (P, \mathfrak{L}) locally complete, if for every nonempty subspace T of M, there is exactly one subspace U of P with $\phi(T)=U \cap \phi(M)$.

By [12, (1.5)] we have:
Lemma 2.4 For an embedding ϕ of (M, \mathfrak{M}) in (P, \mathfrak{L}) the following statements are equivalent:

1. ϕ is locally complete.
2. For every subspace T of (M, \mathfrak{M}) and for every subspace U of (P, \mathfrak{L}) with $\phi(M) \cap U \neq \emptyset$ we have

$$
U=\overline{U \cap \phi(M)} \quad \text { and } \quad \phi(T)=\overline{\phi(T)} \cap \phi(M)
$$

3. The following properties $(\mathbf{G}),(\mathbf{E})$ are satisfied.
(G) For every line $L \in \mathfrak{L},|L \cap \phi(M)| \neq 1$
(E) For every plane E of $M, \phi(E)=\overline{\phi(E)} \cap \phi(M)$

A linear space (P, \mathfrak{L}) satisfies the exchange condition if for $S \subset P$ and $x, y \in P$ with $x \in \overline{S \cup\{y\}} \backslash \bar{S}$ it follows that $y \in \overline{S \cup\{x\}}$.

Lemma 2.5 If ϕ is a locally complete embedding of a linear space (M, \mathfrak{M}) in a linear space (P, \mathfrak{L}) satisfying the exchange condition, then $\operatorname{dim} M=\operatorname{dim} P$.

Proof. Since ϕ is locally complete, $P=\overline{P \cap \phi(M)}=\overline{\phi(M)}$, hence, by Lemma 2.3, $\operatorname{dim} P \leq \operatorname{dim} M$. Now let $x \in \phi(M)$. Since (P, \mathfrak{L}) is an exchange space, there is a basis C of P containing x (cf. [11, §8]. By Lemma 2.4, (G) holds. Moreover for every $y \in C \backslash\{x\}$, there exists a $y^{\prime} \in(\overline{x, y} \cap \phi(M)) \backslash\{x\}$. Hence we obtain a basis $C^{\prime} \subset \phi(M)$ of P with $|C|=\left|C^{\prime}\right|$. Let $T:=\left\langle\phi^{-1}\left(C^{\prime}\right)\right\rangle$ denote the subspace of M generated by $\phi^{-1}\left(C^{\prime}\right)$, i.e. $C^{\prime} \subset \phi(T)$ and $P=\overline{C^{\prime}}=\overline{\phi(T)}$. We get $\phi(T)=\overline{\phi(T)} \cap \phi(M)=P \cap \phi(M)=\phi(M)$, hence $M=T$ is generated by $\phi^{-1}\left(C^{\prime}\right)$ and $\operatorname{dim} M \leq \operatorname{dim} P$.

The Lemma 2.5 applies in particular, if (P, \mathfrak{L}) is a projective space.
Theorem 2.6 Let $(P, \mathfrak{L}),(M, \mathfrak{M})$ be linear spaces satisfying the exchange condition and $\operatorname{dim} M>\operatorname{dim} P$. If $\phi: M \rightarrow P$ is an embedding satisfying (\mathbf{G}), then there exist subspaces $M^{\prime} \subset M, P^{\prime} \subset P$ with $\operatorname{dim} M^{\prime}>\operatorname{dim} P^{\prime}=2$ such that $\left.\phi\right|_{M^{\prime}}: M^{\prime} \rightarrow$ P^{\prime} is an embedding satisfying (G).

Proof. By Lemma $2.5(\mathbf{E})$ is not satisfied, since $\operatorname{dim} M>\operatorname{dim} P$. Hence there exists a plane $E \subset M$ with $\phi(E) \neq(\overline{\phi(E)} \cap \phi(M))$. Therefore $M^{\prime}:=\phi^{-1}(\overline{\phi(E)} \cap \phi(M))$ is a subspace with $E \subset M^{\prime}$ and $E \neq M^{\prime}$, i.e. $\operatorname{dim} M^{\prime}>2$. Since E is a plane, also $P^{\prime}:=\overline{\phi(E)}=\overline{\phi\left(M^{\prime}\right)}$ is a plane, and the restriction of ϕ to M^{\prime} is an embedding. For a line $L \subset P^{\prime}$ we have $L \cap \phi(M)=L \cap \phi\left(M^{\prime}\right)$. Hence if $x \in L \cap \phi\left(M^{\prime}\right)$ we have $G:=\phi^{-1}\left(L \cap \phi\left(M^{\prime}\right)\right) \in \mathfrak{M}$, since ϕ satisfies (\mathbf{G}). Because $G \subset M^{\prime}$, also $\left.\phi\right|_{M^{\prime}}$ satisfies (G).

Theorem 2.7 Let $(P, \mathfrak{L})=\operatorname{PG}(m, K)$ and $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)=\operatorname{PG}(n, L)$ be projective spaces and $\phi: P \rightarrow P^{\prime}$ an embedding, then K is isomorphic to a subfield of L.

Proof. Let E be a plane of P. Then $\phi(E) \simeq \mathrm{PG}(2, K)$ is a subplane of the Desarguesian projective plane $\overline{\phi(E)} \simeq \mathrm{PG}(2, L)$, hence K is isomorphic to a subfield of L (cf. [18, (8.2)], [6, (3.6.1)]).

3 A mapping of a vector space in a vector space over a field extension

In this section let $n, s \in \mathbb{N}$ be integers with $n \geq 2$, let K be a commutative field, and $L=K(t)$ an extension field of K with a transcendental or algebraic element t of degree at least $2^{s(n+1)}$ over K. We consider the two left vector spaces $\left(K^{n+s+1}, K\right)$ and $\left(L^{n+1}, L\right)$. For $i \in 0,1, \ldots, n$ let $\mathfrak{x}_{i} \in K^{n+s+1}$, more precisely

$$
\begin{equation*}
\mathfrak{x}_{i}=\left(x_{i, 0}, x_{i, 1}, \ldots, x_{i, n+s}\right) \tag{4}
\end{equation*}
$$

with elements $x_{i, k} \in K$. We denote the rows of the matrix

$$
\begin{align*}
& \mathbf{X}:=\left(\begin{array}{c}
\mathfrak{x}_{0} \\
\vdots \\
\mathfrak{x}_{n}
\end{array}\right)=\left(\begin{array}{ccc}
x_{0,0} & \ldots & x_{0, n+s} \\
\vdots & \vdots & \vdots \\
x_{n, 0} & \ldots & x_{n, n+s}
\end{array}\right)=\left(\mathfrak{a}_{0}^{T}, \ldots, \mathfrak{a}_{n+s}^{T}\right), \tag{5}\\
& \text { where } \quad \mathfrak{a}_{k}^{T}=\left(\begin{array}{c}
x_{0, k} \\
\vdots \\
x_{n, k}
\end{array}\right) \text { for } k=0,1, \ldots, n+s . \tag{6}
\end{align*}
$$

Since the column rank and the row rank of \mathbf{X} are equal, we have:
Lemma 3.1 The following statements are equivalent:

1. The vectors $\mathfrak{x}_{0}, \mathfrak{x}_{1}, \ldots, \mathfrak{x}_{n}$ are linearly independent in $\left(K^{n+s+1}, K\right)$.
2. The matrix $\mathbf{X}=\left(\mathfrak{a}_{0}^{T}, \mathfrak{a}_{1}^{T}, \ldots, \mathfrak{a}_{n+s}^{T}\right)$ has rank $n+1$.
3. There exist distinct integers $i_{0}, i_{1}, \ldots, i_{n} \in\{0,1, \ldots, n+s\}$ such that $\mathfrak{a}_{i_{0}}, \mathfrak{a}_{i_{1}}, \ldots, \mathfrak{a}_{i_{n}}$ are linearly independent in $\left(K^{n+1}, K\right)$.

Now we consider arbitrary vectors $\mathfrak{a}_{0}, \mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n+s} \in K^{n+1} \subset L^{n+1}$ and define

$$
\begin{equation*}
\mathfrak{b}_{i}^{T}:=\mathfrak{a}_{i}^{T}+\sum_{j_{i}=1}^{s} t^{2^{\left(j_{i}-1\right)(n+1)+i}} \mathfrak{a}_{n+j_{i}}^{T} \in L^{n+1} \quad \text { for } \quad i=0,1, \ldots, n . \tag{7}
\end{equation*}
$$

For example, for $s=2$ we obtain: $\quad \mathfrak{b}_{i}^{T}:=\mathfrak{a}_{i}^{T}+t^{2^{i}} \mathfrak{a}_{n+1}^{T}+t^{2^{(n+1)+i}} \mathfrak{a}_{n+2}^{T}$.

Lemma $3.2 \operatorname{det}\left(\mathfrak{b}_{0}^{T}, \mathfrak{b}_{1}^{T}, \ldots, \mathfrak{b}_{n}^{T}\right) \neq 0$ if and only if $\operatorname{rank}\left(\mathfrak{a}_{0}^{T}, \mathfrak{a}_{1}^{T}, \ldots, \mathfrak{a}_{n+s}^{T}\right)=n+1$.
Proof. (i). First we introduce some notation to get a shorter representation. For $i \in\{0, \ldots, n\}$ and $j_{i} \in\{0, \ldots, s\}$ we define

$$
\lambda_{i, j_{i}}:=\left\{\begin{array}{lc}
0 & \text { if } \\
j_{i}=0 \\
2^{\left(j_{i}-1\right)(n+1)+i} & \text { if } \\
j_{i} \neq 0
\end{array} \text { and } \mathfrak{a}_{i, j_{i}}^{T}:=\left\{\begin{array}{lll}
\mathfrak{a}_{i}^{T} & \text { if } & j_{i}=0 \\
\mathfrak{a}_{n+j_{i}}^{T} & \text { if } & j_{i} \neq 0
\end{array},\right.\right.
$$

$$
\begin{equation*}
\text { so } \quad \mathfrak{b}_{i}^{T}:=t^{0} \mathfrak{a}_{i}^{T}+\sum_{j_{i}=1}^{s} t^{2^{\left(j_{i}-1\right)(n+1)+i}} \mathfrak{a}_{n+j_{i}}^{T}=\sum_{j_{i}=0}^{s} t^{\lambda_{i, j_{i}}} \mathfrak{a}_{i, j_{i}}^{T} . \tag{8}
\end{equation*}
$$

(ii).We recall that we can write every integer $k \in\left\{1,2, \ldots, 2^{s(n+1)}-1\right\}$ as a sum of elements of $\left\{2^{r}: r=0,1, \ldots, s(n+1)-1\right\}=\left\{2^{\left(j_{i}-1\right)(n+1)+i}: j_{i}=1,2, \ldots, s, \quad i=\right.$ $0,1, \ldots, n\}=\left\{\lambda_{i, j_{i}}: j_{i}=1,2, \ldots, s, \quad i=0,1, \ldots, n\right\}$ in a unique way. Hence we have for $j_{i}, k_{i} \in\{0,1, \ldots, s\}$

$$
\begin{align*}
& \sum_{i=0}^{n} \lambda_{i, j_{i}}=\sum_{i=0}^{n} \lambda_{i, k_{i}} \text { if and only if } j_{i}=k_{i} \text { for all } i \in\{0, \ldots, n\} \tag{9}\\
& \text { and } \prod_{i=0}^{n} t^{\lambda_{i, j_{i}}}=\prod_{i=0}^{n} t^{\lambda_{i, k_{i}}} \text { if and only if } j_{i}=k_{i} \text { for all } i \in\{0, \ldots, n\} . \tag{10}
\end{align*}
$$

(iii).By (i) we get

$$
\begin{align*}
& d: \\
&=\operatorname{det}\left(\mathfrak{b}_{0}^{T}, \ldots, \mathfrak{b}_{n}^{T}\right)=\operatorname{det}\left(\sum_{j_{0}=0}^{s} t^{\lambda_{0, j_{0}}} \mathfrak{a}_{0, j_{0}}^{T}, \ldots, \sum_{j_{n}=0}^{s} t^{\lambda_{n, j_{n}}} \mathfrak{a}_{n, j_{n}}^{T}\right)= \tag{11}\\
&=\sum_{j_{0}, \ldots, j_{n}=0}^{s}\left(t^{\lambda_{0, j_{0}}} \ldots . t^{\lambda_{n, j_{n}}}\right) \operatorname{det}\left(\mathfrak{a}_{0, j_{0}}^{T}, \ldots, \mathfrak{a}_{n, j_{n}}^{T}\right)=\sum_{k \leq m} t^{k} \operatorname{det} \mathbf{A}_{k}
\end{align*}
$$

with $k=\sum \lambda_{0, j_{0}},+\cdots+\lambda_{n, j_{n}}, m=2^{s(n+1)}-1 \quad$ and $\mathbf{A}_{k}=\left(\mathfrak{a}_{i_{0}}^{T}, \mathfrak{a}_{i_{1}}^{T}, \ldots, \mathfrak{a}_{i_{n}}^{T}\right)$ with not necessarily distinct integers $i_{j} \in\{0,1, \ldots, n+s\}, j=0,1, \ldots, n$.
(vi). Since $t \in L \backslash K$ has at least degree $m+1=2^{s(n+1)}$ over K, we have $d=\sum_{k=0}^{m} t^{k} \operatorname{det} \mathbf{A}_{k}=0$ if and only if $\operatorname{det} \mathbf{A}_{k}=0$ for every $k \in\left\{0,1, \ldots, 2^{s(n+1)}-1\right\}$. This means in particular that for distinct elements $i_{0}, i_{1}, \ldots, i_{n} \in\{0,1, \ldots, n+s\}$ the vectors $\mathfrak{a}_{i_{0}}^{T}, \mathfrak{a}_{i_{1}}^{T}, \ldots, \mathfrak{a}_{i_{n}}^{T}$ are linearly dependent. By Lemma 3.1 it follows that $\operatorname{rank}\left(\mathfrak{a}_{0}^{T}, \mathfrak{a}_{1}^{T}, \ldots, \mathfrak{a}_{n+s}^{T}\right)<n+1$.

On the other hand, if $d \neq 0$, then there exist integers $i_{0}, i_{1}, \ldots, i_{n} \in\{0,1, \ldots, n+s\}$ with $\operatorname{det}\left(\mathfrak{a}_{i_{0}}^{T}, \mathfrak{a}_{i_{1}}^{T}, \ldots, \mathfrak{a}_{i_{n}}^{T}\right) \neq 0$, hence $i_{0}, i_{1}, \ldots, i_{n}$ are distinct and $\mathfrak{a}_{i_{0}}^{T}, \mathfrak{a}_{i_{1}}^{T}, \ldots, \mathfrak{a}_{i_{n}}^{T}$ are linearly independent. By Lemma 3.1 we get $\operatorname{rank}\left(\mathfrak{a}_{0}^{T}, \mathfrak{a}_{1}^{T}, \ldots, \mathfrak{a}_{n+s}^{T}\right)=n+1$.

Now we define the map

$$
\begin{array}{r}
f: K^{n+s+1} \rightarrow L^{n+1}, \quad \mathfrak{x}=\left(x_{0}, \ldots, x_{n+s+1}\right) \mapsto \mathfrak{x}^{\prime}=\left(x_{0}^{\prime}, \ldots, x_{n}^{\prime}\right) \\
\text { by } \quad x_{i}^{\prime}=x_{i}+\sum_{j=1}^{s} t^{2^{(j-1)(n+1)+i}} x_{n+j} \quad, \quad \text { for } \quad i=0,1, \ldots, n . \tag{12}
\end{array}
$$

Lemma 3.3 1. $f(K \mathfrak{x})=K f(\mathfrak{x}) \subset L f(\mathfrak{x})$.
2. The vectors $\mathfrak{x}_{0}, \ldots, \mathfrak{x}_{n}$ are linearly independent in $\left(K^{n+s+1}, K\right)$ if and only if $f\left(\mathfrak{x}_{0}\right), \ldots, f\left(\mathfrak{x}_{n}\right)$ are linearly independent in $\left(L^{n+1}, L\right)$.
3. In particular for three vectors $\mathfrak{x}_{0}, \mathfrak{x}_{1}, \mathfrak{x}_{2} \in K^{n+s+1}, \operatorname{rank}\left(\mathfrak{x}_{0}, \mathfrak{x}_{1}, \mathfrak{x}_{2}\right)=3$ if and only if $\operatorname{rank}\left(f\left(\mathfrak{x}_{0}\right), f\left(\mathfrak{x}_{1}\right), f\left(\mathfrak{x}_{2}\right)\right)=3$.

Proof. 1. By definition $f(\lambda \mathfrak{x})=\lambda f(\mathfrak{x})$ for $\lambda \in$ K. Clearly $K f(\mathfrak{x}) \subset L f(\mathfrak{x})$.
2. For $\mathfrak{x}_{0}, \ldots, \mathfrak{x}_{n} \in K^{n+s+1}$ with $\mathfrak{x}_{i}=\left(x_{i, 0}, x_{i, 1}, \ldots, x_{i, n+s}\right)$, we consider the matrix $\mathbf{X}^{\prime}:=\left(\begin{array}{c}f\left(\mathfrak{x}_{0}\right) \\ \vdots \\ f\left(\mathfrak{x}_{n}\right)\end{array}\right)$
$=\left(\begin{array}{ccc}x_{0,0}+\sum_{j=1}^{s} t^{2^{(j-1)(n+1)}} x_{0, n+j} & \ldots & x_{0, n}+\sum_{j=1}^{s} t^{2^{(j-1)(n+1)+n}} x_{0, n+j} \\ \vdots & \vdots & \vdots\end{array}\right.$
$=\left(\mathfrak{a}_{0}^{T}+\sum_{j=1}^{s} t^{2^{(j-1)(n+1)}} \mathfrak{a}_{n+j}^{T}, \ldots, \mathfrak{a}_{n}^{T}+\sum_{j=1}^{s} t^{2^{(j-1)(n+1)+n}} \mathfrak{a}_{n+j}^{T}\right)$
$=\left(\mathfrak{b}_{0}^{T}, \ldots, \mathfrak{b}_{n}^{T}\right)$.
Hence by Lemma 3.2 we have $\operatorname{det}\left(\mathbf{X}^{\prime}\right)=\operatorname{det}\left(\mathfrak{b}_{0}^{T}, \mathfrak{b}_{1}^{T}, \ldots, \mathfrak{b}_{n}^{T}\right) \neq 0$ iff $\operatorname{rank}\left(\mathfrak{a}_{0}^{T}, \mathfrak{a}_{1}^{T}, \ldots, \mathfrak{a}_{n+s}^{T}\right)=n+1$, i.e. by Lemma 3.1, iff $\mathfrak{x}_{0}, \ldots, \mathfrak{x}_{n}$ are linearly independent.
Since $n \geq 2,3$. is a consequence of 2 .

4 Embeddings satisfying (E)

Using the map f introduced in the preceding section, we now construct projective embeddings.
Let (P, \mathfrak{L}) be a Pappian projective space with $\operatorname{dim} P=n+s$ for $n, s \in \mathbb{N}$ with $n \geq 2$. Then we can represent $(P, \mathfrak{L})=\mathrm{PG}(n+s, K)$ by an $(n+s+1)$-dimensional vector space $\left(K^{n+s+1}, K\right)$ over a commutative field K. Let us denote by $\left(P^{\prime}, \mathfrak{L}^{\prime}\right):=$ $\mathrm{PG}(n, L)$ the n-dimensional projective space with the underlying vector space (L^{n+1}, L) where L is the field extension of K introduced in the preceding section. We recall that three points $a=K \mathfrak{a}, b=K \mathfrak{b}, c=K \mathfrak{c}$ are noncollinear if and only if $\operatorname{rank}(\mathfrak{a}, \mathfrak{b}, \mathfrak{c})=3$ for vectors $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in K^{n+s+1}$.

Theorem 4.1 1. For every $n, s \in \mathbb{N}$ with $n \geq 2$ and every Pappian projective space (P, \mathfrak{L}) of dimension $n+s$, there exists an embedding $\phi: P \rightarrow P^{\prime}$ in an n-dimensional projective Pappian space $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$ such that any $n+1$ points $x_{0}, \ldots, x_{n} \in P$ are independent in (P, \mathfrak{L}) if and only if $\phi\left(x_{0}\right), \ldots, \phi\left(x_{n}\right)$ are independent in $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$.
2. For a proper subspace T of P it holds that $\phi(T)=\overline{\phi(T)} \cap \phi(P)$ if and only if $\operatorname{dim} T \leq n-1$
3. For $n \geq 3$, ϕ satisfies (\mathbf{E}).

Proof. 1. Using the map f of Lemma 3.3, we define
$\phi: P \rightarrow P^{\prime}, x=K \mathfrak{x} \mapsto \phi(x):=L f(\mathfrak{x})$
By Lemma 3.3(1), ϕ is well defined, and by Lemma 3.3(3), ϕ maps collinear points onto collinear point and noncollinear points onto noncollinear points, hence ϕ is
an embedding. Since $x_{0}=K \mathfrak{x}_{0}, \ldots, x_{n}=K \mathfrak{x}_{n}$ are independent iff $\mathfrak{x}_{0}, \ldots, \mathfrak{x}_{n}$ are linearly independent, and $\phi\left(x_{0}\right)=L f\left(\mathfrak{x}_{0}\right), \ldots, \phi\left(x_{n}\right)=L f\left(\mathfrak{x}_{n}\right)$ are independent iff $f\left(\mathfrak{x}_{0}\right), \ldots, f\left(\mathfrak{x}_{0}\right)$ are linearly independent, one obtain by Lemma 3.3(2) that x_{0}, \ldots, x_{n} $\in P$ are independent iff $\phi\left(x_{0}\right), \ldots, \phi\left(x_{n}\right)$ are independent.
2. For $r \leq n-1$, let T be an r-dimensional subspace of (P, \mathfrak{L}) with a basis a_{0}, \ldots, a_{r}. Assume that $\phi(T) \neq \overline{\phi(T)} \cap \phi(P)$. Then there exists a point $b \in P$ with $\phi(b) \in(\overline{\phi(T)} \backslash \phi(T))$, i.e. $b \notin T$ and a_{0}, \ldots, a_{r}, b are independent in (P, \mathfrak{L}). Since $\phi(b) \in \overline{\phi(T)}=\overline{\phi\left(a_{0}\right), \ldots, \phi\left(a_{r}\right)}$ (cf. Lemma 2.2(2)), it follows that $\phi\left(a_{0}\right), \ldots, \phi\left(a_{r}\right), \phi(b)$ are dependent in $\left(P^{\prime} \mathfrak{L}^{\prime}\right)$.
Since $r+2 \leq n+1$, by 1 ., the points $\phi\left(a_{0}\right), \ldots, \phi\left(a_{r}\right), \phi(b)$ are independent since a_{0}, \ldots, a_{r}, b are independent, a contradiction to the assumption $\phi(T) \neq \overline{\phi(T)} \cap \phi(P)$. Hence $\phi(T)=\overline{\phi(T)} \cap \phi(P)$ for $\operatorname{dim} T \leq n-1$. For every proper subspace T of P with $\operatorname{dim} T \geq n$, there are $n+1$ independent points $a_{0}, \ldots, a_{n} \in T$. By 1 . $\phi\left(a_{0}\right), \ldots \phi\left(a_{n}\right)$ are independent in P^{\prime}, hence $P^{\prime}=\overline{\phi\left(a_{0}\right), \ldots, \phi\left(a_{n}\right)} \subset \overline{\phi(T)}$ and $\phi(T) \neq \phi(P)=\overline{\phi(T)} \cap \phi(P)=P^{\prime} \cup \phi(P)$, since T is a proper subspace of P.
3. By 2., (\mathbf{E}) is satisfied for $n \geq 3$.

Corollary 4.2 For every $n, s \in \mathbb{N}$ with $n \geq 2$ and every finite projective space (P, \mathfrak{L}) of dimension $n+s$, there exists an embedding $\phi: P \rightarrow P^{\prime}$ in an n-dimensional finite projective Desarguesian space $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$ such that any $n+1$ points $x_{0}, \ldots, x_{n} \in P$ are independent in (P, \mathfrak{L}) if and only if $\phi\left(x_{0}\right), \ldots, \phi\left(x_{n}\right)$ are independent in $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$.
For a proper subspace T of P it holds that $\phi(T)=\overline{\phi(T)} \cap \phi(P)$ if and only if $\operatorname{dim} T \leq n-1$, and for $n \geq 3$, ϕ satisfies (\mathbf{E}).

Proof. If P is finite, then ord P is finite and $(P, \mathfrak{L})=\operatorname{PG}(n+s, K)$ for a commutative field K. There exists a finite field extension $L=K(t)$ of finite degree t at least $2^{s(n+1)}$, hence L, and therefore also P^{\prime} are finite and the assertion follows with 4.1.

If we set $\mathrm{n}=2$ we obtain:
Corollary 4.3 Every Pappian projective space is embeddable in a Pappian projective plane.

Proof. For a Pappian projective space (P, \mathfrak{L}) of finite dimension, Corollary 4.3 is a direct consequence of Theorem 4.1 with $n=2$. For $\operatorname{dim} P=\infty$ we modify the construction of the last section, by taking a transcendental element t_{b} for every element b of a basis B of P. Then for $T=\left\{t_{b}: b \in B\right\}$ and $L:=K(T)$ we get the result analogous to the proofs of Lemma 3.1 to 3.3.

Let (M, \mathfrak{M}) be a linear space. Two lines $G, L \in \mathfrak{L}$ are called parallel if $G=L$, or if G, L are contained in a common plane and $G \cap L=\emptyset$. For $x \in M \backslash L$ let
$\pi(x, L):=\mid\{G \in \mathfrak{M}: x \in G$ and G, L parallel $\} \mid$
denote the number of all parallel lines of L passing x. For $m \in \mathbb{N},(M, \mathfrak{M})$ is called an $[0, m]$-space, if for each non-incident point-line pair (x, L) we have that $\pi(x, L) \in[0, m]=\{0,1, \ldots, m\}$. Let $\pi(L):=\max \{\pi(y, L): y \in M \backslash L\}$. If $|L|+\pi(L)-1 \geq 3 m+1$ and $\operatorname{dim} M \geq 3$, then by [14, Theorem (2.10)], ord $M:=$ $|L|+\pi(L)-1$ is constant for every line $L \in \mathfrak{M}$. If ord $M \geq 3 m+2$ and $\operatorname{dim} M \geq 3$, then by [14, Embedding Theorem (4.5)], ($M, \mathfrak{M})$ is embeddable in a projective space (P, \mathfrak{L}) with $\operatorname{dim} M=\operatorname{dim} P$ and $\operatorname{ord} M=\operatorname{ord} P$. Hence:

Corollary 4.4 Every finite $[0, m]$-space (M, \mathfrak{M}) with $\operatorname{dim} M \geq 3$ and ord $M \geq 3 m+2$ is embeddable in a finite Pappian projective plane.

Proof. Since M is finite, also $\operatorname{ord} M=\operatorname{ord} P$ and $\operatorname{dim} M=\operatorname{dim} P$ is finite and (M, \mathfrak{M}) is embeddable in a finite projective space (P, \mathfrak{L}). Now by 4.2 for $n=2$, (P, \mathfrak{L}) is embeddable in a finite Pappian plane $\left(P^{\prime}, \mathfrak{L}^{\prime}\right)$ and by 2.1 the assertion follows.

References

[1] A. Brezuleanu and D.-C. Rădulescu. About full or injective lineations. J. Geometry, 23:45-60, 1984.
[2] J.M.N. Brown. Partitioning the complement of a simplex in $P G\left(e, q^{d+1}\right)$ into copies of $P G(d, q)$. J. Geometry, 33:11-16, 1988.
[3] F. Buekenhout (ed.). Handbook of Incidence Geometry. Elsevier Science B. V., Amsterdam, 1995.
[4] C.-A. Faure and A. Froelicher. Morphisms of projective geometries and of corresponding lattices. Geom. Dedicata, 47:25-40, 1993.
[5] C.-A. Faure and A. Froelicher. Morphisms of projective geometries and semilinear maps. Geom Dedicata, 53:237-262, 1994.
[6] H. Havlicek. A generalisation of Brauner's Theorem on linear mappings. Mitt. Math. Sem. Univ. Giessen, 215:27-41, 1994.
[7] A. Herzer. Projektiv darstellbare stark planare Geometrien vom Rang 4. Geom. Dedicata, 5:467-484, 1976.
[8] J. Kahn. Locally projective-planar lattices which satisfy the bundle theorem. Math. Z., 175:219-247, 1980.
[9] F. Kalhoff. On projective embeddings of partial planes and rank three matroids. Beiträge zur Geometrie und Algebra (TUM-Bericht M 9414, TU München), 27:1-12, 1994.
[10] W. M. Kantor. Dimension and embedding theorems for geometric lattices. J. Combin. Theory Ser. A, 17:173-195, 1974.
[11] H. Karzel, K. Sörensen, and D. Windelberg. Einführung in die Geometrie. UTB Vandenhoeck, Göttingen, 1973.
[12] A. Kreuzer. Zur Einbettung von Inzidenzräumen und angeordneten Räumen. J. Geometry, 35:132-151, 1989.
[13] A. Kreuzer. Projektive Einbettung nicht lokal projektiver Räume. Geom. Dedicata, 53:163-186, 1994.
[14] A. Kreuzer. Projective embedding of [0,m]-spaces. J. Combin. Theory A, 70:6681, 1995.
[15] A. Kreuzer. Locally projective spaces which satisfy the bundle theorem. J. Geometry, 56:87-98, 1996.
[16] M. Limbos. A characterisation of the embeddings of $\mathrm{PG}(m, q)$ into $\operatorname{PG}\left(n, q^{r}\right)$. J. Geometry, 16:50-55, 1981.
[17] K. Sörensen. Projektive Einbettung angeordneter Räume. Beiträge zur Geometrie und Algebra (TUM-Bericht M 8612, TU München), 15:8-15, 1986.
[18] F.W. Stevenson. Projective Planes. W.H. Freeman and Co., San Francisco, 1972.
[19] O. Wyler. Incidence geometry. Duke Math. J., 20:601-610, 1953.
A. Kreuzer

Mathematisches Seminar
Universität Hamburg
Bundesstr. 55
D-20146 Hamburg
e-mail: kreuzer@math.uni-hamburg.de

[^0]: Received by the editors August 97.
 Communicated by Albrecht Beutelspacher.
 1991 Mathematics Subject Classification. 51E.
 Key words and phrases. Projective spaces, Embeddings.

