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Abstract

In this paper, embeddings φ : M → P from a linear space (M,M) in a
projective space (P,L) are studied. We give examples for dimM > dimP and
show under which conditions equality holds.
More precisely, we introduce properties (G) (for a line L ∈ L and for a plane
E ⊂ M it holds that |L ∩ φ(M)| 6= 1) and (E) (φ(E) = φ(E) ∩ φ(M),
whereby φ(E) denotes the by φ(E) generated subspace of P ). If (G) and (E)
are satisfied then dimM = dimP . Moreover we give examples of embeddings
of m-dimensional projective spaces in n-dimensional projective spaces with
m > n that map any n+ 1 independent points onto n+ 1 independent points.
This implies that for a proper subspace T of M it holds φ(T ) = φ(T )∩ φ(M)
if and only if dimT ≤ n− 1, in particular (E) holds for n ≥ 3. (cf. 4.1)

1 Introduction

An embedding φ : M → P of a linear space (M,M) in a linear space (P,L) is an
injective mapping that maps collinear points onto collinear points and noncollinear
points onto noncollinear points. There are lots of papers concerning the embedding
of linear spaces in projective spaces (cf. [3, Chap.6]). Important results are that
every locally projective space (M,M) of dimM ≥ 4 (cf. [7, 10, 17, 19]) and every
locally projective space (M,M) of dimM = 3 satisfying the Bundle Theorem (cf.
[8, 15]) is embeddable in a projective space (P,L). Due to the construction of the
projective space the mentioned Embedding Theorems have the useful property that
for every subspace T of (M,M) there exists exactly one subspace U of (P,L) with
φ(T ) = U ∩ φ(M). This property is equivalent to the two properties (G), (E);
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A linear space satisfying (G), (E) is called locally complete (cf. 2.4). For locally
complete embeddings the dimension of M and P coincide (cf. 2.5). There are also
projective embeddings of linear spaces which are not locally complete, but have the
property that the dimension and order of M and P are equal (cf. [13, 14]). But
there exist also embeddings which do not preserve the dimension. If φ(M) generates
P , one obtaines dimM ≥ dimP (cf. 2.3), hence we have to consider only the case
dimM > dimP . For example one can embed every linear space in a projective plane
E by a free construction of E. (Then of course, E is not a Desarguesian plane.)
Kalhoff constructed in [9] the embedding of any finite partial planes in a translation
plane, and hence in a projective plane of Lenz class V.

In this paper we are interested in embeddings in Desarguesian projective planes
and spaces. There are some papers which give a characterisation of embeddings
of projective spaces in Desarguesian projective spaces. For a field K and the
(m + 1)-dimensional vector space (Km+1, K) over K, let PG(m,K) denote the m-
dimensional projective space over K with the 1-dimensional vector subspaces as
points and the 2-dimensional vector subspaces as lines. M. Limbos [16] has shown
for finite projective spaces that every embedding of PG(m,K) in PG(n, L) with
m > n is a product of the trivial embedding of PG(m,K) in PG(m,L) for a field
extension L of K, and a projection of PG(m,L) in the subspace PG(n, L). In [16] a
geometric construction of embeddings is given and the proof that every embedding
can be obtained by this construction. H. Havlicek [6] and C.A. Faure, A. Froelicher
[4, 5] give a similar characterisation for the infinite case, but without a construction.
For an arbitrary field K an example of an embedding of PG(m,K) in PG(m− 1, L)
for a field extension L of K is given by A. Brezuleanu, D.-C. Rădulescu [1, (5.8)].
For a finite field K, J. Brown gives in [2] an analytic example of an embedding
φ : PG(m,K) → PG(2, L) for a field extension L of K. This examples does not
satisfy (E).

In this paper we answer the question, if there exists an embedding φ : P → P ′ of a
Pappian projective space (P,L) in a Pappian projective space (P ′,L′) which does not
preserve dimension, but satisfy property (E). We show the corresponding statements
for higher dimensions. We show that for dimP ′ = n there are embeddings which
map any n + 1 independent points of P onto n + 1 independent points of P ′. It
follows that the image of an (n − 1)-dimensional subspace T of P generates an
(n − 1)-dimensional subspace φ(T ) of P ′ with φ(T ) = φ(T ) ∩ φ(P ). We remark
that there exist also embeddings of projective spaces in projective planes satisfying
property (G).

2 Locally Complete Embeddings

A linear space (P,L, I) will be defined as a set P of elements, called points, a distinct
set L of elements, called lines, and an incidence relation I such that any two distinct
points are incident with exactly one line and every line is incident with at least two
points. Usually one identifies a line L ∈ L with the set of points incident with L,
hence the lines of (P,L, I) = (P,L) are subsets of P .

A subspace is a subset U ⊂ P such that for all distinct points x, y ∈ U the unique
line incident with x, y is contained in U . Let U denote the set of all subspaces. For
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every subset X ⊂ P we define the following closure operator :

¯ : P(P )→ U : X 7→ X :=
⋂

U
U ∈ U

X ⊂ U
(1)

The closure of X is a subspace containing X. For U ∈ U we call dimU :=
inf{| X | −1 : X ⊂ U and X = U} the dimension of U . A subspace of dimen-
sion two is a plane. A subset X ⊂ P is independent if x 6∈ X \ {x} for every x ∈ X,
and is a basis of a subspace U if X is independent and X = U .

For two linear spaces (M,M) and (P,L), an injective mapping

φ : M → P, x 7→ φ(x) (2)

is called an embedding, if φ maps collinear points onto collinear points and non-
collinear points onto noncollinear points, i.e., {φ(G) : G ∈M} = {L∩φ(M) : L ∈ L

and |L∩φ(M)| ≥ 2}. Hence
(
φ(M), {φ(G) : G ∈M}

)
is the restriction of (P,L) to

φ(M). Clearly:

Lemma 2.1 If φ is an embedding of (M,M) in (P,L), and ψ is an embedding of
(P,L) in (P ′,L′), then ψ ◦ φ is an embedding of (M,M) in (P ′,L′).

Let Y 7→ Y denote the closure of (P,L) and X 7→ 〈X〉 the closure of (M,M).
By [12, (1.1)]:

Lemma 2.2 If φ is an embedding of (M,M) in (P,L), and U a subspace of (P,L)
and X ⊂M , then:

1. φ−1(U ∩ φ(M)) is a subspace of M .

2. φ(〈X〉) ⊂ φ(X) and φ(〈X〉) = φ(X).

3. If φ(X) is independent in P , then X is independent in M .

Lemma 2.3 If φ : M → P is an embedding of a linear space (M,M) in a linear
space (P,L) satisfying φ(M) = P , then dimM ≥ dimP .

Proof. Let X ⊂ M be a subset generating M , i.e. 〈X〉 = M . Then P = φ(M) =
φ(〈X〉) = φ(X) by 2.2. Therefore φ(X) is a generating set of P with |X| = |φ(X)|,
hence dimP ≤ dimM . �

We call an embedding φ of (M,M) in (P,L) locally complete, if for every nonempty
subspace T of M , there is exactly one subspace U of P with φ(T ) = U ∩ φ(M).

By [12, (1.5)] we have:

Lemma 2.4 For an embedding φ of (M,M) in (P,L) the following statements are
equivalent:

1. φ is locally complete.
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2. For every subspace T of (M,M) and for every subspace U of (P,L) with
φ(M) ∩ U 6= ∅ we have

U = U ∩ φ(M) and φ(T ) = φ(T ) ∩ φ(M)

3. The following properties (G), (E) are satisfied.

(G) For every line L ∈ L, |L ∩ φ(M)| 6= 1

(E) For every plane E of M , φ(E) = φ(E) ∩ φ(M)

A linear space (P,L) satisfies the exchange condition if

for S ⊂ P and x, y ∈ P with x ∈ S ∪ {y} \ S it follows that y ∈ S ∪ {x}. (3)

Lemma 2.5 If φ is a locally complete embedding of a linear space (M,M) in a
linear space (P,L) satisfying the exchange condition, then dimM = dimP .

Proof. Since φ is locally complete, P = P ∩ φ(M) = φ(M), hence, by Lemma
2.3, dimP ≤ dimM . Now let x ∈ φ(M). Since (P,L) is an exchange space,
there is a basis C of P containing x (cf. [11, §8]. By Lemma 2.4, (G) holds.

Moreover for every y ∈ C \ {x}, there exists a y′ ∈
(
x, y ∩ φ(M)

)
\ {x}. Hence we

obtain a basis C ′ ⊂ φ(M) of P with |C| = |C ′|. Let T := 〈φ−1(C ′)〉 denote the
subspace of M generated by φ−1(C ′), i.e. C ′ ⊂ φ(T ) and P = C ′ = φ(T ). We get
φ(T ) = φ(T ) ∩ φ(M) = P ∩ φ(M) = φ(M), hence M = T is generated by φ−1(C ′)
and dimM ≤ dimP . �

The Lemma 2.5 applies in particular, if (P,L) is a projective space.

Theorem 2.6 Let (P,L), (M,M) be linear spaces satisfying the exchange condition
and dimM > dimP . If φ : M → P is an embedding satisfying (G), then there
exist subspaces M ′ ⊂ M,P ′ ⊂ P with dimM ′ > dimP ′ = 2 such that φ|M ′ : M ′ →
P ′ is an embedding satisfying (G).

Proof. By Lemma 2.5 (E) is not satisfied, since dimM > dimP . Hence there exists

a plane E ⊂ M with φ(E) 6=
(
φ(E) ∩ φ(M)

)
. Therefore M ′ := φ−1(φ(E) ∩ φ(M))

is a subspace with E ⊂ M ′ and E 6= M ′, i.e. dimM ′ > 2. Since E is a plane, also
P ′ := φ(E) = φ(M ′) is a plane, and the restriction of φ to M ′ is an embedding.
For a line L ⊂ P ′ we have L ∩ φ(M) = L ∩ φ(M ′). Hence if x ∈ L ∩ φ(M ′) we
have G := φ−1(L ∩ φ(M ′)) ∈ M, since φ satisfies (G). Because G ⊂ M ′, also φ|M ′
satisfies (G). �

Theorem 2.7 Let (P,L) = PG(m,K) and (P ′,L′) = PG(n, L) be projective spaces
and φ : P → P ′ an embedding, then K is isomorphic to a subfield of L.

Proof. Let E be a plane of P . Then φ(E) ' PG(2, K) is a subplane of the
Desarguesian projective plane φ(E) ' PG(2, L), hence K is isomorphic to a subfield
of L (cf. [18, (8.2)], [6, (3.6.1)]). �
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3 A mapping of a vector space in a vector space over a field

extension

In this section let n, s ∈ N be integers with n ≥ 2, let K be a commutative field, and
L = K(t) an extension field of K with a transcendental or algebraic element t of
degree at least 2s(n+1) over K. We consider the two left vector spaces (Kn+s+1 , K)
and (Ln+1, L). For i ∈ 0, 1, . . . , n let xi ∈ Kn+s+1, more precisely

xi = (xi,0, xi,1, . . . , xi,n+s) (4)

with elements xi,k ∈ K. We denote the rows of the matrix

X :=


x0
...
xn

 =


x0,0 . . . x0,n+s

...
...

...
xn,0 . . . xn,n+s

 =
(
aT0 , . . . , a

T
n+s

)
, (5)

where aTk =


x0,k

...
xn,k

 for k = 0, 1, . . . , n+ s. (6)

Since the column rank and the row rank of X are equal, we have:

Lemma 3.1 The following statements are equivalent:

1. The vectors x0, x1, . . . , xn are linearly independent in (Kn+s+1 , K).

2. The matrix X = (aT0 , a
T
1 , . . . , a

T
n+s) has rank n+ 1.

3. There exist distinct integers i0, i1, . . . , in ∈ {0, 1, . . . , n + s} such that
ai0, ai1, . . . , ain are linearly independent in (Kn+1, K).

Now we consider arbitrary vectors a0, a1, . . . , an+s ∈ Kn+1 ⊂ Ln+1 and define

bTi := aTi +
s∑

ji=1

t2
(ji−1)(n+1)+i

aTn+ji
∈ Ln+1 for i = 0, 1, . . . , n. (7)

For example, for s = 2 we obtain: bTi := aTi + t2
i
aTn+1 + t2

(n+1)+i
aTn+2.

Lemma 3.2 det(bT0 , b
T
1 , . . . , b

T
n) 6= 0 if and only if rank(aT0 , a

T
1 , . . . , a

T
n+s) = n+ 1.

Proof. (i). First we introduce some notation to get a shorter representation. For
i ∈ {0, . . . , n} and ji ∈ {0, . . . , s} we define

λi,ji :=

{
0 if ji = 0

2(ji − 1)(n + 1) + i if ji 6= 0
and aTi,ji :=

{
aTi if ji = 0
aTn+ji

if ji 6= 0
,
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so bTi := t0aTi +
s∑

ji=1

t2
(ji−1)(n+1)+i

aTn+ji
=

s∑
ji=0

tλi,jiaTi,ji. (8)

(ii).We recall that we can write every integer k ∈ {1, 2, . . . , 2s(n+1)− 1} as a sum
of elements of {2r : r = 0, 1, . . . , s(n+1)−1} = {2(ji−1)(n+1)+i : ji = 1, 2, . . . , s, i =
0, 1, . . . , n} = {λi,ji : ji = 1, 2, . . . , s, i = 0, 1, . . . , n} in a unique way. Hence we
have for ji, ki ∈ {0, 1, . . . , s}

n∑
i=0

λi,ji =
n∑
i=0

λi,ki if and only if ji = ki for all i ∈ {0, . . . , n} (9)

and
n∏
i=0

tλi,ji =
n∏
i=0

tλi,ki if and only if ji = ki for all i ∈ {0, . . . , n}. (10)

(iii).By (i) we get

d := det(bT0 , . . . , b
T
n) = det

( s∑
j0=0

tλ0,j0a
T
0,j0
, . . . ,

s∑
jn=0

tλn,jnaTn,jn

)
=

=
s∑

j0,...,jn=0

(
tλ0,j0 · . . . · tλn,jn

)
det

(
a
T
0,j0
, . . . , aTn,jn

)
=
∑
k≤m

tkdetAk (11)

with k =
∑
λ0,j0,+ · · · + λn,jn , m = 2s(n+1) − 1 and Ak = (aTi0, a

T
i1
, . . . , aTin) with

not necessarily distinct integers ij ∈ {0, 1, . . . , n+ s} , j = 0, 1, . . . , n.
(vi). Since t ∈ L \ K has at least degree m + 1 = 2s(n+1) over K, we have

d =
∑m
k=0 t

kdetAk = 0 if and only if detAk = 0 for every k ∈ {0, 1, . . . , 2s(n+1) − 1}.
This means in particular that for distinct elements i0, i1, . . . , in ∈ {0, 1, . . . , n + s}
the vectors aTi0, a

T
i1
, . . . , aTin are linearly dependent. By Lemma 3.1 it follows that

rank(aT0 , a
T
1 , . . . , a

T
n+s) < n+ 1.

On the other hand, if d 6= 0, then there exist integers i0, i1, . . . , in ∈ {0, 1, . . . , n+s}
with det(aTi0 , a

T
i1
, . . . , aTin) 6= 0, hence i0, i1, . . . , in are distinct and aTi0 , a

T
i1
, . . . , aTin are

linearly independent. By Lemma 3.1 we get rank(aT0 , a
T
1 , . . . , a

T
n+s) = n+ 1. �

Now we define the map

f : Kn+s+1 → Ln+1, x = (x0, . . . , xn+s+1) 7→ x′ = (x′0, . . . , x
′
n)

by x′i = xi +
s∑
j=1

t2
(j−1)(n+1)+i

xn+j , for i = 0, 1, . . . , n. (12)

Lemma 3.3 1. f(Kx) = Kf(x) ⊂ Lf(x).

2. The vectors x0, . . . , xn are linearly independent in (Kn+s+1, K) if and only if
f(x0), . . . , f(xn) are linearly independent in (Ln+1, L).

3. In particular for three vectors x0, x1, x2 ∈ Kn+s+1 , rank(x0, x1, x2) = 3 if and

only if rank
(
f(x0), f(x1), f(x2)

)
= 3.

Proof. 1. By definition f(λx) = λf(x) for λ ∈ K. Clearly Kf(x) ⊂ Lf(x).
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2. For x0, . . . , xn ∈ Kn+s+1 with xi = (xi,0, xi,1, . . . , xi,n+s), we consider the matrix

X′ :=


f(x0)

...
f(xn)



=


x0,0 +

∑s
j=1 t

2(j−1)(n+1)
x0,n+j . . . x0,n +

∑s
j=1 t

2(j−1)(n+1)+n
x0,n+j

...
...

...

xn,0 +
∑s
j=1 t

2(j−1)(n+1)
xn,n+j . . . xn,n +

∑s
j=1 t

2(j−1)(n+1)+n
xn,n+j


=
(
aT0 +

s∑
j=1

t2
(j−1)(n+1)

aTn+j , . . . , a
T
n +

s∑
j=1

t2
(j−1)(n+1)+n

aTn+j

)

=
(
b
T
0 , . . . , b

T
n

)
.

Hence by Lemma 3.2 we have det(X′) = det(bT0 , b
T
1 , . . . , b

T
n) 6= 0 iff

rank(aT0 , a
T
1 , . . . , a

T
n+s) = n + 1, i.e. by Lemma 3.1, iff x0, . . . , xn are linearly in-

dependent.
Since n ≥ 2, 3. is a consequence of 2. �

4 Embeddings satisfying (E)

Using the map f introduced in the preceding section, we now construct projective
embeddings.
Let (P,L) be a Pappian projective space with dimP = n + s for n, s ∈ N with
n ≥ 2. Then we can represent (P,L) = PG(n+ s,K) by an (n+ s+ 1)-dimensional
vector space (Kn+s+1 , K) over a commutative field K. Let us denote by (P ′,L′) :=
PG(n, L) the n-dimensional projective space with the underlying vector space (Ln+1, L)
where L is the field extension of K introduced in the preceding section. We re-
call that three points a = Ka, b = Kb, c = Kc are noncollinear if and only if
rank(a, b, c) = 3 for vectors a, b, c ∈ Kn+s+1 .

Theorem 4.1 1. For every n, s ∈ N with n ≥ 2 and every Pappian projective
space (P,L) of dimension n + s, there exists an embedding φ : P → P ′ in
an n-dimensional projective Pappian space (P ′,L′) such that any n+ 1 points
x0, . . . , xn ∈ P are independent in (P,L) if and only if φ(x0), . . . , φ(xn) are
independent in (P ′,L′).

2. For a proper subspace T of P it holds that φ(T ) = φ(T ) ∩ φ(P ) if and only if
dimT ≤ n− 1

3. For n ≥ 3, φ satisfies (E).

Proof. 1. Using the map f of Lemma 3.3, we define

φ : P → P ′, x = Kx 7→ φ(x) := Lf(x) (13)

By Lemma 3.3(1), φ is well defined, and by Lemma 3.3(3), φ maps collinear points
onto collinear point and noncollinear points onto noncollinear points, hence φ is
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an embedding. Since x0 = Kx0, . . . , xn = Kxn are independent iff x0, . . . , xn are
linearly independent, and φ(x0) = Lf(x0), . . . , φ(xn) = Lf(xn) are independent iff
f(x0), . . . , f(x0) are linearly independent, one obtain by Lemma 3.3(2) that x0, . . . , xn
∈ P are independent iff φ(x0), . . . , φ(xn) are independent.

2. For r ≤ n − 1, let T be an r-dimensional subspace of (P,L) with a ba-
sis a0, . . . , ar. Assume that φ(T ) 6= φ(T ) ∩ φ(P ). Then there exists a point

b ∈ P with φ(b) ∈
(
φ(T ) \ φ(T )

)
, i.e. b 6∈ T and a0, . . . , ar, b are independent

in (P,L). Since φ(b) ∈ φ(T ) = φ(a0), . . . , φ(ar) (cf. Lemma 2.2(2)), it follows that
φ(a0), . . . , φ(ar), φ(b) are dependent in (P ′L′).
Since r + 2 ≤ n + 1, by 1., the points φ(a0), . . . , φ(ar), φ(b) are independent since
a0, . . . , ar, b are independent, a contradiction to the assumption φ(T ) 6= φ(T )∩φ(P ).
Hence φ(T ) = φ(T ) ∩ φ(P ) for dimT ≤ n − 1. For every proper subspace T of
P with dimT ≥ n, there are n + 1 independent points a0, . . . , an ∈ T . By 1.
φ(a0), . . . φ(an) are independent in P ′, hence P ′ = φ(a0), . . . , φ(an) ⊂ φ(T ) and
φ(T ) 6= φ(P ) = φ(T ) ∩ φ(P ) = P ′ ∪ φ(P ), since T is a proper subspace of P .

3. By 2., (E) is satisfied for n ≥ 3. �

Corollary 4.2 For every n, s ∈ N with n ≥ 2 and every finite projective space (P,L)
of dimension n+s, there exists an embedding φ : P → P ′ in an n-dimensional finite
projective Desarguesian space (P ′,L′) such that any n+ 1 points x0, . . . , xn ∈ P are
independent in (P,L) if and only if φ(x0), . . . , φ(xn) are independent in (P ′,L′).
For a proper subspace T of P it holds that φ(T ) = φ(T ) ∩ φ(P ) if and only if
dimT ≤ n− 1, and for n ≥ 3, φ satisfies (E).

Proof. If P is finite, then ordP is finite and (P,L) = PG(n+s,K) for a commutative
field K. There exists a finite field extension L = K(t) of finite degree t at least 2s(n+1),
hence L, and therefore also P ′ are finite and the assertion follows with 4.1. �

If we set n = 2 we obtain:

Corollary 4.3 Every Pappian projective space is embeddable in a Pappian projec-
tive plane.

Proof. For a Pappian projective space (P,L) of finite dimension, Corollary 4.3
is a direct consequence of Theorem 4.1 with n = 2. For dimP = ∞ we modify
the construction of the last section, by taking a transcendental element tb for every
element b of a basis B of P . Then for T = {tb : b ∈ B} and L := K(T ) we get the
result analogous to the proofs of Lemma 3.1 to 3.3. �

Let (M,M) be a linear space. Two lines G,L ∈ L are called parallel if G = L,
or if G,L are contained in a common plane and G ∩ L = ∅ . For x ∈M \ L let

π(x, L) := |{G ∈M : x ∈ G and G,L parallel }| (14)

denote the number of all parallel lines of L passing x. For m ∈ N, (M,M) is
called an [0, m]-space, if for each non-incident point-line pair (x, L) we have that
π(x, L) ∈ [0, m] = {0, 1, . . . , m}. Let π(L) := max{π(y, L) : y ∈ M \ L}. If
|L| + π(L) − 1 ≥ 3m + 1 and dimM ≥ 3, then by [14, Theorem (2.10)], ordM :=
|L|+ π(L)− 1 is constant for every line L ∈M. If ordM ≥ 3m+ 2 and dimM ≥ 3,
then by [14, Embedding Theorem (4.5)], (M,M) is embeddable in a projective space
(P,L) with dimM = dimP and ordM = ordP . Hence:
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Corollary 4.4 Every finite [0, m]-space (M,M) with dimM ≥ 3 and
ordM ≥ 3m + 2 is embeddable in a finite Pappian projective plane.

Proof. Since M is finite, also ordM = ordP and dimM = dimP is finite and
(M,M) is embeddable in a finite projective space (P,L). Now by 4.2 for n = 2,
(P,L) is embeddable in a finite Pappian plane (P ′,L′) and by 2.1 the assertion
follows. �
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