
Plane representations of ovoids

David G. Glynn

Abstract

Various ways of representing an ovoid of PG(3, q), q even, in PG(2, q) are
studied. These come from a kind of ‘spread’ of lines of AG(3, q), and involve
five kinds of ‘pencils’ of ovals in the plane.

1 Introduction

An ovoid of PG(3, q) is defined to be a set of q2 + 1 points, no three collinear,
(q > 2). In other words, it is a (q2 +1)-cap of PG(3, q). Barlotti [2] and Panella [16]
showed that when q is odd all ovoids are elliptic quadrics. The even case is still not
completely solved.

Any ovoid corresponds to an inversive (or Möbius) plane, by taking the struc-
ture of the points together with the non-tangent plane sections as the ‘circles’. In
Dembowski [3] we see that every inversive plane of even order q can be constructed
from an ovoid of PG(3, q), whereas for q odd there might even exist inversive planes
of non-prime-power orders.

Remark 1 Henceforth we shall assume that q = 2h, h ∈ Z, h ≥ 2.

There are two infinite sequences of known ovoids: these are the elliptic quadrics,
which occur for every prime-power q; and also the Suzuki-Tits ovoids, which occur
for q = 2h, h odd, h ≥ 3. Glynn [4] has shown that any new ovoid would have a
small group of central automorphisms, and that it is unlikely to contain any conics
as plane sections, because then a whole sequence of perhaps non-isomorphic ovoids
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would be obtained. Many people have tried to classify the ovoids in PG(3, q). More
recently, O’Keefe and Penttila [11], [12], and O’Keefe, Penttila and Royle [15] have
succeeded for q ≤ 32. Thus the present evidence suggests that the known ovoids are
the only ones to exist in finite space.

The theory of ovoids depends to a large extent upon the theory of hyperovals
and ovals of PG(2, q): a hyperoval or (q+ 2)-arc is a set of q+ 2 points of PG(2, q),
no three collinear; an oval or (q+1)-arc is a set of q+1 points of PG(2, q), no three
collinear. When q is even every oval O is contained in a unique hyperoval by the
addition of a point P , that is called the nucleus of O. One of the main problems of
PG(2, q) is the classification of hyperovals, which is still incomplete. See Glynn [5]
for some constructions and theory.

Various properties of an ovoid are summarised as follows; see e.g. Dembowski [3].

1. The set of tangent lines (lines that intersect the ovoid in one point) are the
q3 + q2 + q + 1 lines of a linear complex, which is the set of absolute lines of
the symplectic polarity ω associated with the ovoid.

2. The tangent lines at a point X of the ovoid are the q+1 lines passing through
X contained in the plane Xω, which is called the tangent plane at X.

3. Every non-tangent line intersects the ovoid in 0 or 2 points.

4. Every non-tangent plane intersects the ovoid in an oval.

Let us refer to Payne and Thas [17]. The q3 + q2 + q + 1 points of PG(3, q)
together with the totally isotropic (i.e. ‘absolute’ or ‘fixed’) lines of a symplectic
polarity (i.e. the lines of a linear complex) form an incidence structure called W (q).
This is a ‘classical’ generalized quadrangle. Any ovoid of PG(3, q) then corresponds
to an ovoid of W (q): an ovoid of a generalized quadrangle (GQ) is a set of points,
such that every line of the GQ is on a unique point of the ovoid. The dual concept
in a GQ is that of spread. This is a set of lines, such that every point of the GQ
is on a unique line of the spread. The cardinality of an ovoid or spread of W (q) is
q2 + 1.

We need a few basic facts about W (q) and related GQ’s. The section numbers
refer to Payne and Thas [17]. First (3.1.1), Q(4, q) is the GQ of order q coming from
the set of points of a non-singular quadric of PG(4, q), and the lines contained in it.
Second (3.1.2), if O is an oval of PG(2, q), that in turn is embedded in a plane π of
PG(3, q), J. Tits built a structure T2(O), that is a GQ of order q, in the following
manner.

Remark 2 The construction of T2(O)

The points of T2(O) are of three types:
(i) the q3 points of AG(3, q) := PG(3, q) \ π;
(ii) the q2 + q planes Y of PG(3, q) for which |Y ∩ O| = 1, i.e. Y intersects π in a
line through the nucleus P of O;
(iii) a new symbol (∞).
The lines of T2(O) are of two types:
(a) the q2(q + 1) lines of PG(3, q) not contained in π, intersecting O in one point;
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(b) the q + 1 points of O.
We have to say when these ‘points’ and ‘lines’ are incident; pairs not given below
are non-incident:
(i-a) a point of type (i) is incident with the q + 1 lines of type (a) passing through
it in PG(3, q);
(ii-a) a point of type (ii) is incident with the q lines of type (a) contained within it;
(ii-b) a point of type (ii) is incident with the line of type (b) that it contains in
PG(3, q);
(iii-b) the point (∞) is incident with the q + 1 lines of type (b).

Theorem 1 1. W (q) is self-dual if and only if q is even, (3.2.1).

2. The dual of W (q) ∼= Q(4, q), (q even or odd), (3.2.1).

3. Q(4, q) ∼= T2(O) ⇐⇒ O is an irreducible conic, (3.2.2). From these it follows
that, if q is even,

4. W (q) ∼= the dual of W (q) ∼= T2(O) ⇐⇒ O is an irreducible conic, (3.2.2).

We shall use this final consequence heavily for our representations of ovoids. Let
us here list various correspondences between an object of W (q) and one of T2(O),
where O is an irreducible conic. We take a point of W (q) to a line of T2(O), and a
line of W (q) to a point of T2(O). Suppose that W (q) has the usual representation
in PG(3, q), q even, the lines fixed by a symplectic polarity ω.

Remark 3 The correspondence ρ between the dual of W (q) and T2(O)

1. line i of PG(3, q) ↔ ‘point’ (∞).

2. line of W (q) intersecting i in a point ↔ plane ‘tangent’ to O; that is, passing
through the nucleus P of O, and not equal to the plane π of O.

3. line of W (q) skew to i ↔ point of AG(3, q) := PG(3, q) \ π.

4. point of the line i ↔ point of the conic O.

5. point of PG(3, q) not on the line i ↔ line not contained in π intersecting O in
a point.

6. the points of a line r of PG(3, q) not in W (q), where r ∩ i is a point ↔ pencil
of q affine lines in plane ρ secant to O, passing through a point A of O; note
that r ∩ i ↔ B, where ρ ∩ O = {A,B}. Points on the conjugate line rω ↔
lines of the other pencil in ρ through B, and then rω ∩ i↔ A.

7. points of a line t of PG(3, q) not in W (q) and skew to the line i ↔ regulus of
q + 1 skew lines, each line of which intersects O in a distinct point; note that
the conjugate line with respect to ω ↔ the opposite regulus contained in the
same hyperbolic quadric.

8. points of a plane α through i ↔ lines of AG(3, q) through point A of O.
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9. points in a plane β not through i ↔ lines joining points of a fixed line n to
points of O, where n ∩ O is a point A, and q lines in pencil of tangent plane
to O at point A. Thus βω ↔ n.

10. ovoid of W (q)↔ point Q (w.l.o.g. (0, 0, 1, 0)), plus q ‘oval-cones’ of a ‘spread’
of AG(3, q); see below.

Note that there exists a unique hyperbolic quadric containing the conic O and
two skew lines, not in the plane π of the conic, that intersect O in distinct points.
In fact we can verify this by direct calculation as follows.

Let O : x2
1 = x2x3 in the plane π : x0 = 0. Then the quadric containing O and

the pair of lines 〈(0, 0, 1, 0), (1, a, b, b)〉 and 〈(0, 0, 0, 1), (1, c, d, d)〉, where a 6= c, has
equation

x2
1 + x2x3 + x0((bd+ ac)x0 + (c− a)x1 + bx2 + dx3) = 0.

Reversing a and c gives the same quadric. In this way we obtain all (q4 − q3)/2
hyperbolic quadrics containing O and two general skew lines through points of O.
The pair of reguli of the above quadric (when b 6= 0) contain lines of the form

〈(0, s, s2, 1), (1, t, (t2 + (c− a)t+ bd+ ac)/b, 0)〉,

where s = (t+ c)/b, or (t+ a)/b.

2 Ovoids and spreads of T2(O)

We are interested in the case that O is an irreducible conic of PG(2, q), and when
q is even. However, some results of this section should be valid for general ovals O,
and for q odd as well. Although we do not strictly need this lemma for our later
results it is interesting to point out that:

Lemma 1 An ovoid of T2(O) consists of either a set of q2 points of type (i), and
the point (∞) of type (iii); or it has q2 − q points of type (i), and q + 1 points of
type (ii).

Proof. If the ovoid contains (∞), then it cannot contain points of type (ii), as these
latter points are on lines of type (b) with (∞). We leave the remainder of the proof
as an easy exercise, similar to Lemma 2.2 below. �

Note that the former situation is related to the concept of ‘ovaloid’ as studied in
Glynn [4]. An ovaloid is a set of q2 points of AG(3, q) not on π, no pair of points
generating a line passing through a point of O. (This condition implies that such
a line cannot also pass through the nucleus P of O.) Thus an ‘ovaloid’ (of the
Ahrens-Szekeres GQ), and an ovoid of the former type are equivalent.

The latter situation is related to the construction of a new ovoid of PG(3, q) from
any ovoid of PG(3, q) containing a conic plane section. For let the ovoid pass through
O. Then the remaining points of the ovoid plus the tangent planes at the points
of O correspond to an ovoid of T2(O) of the latter type. Using the isomorphism
between T2(O) and W (q) we get a new ovoid of PG(3, q). In fact, the two ovoids of
PG(3, q) are related by a quadratic transformation, and the new ovoid also contains
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a conic plane section; see Glynn [4]. There do exist ovoids of T2(O) of the latter
type that are not parts of ovoids of PG(3, q), as can be seen by the representation
of the Suzuki-Tits examples, which do not contain conic plane sections in their
conventional PG(3, q) ovoid representation.

Lemma 2 A spread of T2(O) consists of q2 lines of type (a) and one of type (b).

Proof. The point (∞) must be incident with a line of the spread, which in turn
must be type (b). All lines of type (b) are incident with (∞) and so the spread
contains exactly one line of type (b). All other lines of T2(O) are type (a), and so
the spread contains q2 of them, because a spread of W (q) contains q2 + 1 lines. �

We can assume, by using collineations of PG(3, q), that a spread of T2(O), where
O is a conic, contains a certain point Q of O. Also, using homogeneous coordinates
(x0, x1, x2, x3) over GF(q) for points of PG(3, q), we can assume that π : x0 = 0, and
that O : x2

1 = x2x3, x0 = 0. This conic has nucleus P : (0, 1, 0, 0). Further, we can
assume that Q = V (∞) : (0, 0, 1, 0).

Definition

An oval-cone OC(t) (t ∈ GF(q)) is a set of q lines of PG(3, q) not in the plane π,
each line passing through the point V (t) : (0, t, t2, 1) of the conic O of π. Letting
OC′(t) := OC(t)∪ {V (t).Q, V (t).P}, the resulting set of q + 2 lines is a cone over a
hyperoval: that is, it has no three lines coplanar.

Lemma 3 A spread of T2(O) is {Q} ∪ {OC(t) | t ∈ GF(q)}, where each OC(t) is
an oval-cone with vertex V (t). The q2 lines of these oval-cones form a spread of
AG(3, q): thus every point of AG(3, q) = PG(3, q) \ π is on a unique line of one of
the oval-cones.

Proof. Consider the correspondence ρ from the dual of W (q) to T2(O), where W (q)
corresponds to the symplectic polarity ω of PG(3, q). We refer to Remark 3. We
can consider ρ to map the points of PG(3, q), not on a line i of W (q), to the lines of
AG(3, q) intersecting the conic O in a point. An ovoid of PG(3, q) has i as a tangent
line, and so they intersect in a point Z, which is mapped by ρ to a point of O, which
we may take to be Q := V (∞) := (0, 0, 1, 0); see Lemma 2. Since each line of W (q)
is tangent to a unique point of the ovoid, we see that a spread of q2 lines of AG(3, q)
is obtained. It remains to show that the spread is partitioned into q oval-cones,
with vertices at each point (not Q) of O. Consider a plane of PG(3, q) through the
line i, not being tangent to the ovoid. It intersects the ovoid in an oval, with i as
a tangent. Now Remark 3(8) implies that the q points (not Z) of the ovoid in this
plane are mapped by ρ to q lines through a point, w.l.o.g. V (t), of O. Further, by
3(2), no two of these lines can lie in a plane through the nucleus P of O, because
such a plane comes from a line of W (q) intersecting i in a point. This means that
the “nucleus line” of the oval-cone is the line V (t).P . Next, suppose that two lines
of the oval-cone and the line V (t).Q were coplanar. Using 3(6) there would be two
points (not Z) on a line not in W (q) through Z. This is impossible since we have an
ovoid. Hence the line V (t).Q is part of the oval-cone. Finally, for the same reason
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3(6), any three points (not Z) on the ovoid and on the plane through i are mapped
by ρ to non-coplanar lines through V (t). �

The main conclusion of this paper follows from the fact that we can choose
any plane of AG(3, q) and intersect it with the q oval-cones to obtain a pencil of
q q-arcs partitioning the points of the affine plane. We can rebuild the spread of
T2(O) given an association between the q-arcs and the points of O. We shall find the
conditions that the arcs determine a spread. There are essentially five different ways
to choose the plane with respect to the conic O, and the pair of points P and Q in
π. Thus we obtain five different, but similar, planar representations of an ovoid. We
label these A, B, C , D and E. Note that Penttila also discovered representation A
independently at about the same time as the author. He used an algebraic method
that gave a direct transformation between the ovoid and the pencil of ovals in the
plane; see [18].

3 Five kinds of planar representation of an ovoid of PG (3,q)

Let α be a plane of PG(3, q), passing through neither V (s) nor V (t). The pair
of oval-cones OC(s) and OC(t) of PG(3, q), with different vertices V (s) and V (t)
respectively in π, intersect α in the pair of q-arcs, O(s) := OC(s) ∩ α, and O(t) :=
OC(t) ∩ α. Let L be the line α ∩ π. Finally let L(s, t) be the point L ∩ V (s).V (t).

Lemma 4 OC(s) and OC(t) are disjoint if and only if each line (not L) through
L(s, t) in α is either a chord of O(s) and external to O(t), or external to O(s) and
a chord of O(t).

Proof. Firstly, note that there are q/2 chords from L(s, t) to OC(s), and so q/2
external lines through this point in the affine plane π \ L. The same can be said if
we replace OC(s) by OC(t). There are q planes (not π) through the line V (s).V (t).
These intersect the plane α in q distinct lines. Two lines from each of OC(s) and
OC(t) are coplanar if and only if they intersect in a point. Thus the lemma holds.

�

We can use the fact that O has a group of collineations which is triply transitive
on its points and transitive on external lines. Thus we get five different situations,
corresponding to the following cases:

A: L passes through P : (0, 1, 0, 0) and Q : (0, 0, 1, 0);

B: L passes through P : (0, 1, 0, 0) and (0, 0, 0, 1);

C: L passes through Q : (0, 0, 1, 0) and (0, 0, 0, 1);

D: L intersects O in (0, 0, 0, 1) and (0, 1, 1, 1);

E: L is the external line x3 = x1 + λx2 of π, where λ is second category in GF(q).
(Equivalently, trace(λ) = 1.)

Again, using the group of PG(3, q) fixing O, we can assume that the plane α,
and the corresponding point L(s, t) in the five situations have the equations and
coordinates:
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A: α : x3 = 0, L(s, t) : (0, 1, s+ t, 0);

B: α : x2 = 0, L(s, t) : (0, st, 0, s+ t);

C: α : x1 = 0, L(s, t) : (0, 0, st, 1);

D: α : x1 = x2, L(s, t) : (0, st, st, s+ t+ 1);

E: α : x3 = x1 + λx2, λ second category, L(s, t) : (0, 1 + λst, s+ t+ st, 1+ λ(s+ t)).

Next, we have to see where the lines V (s).P and V (s).Q intersect L, for these
points can be adjoined to the affine q-arc O(s) of α \ L to obtain a hyperoval. Let
these points be P (s) and Q(s) respectively.

A: P (s) = P : (0, 1, 0, 0), Q(s) = Q : (0, 0, 1, 0);

B: P (s) = P : (0, 1, 0, 0), Q(s) : (0, s, 0, 1), (s 6= 0);

C: P (s) : (0, 0, s2, 1), Q(s) = Q : (0, 0, 1, 0), (s 6= 0);

D: P (s) : (0, s2, s2, 1), Q(s) : (0, s, s, 1), (s 6∈ {0, 1});

E: P (s) : (0, λs2 + 1, s2, 1), Q(s) : (0, s, λ−1(s+ 1), 1).

If L contains the vertex V (s) of the cone OC(s) then the plane α contains either
one line of OC(s) in the cases B and C above, or zero or two lines of OC(s), in
the case D. (For the cases A and E this situation is not applicable.) In particular,
in the case D we can assume that α contains precisely two lines of OC(0) through
V (0) : (0, 0, 0, 1) and no lines of OC(1) through V (1) : (0, 1, 1, 1).

Finally, let us rename the q-arcs O(s) in each of the five cases A(s), B(s), . . . ,
respectively. Hence we can summarize the resulting representations of an ovoid in
each of the cases. We use a collineation γ from α to a standard PG(2, q) with
coordinates (x, y, z). The “line at infinity” corresponding to L is always assumed to
have equation z = 0, and so AG(2, q) is assumed below to be the set of all points
not on this line.

Here we give the theorems that classify the five types of pencils of ovals. The
completion of a q-arc X(s), X ∈ {A,B,C,D,E}, to a hyperoval X ′(s) is given.
Remembering the correspondence with the original ovals, the nucleus point is always
the first of the pair of points that are adjoined. It is V (s).P ∩ L.

For some of the pencils, A(s) is not a q-arc for one or two values in {0, 1}. Then
we can assume that the remaining points of the affine plane are filled out by one
or two lines, which can be defined to be X(0) or X(1): we give equations for these
lines that can be assumed using the group of collineations of AG(2, q).

There may be various points missed out on L, not lying on one of the hyperovals
or lines. These occur in the pencils of type D and E, and come from the intersection
of the line PQ with L, or from the fact about D two paragraphs before. Later, we
shall give the linear pencils of conics that correspond to each of these cases (in the
elliptic quadric, or Miquelian case). Then the one or two points of L, not appearing
to occur in the union of the hyperovals and lines of the pencil, actually appear as
the points of imaginary line-pairs, which are types of degenerate conics.
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Finally, in each of the five theorems below, we give the point on L, through
which an affine line is either a secant to X(s) and external to X(t), or external to
X(s) and a chord of X(t), for any pair of distinct hyperovals X(s) and X(t) in the
pencil. From Lemma 4, this point is L(s, t).

Theorem 2 An ovoid of PG(3, q) is equivalent to pencil {A(s) | s ∈ GF(q)},
where each A(s) is a q-arc of AG(2, q). Here A′(s) = A(s) ∪ {(1, 0, 0), (0, 1, 0)}
and L(s, t) = (1, s+ t, 0).

Proof. The collineation γ : α(x3 = 0) → PG(2, q) is (x0, x1, x2, x3) 7→ (x1, x2, x0).
�

Theorem 3 An ovoid of PG(3, q) is equivalent to a pencil {B(s) | s ∈ GF(q)},
where each B(s) is a q-arc of AG(2, q), s 6= 0, and B(0) is the line x = 0. Here
B ′(s) = B(s) ∪ {(1, 0, 0), (s, 1, 0)}, s 6= 0 and L(s, t) = (st, s+ t, 0), s 6= t 6= 0.

Proof. The collineation γ : α(x2 = 0) → PG(2, q) is (x0, x1, x2, x3) 7→ (x1, x3, x0).
�

Theorem 4 An ovoid of PG(3, q) is equivalent to a pencil {C(s) | s ∈ GF(q)},
where each C(s) is a q-arc of AG(2, q), s 6= 0, and C(0) is the line x = 0. Here
C ′(s) = C(s) ∪ {(s2, 1, 0), (1, 0, 0)},s 6= 0 and L(s, t) = (st, 1, 0), s 6= t 6= 0.

Proof. The collineation γ : α(x1 = 0) → PG(2, q) is (x0, x1, x2, x3) 7→ (x2, x3, x0).
�

Theorem 5 An ovoid of PG(3, q) is equivalent to a pencil {D(s) | s ∈ GF(q)},
where each D(s) is a q-arc of PG(2, q), s 6∈ {0, 1}, D(0) is the line x = 0, and
D(1) is the line x = z. Here D′(s) = D(s) ∪ {(s2, 1, 0), (s, 1, 0)}, s 6∈ {0, 1}, and
L(s, t) = (st, s + t + 1, 0). (1, 1, 0) and (1, 0, 0) are the remaining points on L not
on any ‘real’ element of the pencil.

Proof. γ : α(x1 = x2)→ PG(2, q) is (x0, x1, x2, x3) 7→ (x2, x3, x0). �

Theorem 6 An ovoid of PG(3, q) is equivalent to a pencil {E(s) | s ∈ GF(q)},
where each E(s) is a q-arc of PG(2, q). Here E ′(s) = E(s)∪{(λs2 +1, 1, 0), (s, 1, 0)}
and L(s, t) = (1 + λst, 1 + λ(s + t), 0). (1, 0, 0) is the point on L not on any ‘real’
element of the pencil.

Proof. γ : α(x3 = x1 + λx2)→ PG(2, q) is (x0, x1, x2, x3) 7→ (x1, x3, x0). �

4 Pencils of conics corresponding to the five cases

In this section we list the various pencils of conics corresponding to the Miquelian
inversive plane of even order. Figure 1 shows the five kinds of pencils that we obtain.

We refer to the catalogue of all pencils of conics in PG(2, q), given in Glynn [7].
There are six kinds of pencils that have an intersection of zero or one point. It turns
out that the only type of pencil that doesn’t seem to correspond to an inversive
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(1,0,0) (0,1,0) (1,s+t,0)

A(s)

(1,0,0) (s,1,0) (st,s+t,0) (0,1,0)

B(s), s„0 B(0): y=0

(s2,1,0)

(s2,1,0)

(ls2+1,1,0)

(1,0,0)

(s,1,0)

(s,1,0) (1+lst,1+l(s+t),0) (1,0,0)

(st,s+t+1,0) (0,1,0) (1,1,0) (1,0,0)

(st,1,0) (0,1,0)

C(s), s„0 C(0): x=0

D(s), s„0,1

x=0 x=z

E(s)

Figure 1: The five types of pencils of ovals
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plane is the one with no degenerate conics; i.e. type (f). Let us proceed to the
various types, giving an example in each case. In the examples below r is always a
fixed element of trace 1. In other words, r is second category in GF(q).

To find the types of pencils in the Miquelian case it is easiest to tranform the
situation from an elliptic quadric. In general we can assume, as in Glynn [4] or
[6], that the ovoid is a set of points of PG(3, q), {(0, 1, 0, 0)} ∪ {(1, asv + sv, s, v) |
s, v ∈ GF(q)}, where A : GF(q) × GF(q) → GF(q) takes (s, v) 7→ asv is an “ovoid
function”. (It is proved in Glynn [6] that every monomial in asv is made up of even
powers of s and v, when written as a reduced polynomial with individual exponents
less than q− 1.) Further we can then assume that the pencil of type A above in the
plane x3 = 0 is given by the set of ovals A(s) : (1, asv, v, 0) | v ∈ GF(q)}. This gives
a set of q2 lines forming a spread of AG(3, q) given by 〈(0, s, s2, 1), (1, v, asv, v, 0)〉,
where s, v vary in GF(q). The condition that an ovoid (or spread) is obtained is
that asv + atw 6= (s+ t)(v + w), for all (s, v) 6= (t, w) in GF(q)×GF(q).

In the Miquelian case an ovoid function is given by asv := rs2 + v2. First we can
construct the spread of T2(O) (and of AG(3, q)) by using the above formula. Then
we intersect the spread with the correct plane and transform to standard coordinates
in the (x, y, z)-plane PG(2, q), as given in the Theorems 2–6. Here are the pencils
of conics that are obtained.

4.1 Type A

〈z2, x2 + yz〉
Type (e) pencil with q irreducible conics and one repeated-line degenerate conic.
The nuclei of the conics are all the same point (1, 0, 0), and the conics pass through
one point (0, 1, 0).
A(s) : rs2z2 + x2 + yz and A(s, t) : (1, s+ t, 0). A(s) has nucleus (1, 0, 0) and passes
through (0, 1, 0) on z = 0.

4.2 Type B

〈y2, x2 + yz + rz2〉
Type (b) pencil with q − 1 irreducible conics, one repeated-line degenerate conic,
and one imaginary line-pair degenerate conic. The nuclei of the conics are all the
same point (1, 0, 0), and the conics don’t have any common point.
B(s) : s2y2 + x2 + yz + rz2 and B(s, t) : (st, s+ t, 0). B(s) has nucleus (1, 0, 0) and
passes through (s, 1, 0) on z = 0.

4.3 Type C

〈xz, y2 + yz + rz2〉
Type (d) pencil with q−1 irreducible conics, one line-pair degenerate conic, and one
imaginary line-pair degenerate conic. The nuclei of the conics are different points
on the line z = 0, and the conics pass through one point (1, 0, 0).
C(s) : xz + s2(y2 + yz + rz2) and C(s, t) : (st, 1, 0). C(s) has nucleus (s2, 1, 0) and
passes through (1, 0, 0) on z = 0.
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4.4 Type D

〈x2 + xz, y2 + yz + rz2〉
Type (a) pencil with q − 2 irreducible conics, one repeated-line degenerate conic,
and two imaginary line-pair degenerate conics. The nuclei of the conics are different
points on z = 0, and the conics pass through different points on z = 0.
D(s) : x2 + xz + s2(y2 + yz + rz2) and D(s, t) : (st, s+ t + 1, 0). D(s) has nucleus
(s2, 1, 0) and passes through (s, 1, 0) on z = 0.

4.5 Type E

〈λx2 + xz+ yz, y2 + yz+ rz2〉, where λ is a fixed second category element of GF(q).
Type (c) pencil with q irreducible conics and one imaginary line-pair degenerate
conic. The nuclei of the conics are different points on z = 0, and the conics pass
through different points on z = 0.
E(s) : λx2 +xz+ yz+λs2(y2 + yz+ rz2) and E(s, t) : (1+λst, 1+λ(s+ t), 0). E(s)
has nucleus (λs2 + 1, 1, 0) and passes through (s, 1, 0) on z = 0.
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