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Abstract

This paper is motivated by the following question: given a group G op-
erating as a permutation group on a set X , which are the pairs of subsets
M,M ′ ⊆ X such that |M ∩ gM ′| = c for a constant c and all g ∈ G? We give
a characterization of these pairs in terms of eigenspaces of the corresponding
association scheme, and we give further characterizing properties of these sets
M . We apply our results to a generalization of a question of Cameron and
Liebler in projective spaces.

1 Introduction

In [4] Cameron and Liebler proposed the problem to determine the line sets B of a
projective space with the following property:

Each spread has the same number of lines in common with B.

This problem was generalized in [7], where the following question was considered:

Let G be a group operating as a symmetrical rank 3 permutation group
on the set V . Which are the pairs (M1,M2) of subsets of V such that
|M1 ∩ gM2| = c for a constant c and all g ∈ G?
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If V is the set of lines of PG(d, q) and G = PGL(d+ 1, q), and if M2 is a spread,
then this reduces to the original question of Cameron and Liebler.

However, a more natural generalization of Cameron’s and Liebler’s question is
not included in the generalization of [7], namely the question:

Which are the sets of t-dimensional subspaces of PG(k(t + 1) − 1, q)
having the same number of elements in common with every t-spread?

(Here a t-spread is a set of t-dimensional subspaces partitioning the point set.)

In this paper we extend the theory of [7] to permutation groups of higher per-
mutation rank, thus giving a first answer to this question in Theorem 7, being a
generalization of [9, Lemma 9].

To do our extension, we consider subsets of association schemes. So this paper
gives a link between the theory of association schemes and Galois geometries. The
main result of this paper is Theorem 5, making clear that questions of the Cameron-
Liebler-Type are in fact questions about eigenspaces of association schemes.

This paper is mostly taken out of the Ph. D. Thesis [8], where in some parts
more details are given.

2 Association schemes

We start with some basic results on association schemes. For a complete introduction
see e.g. [3, Ch. 2], [1, Ch. 2], or [5, Ch. 17].

We start with the definition of an association scheme.

Definition 1
Let X be a finite set. An association scheme with d classes is a pair (X,R), where
R = (∼0, . . . ,∼d) is a set of binary relations on X (i.e. subsets of X ×X) with the
following properties:

(a) For x, y ∈ X there is exactly one i with x ∼i y.
(b) x ∼0 y holds if and only if x = y.

(c) If x ∼i y, then also y ∼i x.
(d) There are numbers pkij ∈ R with the following property: for x, y ∈ X with

x ∼k y there are exactly pkij elements z ∈ X with x ∼i z and z ∼j y.

The number ni := p0
ii is called i-valency.

Remarks

1. Sometimes in the literature axiom (c) is omitted and an association scheme
fulfilling (c) is called symmetrical.

2. The case d = 2 corresponds to strongly regular graphs. In this case, our results
reduce to results in [7].
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Definition 2
A symmetrical rank k permutation group is a pair (G,P ), where G is a group op-
erating transitively on the set P such that the stabilizer of an element p ∈ P has
exactly k orbits, and such that for all p1, p2 ∈ P the pairs (p1, p2) and (p2, p1) lie in
the same orbit under G.

Lemma 1
Let (G,X) be a symmetrical rank d + 1 permutation group. Let ∼0,∼1, . . . ,∼d be
the orbits of pairs of elements of X under G, where ∼0 = {(x, x)|x ∈ X}. Then
(X, {∼0, . . . ,∼d}) is an association scheme with d classes.

Definition 3
Let (X,R) be an association scheme with d classes. Let x1, . . . , xN be an enumera-
tion of the elements of X.

(a) The adjacency matrices of (X,R) are the matrices Ai ∈ RN×N (i ∈ {0, . . . , d})
with

(Ai)st =

1 if xs ∼i xt,
0 otherwise.

(b) The Bose-Mesner algebra A of (X,R) is the R-algebra generated by the adja-
cency matrices (see [2]), i.e.

A = {f(A0, . . . , Ad) | f ∈ R[x0, . . . , xd]}.

(c) The characteristic vector of a set M ⊆ X is the vector v ∈ RN with:

vi =

1 if xi ∈M ,

0 otherwise.

(d) The characteristic vector of X, i.e. the all-one-vector, is denoted by 1. The unit
matrix is denoted by I . The all-one-matrix is denoted by J .

Theorem 1
[see [3, 2.2]]

(a) The Bose-Mesner algebra A is a (d + 1)-dimensional commutative algebra of
symmetrical matrices.

(b) The space RN is the direct sum of d + 1 maximal common eigenspaces of the
matrices of A. One of these eigenspaces has dimension 1 and is spanned by 1.

Remark

If we normalize Ci such that Civi = vi, these matrices are the minimal idempotents
of the Bose-Mesner algebra (see [3, 2.6]).

From now on let V0, . . . , Vd be the eigenspaces of the matrices from A, where
V0 = 〈1〉.
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3 Properties of subsets corresponding to eigensp aces of the

Bose-Mesner algebra

In this section we shall see that subsets of association schemes whose characteristic
vectors decompose into few eigenvectors of the Bose-Mesner algebra have some char-
acterizations, one of them being a generalization of the Cameron-Liebler-problem
(see Theorem 5).

The first two theorems can be stated more generally for graphs.

Theorem 2
Let (X,R) be an association scheme with d classes. Let M be a subset of X, and
let r ∈ {1, . . . , d}. Then

|M |
|X| (nr|M |+ α(|X| − |M |)) ≤

∣∣∣∣{(x, y) ∈M ×M | x ∼r y}∣∣∣∣
≤ |M ||X| (nr|M |+ β(|X| − |M |)),

where nr is the eigenvalue of Ar to the eigenvector 1, while α (resp. β) is the smallest
(resp. biggest) other eigenvalue of Ar.

Equality holds if and only if the characteristic vector of M is contained in the
span of 1 and the eigenspace of Ar to the eigenvalue α (for the left hand side) resp.
β (for the right hand side).

Proof. Let v = (v1, . . . , vN) be the characteristic vector of M . Then vTv = |M |.
We write v as the sum of eigenvectors: v = w0 + · · ·+wd with wi ∈ Vi. All elements
of Vi (i ≥ 1) are orthogonal to the vector 1, hence the sum of their entries is zero.
As the sum of the entries of v is |M |, the sum of the entries of w0 is equal to |M |
i.e. w0 = |M |/|X| · 1 and so wT0w0 = |M |2/|X|. As the eigenspaces are orthogonal,
|M | = vTv = wT0 w0 + · · ·+ wTd wd. Hence

|w1|2+|w2|2+· · ·+|wd|2 = |v|2−|w0|2 = |M |−|M |2/|X| = |M |(|X|−|M |)/|X|. (∗)

On the other hand

vTArv =
∑
i

∑
j

vi(Ar)ijvj.

Here the only summands not vanishing are those where all three factors are one, i.e.
where xi ∈M, xi ∼r xj and xj ∈M . Hence∣∣∣∣{(x, y) ∈M ×M | x ∼r y}∣∣∣∣ = vTArv = wT0Arw0 + · · ·+ wTdArwd

= nr|M |2/|X| + α1|w1|2 + · · ·+ αd|wd|2,

where αi is the eigenvalue of Ar to the eigenspace Vi. As |wi|2 ≥ 0, this expression
has its minimal (resp. maximal) value, if the whole sum in (∗) consists of the vector
with the smallest (resp. biggest) eigenvalue. From this the assertion follows. �
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Remark

The same statement holds for linear combinations of adjacencies.

Theorem 3
Let (X,R) be an association scheme with d classes. Let M be a subset of X, and
let i ∈ {1, . . . , d}. Then the following statements are equivalent.

(a) There are numbers c1, c2 ∈ R such that each element of M is i-adjacent to
exactly c1 elements of M , and each element of X \M is i-adjacent to exactly
c2 elements of M .

(b) The characteristic vector v of M is contained in the span of the unit vector 1
and an eigenspace of the adjacency matrix Ai.

In this case c1 − c2 is the corresponding eigenvalue.

Proof. Assertion (a) holds if and only if Aiv = c1v + c2(1− v).
Suppose that (a) holds. Then for every constant α the equation

Ai(v − α1) = (c1 − c2)v + (c2 − αni)1

holds. If c1 − c2 < ni, we set α := c2/(ni − c1 + c2). This yields the equality

Ai(v − α1) = (c1 − c2)(v − α1).

Hence v−α1 is an eigenvector of Ai to the eigenvalue c1−c2, from which (b) follows.
If on the other hand c1 − c2 ≥ ni, then c1 = ni and c2 = 0 (for 0 ≤ c1, c2 ≤ ni),
which implies Aiv = (c1 − c2)v, from which (b) follows.

Now suppose that (b) holds. Then v = v0 +α1, where v0 is an eigenvector of Ai

(to the eigenvalue c) and α ∈ R. Hence

Aiv = cv0 + αni1 = cv + (ni − c)α1 = (c+ α(ni − c))v + (ni − c)α(1 − v),

from which (a) follows. �

Remark

An analogous statement holds for linear combinations of adjacencies. This leads to
the following theorem characterizing the span of eigenspaces.

Theorem 4
Let (X,R) be an association scheme with d classes. Let M 6= ∅ be a subset of X

with characteristic vector v. We define the matrix B ∈ RX×{0,...,d} by Bxi := |{y ∈
M | y ∼i x}|. Let k ∈ {1, . . . , d}. Then the following statements are equivalent:

(a) There are k eigenspaces Vr1, . . . , Vrk of the Bose-Mesner algebra of (X,R) such
that v ∈ 〈1, Vr1 , . . . , Vrk〉.

(b) The matrix B has rank ≤ k + 1.
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Proof. Let v = v0 + · · · + vd with vi ∈ Vi. Because of M 6= ∅, we have v0 6= 0.
We renumber the coefficients such that v0, . . . , vt 6= 0 and vt+1 = · · · = vd = 0.
Let pij be the eigenvalue of the matrix Ai corresponding to the eigenspace Vj . Let
P = (pij).

The i-th column of B is equal to Aiv. Hence (b) is equivalent to the statement
that for each k + 2 values 0 ≤ s0 < · · · < sk+1 ≤ d there are coefficients ci not all
equal to zero such that

∑
i ci(Asiv) = 0. This means:

0 =
k+1∑
i=0

ciAsi

 t∑
j=0

vj

 =
k+1∑
i=0

ci
t∑

j=0

psijvj =
t∑

j=0

(
k+1∑
i=0

cipsij

)
vj.

As the vj are linearly independent, the expression in parentheses vanishes. This
holds for every choice of the si, which means that the submatrix of P formed by the
columns 0, 1, . . . , t has rank at most k + 1. As the matrix P is regular (otherwise
A0, . . . , Ad would be linearly dependent), this means that t ≤ k, i.e. (a) holds. The
other direction follows analogously. �

For the rest of the paper we suppose that we have the situation of Lemma 1,
i.e. (G,X) is a rank d + 1 permutation group, and (X,R) is the corresponding
association scheme with d classes. The matrices Ai and the algebra A are defined
as usual.

Each element g ∈ G can be regarded as a permutation matrix from RN×N : if
gxi = xj, then the corresponding permutation matrix maps the i-th unit vector (i.e.
the characteristic vector of {xi}) to the j-th unit vector.

Let G = 〈{g | g ∈ G}〉R be the span of these permutation matrices as R-vector
space (or as subalgebra of RN×N ).

As above let V0, . . . , Vd be the common eigenspaces of the matrices from A.
The following lemmata can be concluded from the fact that the permutation

representation of (G,X) is the direct sum of d+1 distinct irreducible representations
(see e.g. [1, II.1]). However we give more basic proofs.

Lemma 2
[compare [1, Thm. II.1.3]] The algebra A consists of exactly the matrices commuting
with all permutation matrices of G (or, equivalently, with all elements of G).

Proof. As permutation matrices are orthogonal, a matrix A commutes with a
permutation matrix g ∈ G if and only if gTAg = A, i.e. if

(gei)
TA(gej) = eTi g

TAgej = eTi Aej

for all unit vectors ei, ej. If gxi = xi′, gxj = xj′, this means that eTi′Aej′ = eiAej,
i.e. the (i′, j′)-entry of A is equal to the (i, j)-entry of A. In other words: if (xi, xj)
and (xi′, xj′) are in a common orbit under G, then the entries in A on the positions
(i, j) and (i′, j′) are equal. The matrices A with this property are by definition the
linear combinations of the matrices A0, . . . , Ad, i.e. the matrices from A. �

Lemma 3
The elements of G map the eigenspaces Vs onto themselves.
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Proof. Is is sufficient to prove the assertion for the permutation matrices from G.
Let ws ∈ Vs and g ∈ G. Let gws = v0 + · · ·+ vd with vi ∈ Vi. Let At be one of the
adjacency matrices. Then

Atgws = Atv0 + · · ·+ Atvd = α0v0 + · · ·+ αdvd,

where αi is the eigenvalue of At to the eigenspace Vi. On the other hand by Lemma 2
we have

Atgws = gAtws = gαsws = αsgws = αsv0 + · · · + αsvd.

Hence
(α0 − αs)v0 + (α1 − αs)v1 + · · ·+ (αd − αs)vd = 0.

This holds for all adjacency matrices At. As for each i 6= s there is an adjacency
matrix At whose eigenvalues for Vi and Vs are different, we get vi = 0 for all i 6= s.
Hence gws ∈ Vs. �

Lemma 4
Let v = v0 + · · ·+ vd ∈ RN , where vi ∈ Vi.

(a) If vi 6= 0, then for each wi ∈ Vi there is an M ∈ G with Mvi = wi.

(b) If vi 6= 0 and j 6= i, then there is an M ∈ G with Mvj = 0 and Mvi 6= 0.

(c) If vi 6= 0 and wi ∈ Vi, then there is an M ∈ G with Mv = wi.

Proof. (a) Let W := {Mvi |M ∈ G}. We want to show that W = Vi. By Lemma 3,
W ⊆ Vi. Suppose that W is a true subspace of Vi. Let W ′ := W⊥∩Vi. Then W,W ′

are complementary subspaces of Vi which are mapped into themselves by G. (For
W ′ this holds because G is spanned by orthogonal (permutation) matrices.) Let A
be the matrix inducing the identity on W and mapping W ′ and the spaces Vj with
j 6= i to zero. This matrix commutes with all elements of G. By Lemma 2, A is an
element of A. This produces a contradiction, because Vi is not an eigenspace of A.
Hence W = Vi.

(b) If vj = 0, the assertion is clear. Let now vj 6= 0. Suppose that for all M ∈ G
with Mvj = 0 we have Mvi = 0. Let A be the matrix mapping all Vs (s 6= j) to zero,
while the operation of A on Vj is defined by AMvj := Mvi for all M ∈ G. By (a) this
yields values for all elements of Vj . The map is well-defined: if Mvj = M ′vj, then
(M−M ′)vj = 0, hence (M−M ′)vi = 0, and soMvi = M ′vi. The matrixA commutes
with all elements of G. (For M ∈ G, vj ∈ Vj we have AMvj = Mvi = MAvj.) By
Lemma 2, A ∈ A. This is a contradiction, because Avj = vi such that A does not
map Vj into itself.

(c) Apply first (b) for all j 6= i and then (a). �

Theorem 5
Let (G,X) be a rank d + 1 permutation group. Let M,M ′ be subsets of X with
characteristic vectors v, w. Let v = v0 + · · · + vd and w = w0 + · · · + wd the
decompositions of v, w into eigenvectors of the Bose-Mesner algebra A (i.e. vi, wi
are elements of the eigenspace Vi, where V0 = 〈1〉). Then the following statements
are equivalent:
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(a) There is a constant c ∈ R such that |M ∩ gM ′| = c for all g ∈ G.

(b) For each i ∈ {1, . . . , d} one of the vectors vi, wi is equal to zero.

Proof. As the group G operates transitively on X, the stabilizer of an element
x ∈ X has exactly |G|/|X| elements, and the same number of elements maps x onto
an arbitrary x′ ∈ X. Hence the number of triples (g, x, x′) ∈ G ×M ×M ′ with
x = gx′ is equal to |M | · |M ′| · |G|/|X|. This is the number of pairs (g, x) ∈ G×M
with x ∈ gM ′. Hence the average number of elements of M ∩ gM ′ is equal to
|M ||M ′|/|X|. Thus (a) can hold only with the value c = |M ||M ′|/|X|.

Each element of Vi (i ≥ 1) is orthogonal to the all-one-vector 1 ∈ V0, so the
sum of its entries is 0. As the sum of entries of v is |M |, also the sum of entries
of v0 is |M |, i.e. v0 = |M |/|X| · 1. Analogously, for each g ∈ G, we have gw0 =
|gM ′|/|X| · 1 = |M ′|/|X| · 1, and so vT0 gw0 = |M ||M ′|/|X| = c.

The number of elements of M ∩ gM ′ is equal to

vTgw = vT0 gw0 + · · ·+ vTd gwd = c+ vT1 gw1 + · · ·+ vTd gwd.

(Here we use Lemma 3.) Hence (a) holds if and only if

vT1 gw1 + · · · + vTd gwd = 0 for all g ∈ G.

This obviously is true if (b) holds.
Now suppose that (a) holds. Then

(v1 + · · ·+ vd)
T g(w1 + · · · + wd) = 0 for all g ∈ G.

This equality holds for all g ∈ G, too. Suppose that for some i ∈ {1, . . . , d} we
have wi 6= 0. By Lemma 4(c), for each ui ∈ Vi there is an element g ∈ G with
g(w1 + · · · + wd) = ui. For this g we get

0 = (v1 + · · ·+ vd)
Tg(w1 + · · ·+ wd) = vTi ui.

Hence vi is orthogonal to Vi, and so vi = 0. This yields (b). �

4 Application to projective spaces

We give now the application of Theorem 5 to our original problem on spreads in
projective spaces, namely the generalization of [9, Lemma 9].

Let P = PG(k(t + 1), q) be a projective space, and let Li be the set of i-
dimensional subspaces of P for all i.

We need the characterization of the eigenspaces of the Bose-Mesner-Algebra
corresponding to projective spaces, given in [6]. From this we need the following
result [6, Thm. 2.7]:

Theorem 6
For r ∈ {0, . . . ,min(t + 1, d − n)} let Vr be the vector space of functions
f : Lt → R that can be written in the form

f(Lt) =
∑

Lr−1⊆Lt
g(Lr−1),
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where g : Lr−1 → R is a function for which holds:

∑
Lr−1⊇Lr−2

g(Lr−1) = 0 for all Lr−2 ∈ Lr−2.

(In particular, V0 is the space of constant functions.)

Then the Vr form a complete system of eigenspaces of the association scheme
formed by the t-dimensional subspaces of P .

Theorem 7
(a) Let f : L0 → R be a function such that for the function

g : Lt → R, Lt 7→
∑
P∈Lt

f(P )

there are two constants c1, c2 ∈ R such that g(Lt) ∈ {c1, c2} for all p ∈ P . Then
the set

M := {Lt ∈ Lt | g(Lt) = c1}

is a subset of Lt, having the same number of elements in common with each
t-spread of P

(b) Let M ⊆ Lt be a set of t-dimensional subspaces of P , having the same number
of elements in common with each regular t-spread. If k ≥ 3 or if k = 2, t ≤ 2,
then M can be expressed as in (a).

Proof. By Theorem 6, the sets constructed in (a) are exactly the subsets of Lt
whose characteristic vector is contained in 〈1, V1〉. As a spread covers each point
exactly once, its characteristic vector lies in 〈V0, V2, V3, . . . , Vt+1〉. From Theorem 5
we get immediately (a).

For the proof of (b) we have to show that the characteristic vector of a regular
spread, when decomposed into eigenvectors, contains a non-zero part of each Vi
(i 6= 1). We show this for every spread.

Let M be a t-spread of P . We must show that the characteristic vector of M
is not contained in the span of 〈1〉 and t − 1 other eigenspaces. By Theorem 4 we
have to show that the matrix B ∈ RLt×{0,...,t+1} defined by

BLti := |{L′t ∈M | dim(L′t ∩ Lt) = t− i}|

has at least rank t+ 1. Therefore we must find t+ 1 linear independent rows of B.
It suffices to show that for each s = 0, . . . , t there is a row or B whose first t− s− 1
entries vanish, while the (t− s)-th entry is non-zero.

This can be done combinatorially by observing that for an element L ∈ M and
an s-dimensional subspace T ⊆ L the number of elements of Lt intersecting L in
T is bigger than the number of elements of Lt intersecting L in T and intersecting
some other element of M in at least a line. (More details are given in [8].) �
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