Subsets of association schemes corresponding
to eigenvectors of the Bose-Mesner algebra

Jorg Eisfeld

Abstract

This paper is motivated by the following question: given a group G op-
erating as a permutation group on a set X, which are the pairs of subsets
M, M' C X such that |[M NgM'| = ¢ for a constant ¢ and all g € G? We give
a characterization of these pairs in terms of eigenspaces of the corresponding
association scheme, and we give further characterizing properties of these sets
M. We apply our results to a generalization of a question of Cameron and
Liebler in projective spaces.

1 Introduction

In [4] Cameron and Liebler proposed the problem to determine the line sets B of a
projective space with the following property:

Each spread has the same number of lines in common with 5.
This problem was generalized in [7], where the following question was considered:
Let G be a group operating as a symmetrical rank 3 permutation group

on the set V. Which are the pairs (M;, M) of subsets of V' such that
| My N gM,| = ¢ for a constant ¢ and all g € G?
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If V' is the set of lines of PG(d, ¢) and G = PGL(d + 1, ¢), and if M, is a spread,
then this reduces to the original question of Cameron and Liebler.

However, a more natural generalization of Cameron’s and Liebler’s question is
not included in the generalization of [7], namely the question:

Which are the sets of ¢-dimensional subspaces of PG(k(t + 1) — 1,¢q)
having the same number of elements in common with every t-spread?

(Here a t-spread is a set of t-dimensional subspaces partitioning the point set.)

In this paper we extend the theory of [7] to permutation groups of higher per-
mutation rank, thus giving a first answer to this question in Theorem 7, being a
generalization of [9, Lemma 9].

To do our extension, we consider subsets of association schemes. So this paper
gives a link between the theory of association schemes and Galois geometries. The
main result of this paper is Theorem 5, making clear that questions of the Cameron-
Liebler-Type are in fact questions about eigenspaces of association schemes.

This paper is mostly taken out of the Ph. D. Thesis [8], where in some parts
more details are given.

2 Association schemes

We start with some basic results on association schemes. For a complete introduction
see e.g. [3, Ch. 2], [1, Ch. 2], or [5, Ch. 17].
We start with the definition of an association scheme.

Definition 1

Let X be a finite set. An association scheme with d classes is a pair (X, R), where
R = (~p,...,~yq) is a set of binary relations on X (i.e. subsets of X x X) with the
following properties:

(a
(b
(c

(d) There are numbers pfj € R with the following property: for z,y € X with
x ~y y there are exactly pfj elements z € X with x ~; z and z ~; v.

For z,y € X there is exactly one ¢ with x ~; y.
x ~q y holds if and only if z = y.

If z ~; y, then also y ~; x.

)
)
)
)

The number n; := pY is called i-valency.

Remarks

1. Sometimes in the literature axiom (c) is omitted and an association scheme
fulfilling (c) is called symmetrical.

2. The case d = 2 corresponds to strongly regular graphs. In this case, our results
reduce to results in [7].
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Definition 2

A symmetrical rank k permutation group is a pair (G, P), where G is a group op-
erating transitively on the set P such that the stabilizer of an element p € P has
exactly k orbits, and such that for all p;,ps € P the pairs (p1,p2) and (pe2, p1) lie in
the same orbit under G.

Lemma 1

Let (G, X) be a symmetrical rank d + 1 permutation group. Let ~g,~1,...,~q be
the orbits of pairs of elements of X under G, where ~y= {(x,x)|z € X}. Then
(X, {~0,...,~a}) is an association scheme with d classes.

Definition 3
Let (X,R) be an association scheme with d classes. Let z1,..., 2y be an enumera-
tion of the elements of X.

(a) The adjacency matrices of (X, R) are the matrices A; € RV*N (i € {0,...,d})

with e
I T~ T,
(Ai)s = !
0 otherwise.

(b) The Bose-Mesner algebra A of (X, R) is the R-algebra generated by the adja-
cency matrices (see [2]), i.e.

.A:{f(AQ,...,Ad) | f ER[.%‘Q,...,l'd]}.

(c) The characteristic vector of a set M C X is the vector v € RY with:

B 1 ifx; € M,
" 10 otherwise.

(d) The characteristic vector of X, i.e. the all-one-vector, is denoted by 1. The unit
matrix is denoted by /. The all-one-matrix is denoted by .J.

Theorem 1
[see [3, 2.2]]

(a) The Bose-Mesner algebra A is a (d + 1)-dimensional commutative algebra of
symmetrical matrices.

(b) The space RY is the direct sum of d + 1 maximal common eigenspaces of the
matrices of A. One of these eigenspaces has dimension 1 and is spanned by 1.

Remark

If we normalize C; such that C;v; = v;, these matrices are the minimal idempotents
of the Bose-Mesner algebra (see [3, 2.6]).

From now on let Vg, ..., V; be the eigenspaces of the matrices from A, where
Vo = (1).



268 J. Eisfeld

3 Properties of subsets corresponding to eigensp aces of the
Bose-Mesner algebra

In this section we shall see that subsets of association schemes whose characteristic
vectors decompose into few eigenvectors of the Bose-Mesner algebra have some char-
acterizations, one of them being a generalization of the Cameron-Liebler-problem
(see Theorem 5).

The first two theorems can be stated more generally for graphs.

Theorem 2
Let (X, R) be an association scheme with d classes. Let M be a subset of X, and
let r € {1,...,d}. Then

%wm +a(X| = M) < [{(,y) €M x M|z~ y)

| M]
< W(nrlMl + (X[ = [M])),

where n,. is the eigenvalue of A, to the eigenvector 1, while «v (resp. [3) is the smallest
(resp. biggest) other eigenvalue of A,.

Equality holds if and only if the characteristic vector of M is contained in the
span of 1 and the eigenspace of A, to the eigenvalue « (for the left hand side) resp.
B (for the right hand side).

Proof. Let v = (v1,...,vy) be the characteristic vector of M. Then vTv = |M].
We write v as the sum of eigenvectors: v = wg + - - - + wyg with w; € V;. All elements
of V; (i > 1) are orthogonal to the vector 1, hence the sum of their entries is zero.
As the sum of the entries of v is |M|, the sum of the entries of wy is equal to | M|
i.e. wo = |[M|/|X|-1 and so wlwy = |M|?/|X|. As the eigenspaces are orthogonal,
M| = vTv = wlwy + -+ + whwy. Hence

[wn]?+wal* 4+ - wal* = [0 = Jwo[* = [M|—[M*/|X| = [M|(IX]-[M])/|X]. ()

On the other hand
’UTAT’U = Z Z Ui(Ar>ijUj-
J

i

Here the only summands not vanishing are those where all three factors are one, i.e.
where z; € M, z; ~, x; and x; € M. Hence

{(z,y) e M x M | x ~, y}‘ = vl A =wiAwo+ -+ wh Aawyg
= n|M*/|X] + ar|wi]” + - + aqlwa]?,
where «; is the eigenvalue of A, to the eigenspace V;. As |w;|? > 0, this expression

has its minimal (resp. maximal) value, if the whole sum in (x) consists of the vector
with the smallest (resp. biggest) eigenvalue. From this the assertion follows. [
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Remark

The same statement holds for linear combinations of adjacencies.

Theorem 3
Let (X, R) be an association scheme with d classes. Let M be a subset of X, and
let i € {1,...,d}. Then the following statements are equivalent.

(a) There are numbers c1,co € R such that each element of M is i-adjacent to
exactly ¢; elements of M, and each element of X \ M is i-adjacent to exactly
¢y elements of M.

(b) The characteristic vector v of M is contained in the span of the unit vector 1
and an eigenspace of the adjacency matrix A;.

In this case ¢y — ¢y is the corresponding eigenvalue.

Proof. Assertion (a) holds if and only if A;v = ;v + c2(1 — v).
Suppose that (a) holds. Then for every constant « the equation

Ai(v—al) = (c1 — e2)v+ (2 — an;)1
holds. If ¢; — ¢ < n;, we set a:= ¢/ (n; — ¢1 + ¢2). This yields the equality
Ai(v—al) = (¢ —c2)(v —al).

Hence v—al is an eigenvector of A; to the eigenvalue ¢; — ¢y, from which (b) follows.
If on the other hand ¢; — ¢y > n;, then ¢ = n; and ¢; = 0 (for 0 < ¢, < ny),
which implies A;v = (¢1 — ¢2)v, from which (b) follows.

Now suppose that (b) holds. Then v = vy + a1, where vy is an eigenvector of A;
(to the eigenvalue ¢) and o € R. Hence

Ajv = cvg+ an;1 = cv+ (n; — c)al = (c+ a(n; — ¢))v+ (n; — c)a(l — v),

from which (a) follows. ]

Remark

An analogous statement holds for linear combinations of adjacencies. This leads to
the following theorem characterizing the span of eigenspaces.

Theorem 4

Let (X,R) be an association scheme with d classes. Let M # () be a subset of X
with characteristic vector v. We define the matrix B € R¥*{0d by B .= |{y €
M |y ~;z}|. Let ke {1,...,d}. Then the following statements are equivalent:

(a) There are k eigenspaces V., ..., V., of the Bose-Mesner algebra of (X, R) such
that v e (1,V,,,..., V).

(b) The matrix B has rank < k + 1.
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Proof. Let v = vy + -+ + vy with v; € V;. Because of M # (), we have vy # 0.

We renumber the coefficients such that vg,...,v; # 0 and vy = --- = vg = 0.
Let p;; be the eigenvalue of the matrix A; corresponding to the eigenspace V. Let
P = (pij).

The i-th column of B is equal to A;u. Hence (b) is equivalent to the statement
that for each k + 2 values 0 < sp < --- < spy1 < d there are coefficients ¢; not all
equal to zero such that Y; ¢;(As,v) = 0. This means:

k+1 t k+1 t t k+1
0=> cide (20| =2 a2 pasts = (Z Cﬂ?m) Uj-
i=0 §=0 i=0  j=0 =0 \i=0

As the v; are linearly independent, the expression in parentheses vanishes. This
holds for every choice of the s;, which means that the submatrix of P formed by the

columns 0,1,...,¢ has rank at most k£ + 1. As the matrix P is regular (otherwise
Ay, ..., Az would be linearly dependent), this means that ¢t < k, i.e. (a) holds. The
other direction follows analogously. [

For the rest of the paper we suppose that we have the situation of Lemma 1,
ie. (G,X) is a rank d + 1 permutation group, and (X,R) is the corresponding
association scheme with d classes. The matrices A; and the algebra A are defined
as usual.

Each element g € G can be regarded as a permutation matrix from RY*¥: if
gx; = xj, then the corresponding permutation matrix maps the i-th unit vector (i.e.
the characteristic vector of {x;}) to the j-th unit vector.

Let G = ({g | g € G})r be the span of these permutation matrices as R-vector
space (or as subalgebra of RYV*V).

As above let Vg, ..., V; be the common eigenspaces of the matrices from A.

The following lemmata can be concluded from the fact that the permutation
representation of (G, X) is the direct sum of d+1 distinct irreducible representations
(see e.g. [1, I1.1]). However we give more basic proofs.

Lemma 2
[compare [1, Thm. I1.1.3]] The algebra A consists of exactly the matrices commuting
with all permutation matrices of G (or, equivalently, with all elements of G ).

Proof. As permutation matrices are orthogonal, a matrix A commutes with a
permutation matrix g € G if and only if g7 Ag = A, i.e. if

(gei)T A(ge;) = el g" Age; = e Ae;

for all unit vectors e;, e;. If gr; = xy, gr; = xj, this means that e} Ae; = e;Ae;,
i.e. the (7', j')-entry of A is equal to the (7, j)-entry of A. In other words: if (z;, z;)
and (zy,x;) are in a common orbit under G, then the entries in A on the positions
(7,7) and (', 5') are equal. The matrices A with this property are by definition the
linear combinations of the matrices Ay, ..., Ag, i.e. the matrices from A. [

Lemma 3
The elements of G map the eigenspaces V; onto themselves.
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Proof. Is is sufficient to prove the assertion for the permutation matrices from G.
Let ws € Vs and g € G. Let gws = vg + - - - + vg with v; € V;. Let A; be one of the
adjacency matrices. Then

Argws = Aoy + - -+ + Ayvg = v + -+ - 4+ g,

where q; is the eigenvalue of A; to the eigenspace V;. On the other hand by Lemma 2
we have
Argqws = gAyws = gasws = asgws = g + -+ - + Qgvg.

Hence
(ap — as)ve + (1 — as)vr + - -+ + (g — as)vg = 0.

This holds for all adjacency matrices A;. As for each ¢ # s there is an adjacency
matrix A; whose eigenvalues for V; and V; are different, we get v; = 0 for all 7 # s.
Hence gw; € V. ]

Lemma 4
Let v =12y +---+vy € RN, where v; € V.

(a) Ifv; # 0, then for each w; € V; there is an M € G with Mv; = w;.
(b) Ifv; # 0 and j # i, then there is an M € G with Mv; = 0 and Mwv; # 0.
(¢) Ifv; # 0 and w; € V;, then there is an M € G with Mv = w;.

Proof. (a) Let W := {Mv; | M € G}. We want to show that W = V;. By Lemma 3,
W C V;. Suppose that W is a true subspace of V;. Let W’ := W+NV,. Then W, W’
are complementary subspaces of V; which are mapped into themselves by G. (For
W' this holds because G is spanned by orthogonal (permutation) matrices.) Let A
be the matrix inducing the identity on W and mapping W’ and the spaces V; with
j # 1 to zero. This matrix commutes with all elements of G. By Lemma 2, A is an
element of A. This produces a contradiction, because V; is not an eigenspace of A.
Hence W = V.

(b) If v; = 0, the assertion is clear. Let now v; # 0. Suppose that for all M € G
with Mwv; = 0 we have Mv; = 0. Let A be the matrix mapping all V; (s # j) to zero,
while the operation of A on V} is defined by AMv; := Muv; for all M € G. By (a) this
yields values for all elements of V;. The map is well-defined: if Mv; = M'v;, then
(M—M'")v; =0, hence (M —M'")v; = 0, and so Mv; = M'v;. The matrix A commutes
with all elements of G. (For M € G, v; € V; we have AMv; = Mv; = MAwv,.) By
Lemma 2, A € A. This is a contradiction, because Av; = v; such that A does not
map Vj into itself.

(c) Apply first (b) for all j # ¢ and then (a). ]

Theorem 5

Let (G, X) be a rank d + 1 permutation group. Let M, M’ be subsets of X with
characteristic vectors v,w. Let v = vy + -+ + vy and w = wg + --- + wy the
decompositions of v, w into eigenvectors of the Bose-Mesner algebra A (i.e. v;, w;
are elements of the eigenspace V;, where Vj = (1)). Then the following statements
are equivalent:
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(a) There is a constant ¢ € R such that |M NgM'| = ¢ for all g € G.
(b) For eachi € {1,...,d} one of the vectors v;, w; is equal to zero.

Proof. As the group G operates transitively on X, the stabilizer of an element
x € X has exactly |G|/|X| elements, and the same number of elements maps z onto
an arbitrary =’ € X. Hence the number of triples (g,z,2') € G x M x M’ with
x = gz’ is equal to |M|-|M'| - |G|/|X|. This is the number of pairs (g,x) € G x M
with € gM’. Hence the average number of elements of M N gM’ is equal to
|M||M'|/|X]. Thus (a) can hold only with the value ¢ = |M||M'|/|X].

Each element of V; (¢ > 1) is orthogonal to the all-one-vector 1 € Vp, so the
sum of its entries is 0. As the sum of entries of v is |M|, also the sum of entries
of vy is |[M|, i.e. vo = |M|/|X]|- 1. Analogously, for each ¢ € G, we have gwy =
g0 /|X] - 1 = [M]/|X] - 1, and so T guo = |M||M]/|X] = c.

The number of elements of M N gM’ is equal to

vigw = vl gwo + -+ +vigwg = c+ vl gwy + - + vl gwg.
(Here we use Lemma 3.) Hence (a) holds if and only if
vigw + - +vlguwg =0 forall geG.

This obviously is true if (b) holds.
Now suppose that (a) holds. Then

(v + -+ v)) glwi + - +wy) =0 forall geG.

This equality holds for all ¢ € G, too. Suppose that for some i € {1,...,d} we
have w; # 0. By Lemma 4(c), for each u; € V; there is an element g € G with
g(wy + -+ 4+ wy) = u;. For this g we get

0= (v +-+va) glwy + - +wq) = v .

Hence v; is orthogonal to V;, and so v; = 0. This yields (b). n

4 Application to projective spaces

We give now the application of Theorem 5 to our original problem on spreads in
projective spaces, namely the generalization of [9, Lemma 9].

Let P = PG(k(t + 1),q) be a projective space, and let L£; be the set of i-
dimensional subspaces of P for all i.

We need the characterization of the eigenspaces of the Bose-Mesner-Algebra
corresponding to projective spaces, given in [6]. From this we need the following
result [6, Thm. 2.7]:

Theorem 6
For r € {0,...,min(t + 1,d — n)} let V. be the vector space of functions
f L — R that can be written in the form

f(Lt) = Z g(Lr—1>7

Ly 1CL
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where g : L,_1 — R is a function for which holds:

Z g(Ly—1) =0 forall L,y € L, 5.

Ly 12Lr—2

(In particular, V; is the space of constant functions.)
Then the V, form a complete system of eigenspaces of the association scheme
formed by the t-dimensional subspaces of P.

Theorem 7
(a) Let f: Ly — R be a function such that for the function

g: Ly — R, LtHZf(P)

PeL,

there are two constants ¢y, co € R such that g(L;) € {c1, o} for allp € P. Then
the set

M:={Li € L | g(Lt) =1}

is a subset of L;, having the same number of elements in common with each
t-spread of P

(b) Let M C L; be a set of t-dimensional subspaces of P, having the same number
of elements in common with each regular t-spread. If k > 3 or if k = 2,t < 2,
then M can be expressed as in (a).

Proof. By Theorem 6, the sets constructed in (a) are exactly the subsets of L;
whose characteristic vector is contained in (1,V;). As a spread covers each point
exactly once, its characteristic vector lies in (Vy, Vo, Vi, ..., Viy1). From Theorem 5
we get immediately (a).

For the proof of (b) we have to show that the characteristic vector of a regular
spread, when decomposed into eigenvectors, contains a non-zero part of each V;
(1 # 1). We show this for every spread.

Let M be a t-spread of P. We must show that the characteristic vector of M
is not contained in the span of (1) and ¢ — 1 other eigenspaces. By Theorem 4 we

has at least rank ¢ 4+ 1. Therefore we must find ¢ 4 1 linear independent rows of B.
It suffices to show that for each s = 0,...,t there is a row or B whose first t —s — 1
entries vanish, while the (¢ — s)-th entry is non-zero.

This can be done combinatorially by observing that for an element L € M and
an s-dimensional subspace T" C L the number of elements of L; intersecting L in
T is bigger than the number of elements of L; intersecting L in T and intersecting
some other element of M in at least a line. (More details are given in [8].) ]
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