On Buekenhout-Metz unitals

L. Rey A. Casse Guglielmo Lunardon *

Abstract

Let $\Sigma' = \operatorname{PG}(4,q)$, Σ be a hyperplane of Σ' and \mathcal{F} be a regular spread of Σ . Denote by $\pi(\Sigma', \Sigma, \mathcal{F}) \simeq \operatorname{PG}(2, q^2)$ the projective plane constructed using \mathcal{F} . We give a simple proof that if U is a Buekenhout–Metz unital of the plane $\pi(\Sigma', \Sigma, \mathcal{F})$ defined by an elliptic cone \mathcal{U} of Σ' , then there is a regular spread \mathcal{F}' of Σ such that \mathcal{U} defines a hermitian curve of $\pi(\Sigma', \Sigma, \mathcal{F}') \simeq \operatorname{PG}(2, q^2)$.

A Baer subplane of $PG(2, q^2)$ is a subplane of order q. It has the property that a line of $PG(2, q^2)$ meets a Baer subplane in 1 or in q+1 points. A set of q+1 points which is the intersection of a line with a Baer subplane is a Baer subline.

A unital of $PG(2, q^2)$ is a set U of $q^3 + 1$ points such that a line of $PG(2, q^2)$ contains either 1 or q + 1 points of U. If the line l of $PG(2, q^2)$ contains exactly one point of U, the unital is said to be parabolic with respect to l. A hermitan curve is a unital, which will be called classical.

A regulus of $\Sigma = \operatorname{PG}(3,q)$ is a ruling of a non-singular hyperbolic quadric of $\Sigma = \operatorname{PG}(3,q)$. If l,m,n are three mutually disjoint lines of Σ , there is a unique regulus $\mathcal{R}(l,m,n)$ containing l,m and n. A spread of $\Sigma = \operatorname{PG}(3,q)$ is a set \mathcal{F} of $q^2 + 1$ lines which are mutually disjoint. When the regulus $\mathcal{R}(l,m,n)$ of Σ is contained in \mathcal{F} for all lines l,m and n of \mathcal{F} , the spread \mathcal{F} is said to be regular.

Let $\Sigma' = \operatorname{PG}(4, q)$, Σ a hyperplane of Σ' . We always suppose \mathcal{F} is a regular spread of Σ . Define a translation plane $\pi(\Sigma', \Sigma, \mathcal{F})$ as follows. The points are either the points of $\Sigma' \setminus \Sigma$ or the elelemts of \mathcal{F} . The lines are either the planes of Σ' which intersects Σ in a line of \mathcal{F} or Σ . The incidence is the natural one. As \mathcal{F} is regular, the plane $\pi(\Sigma', \Sigma, \mathcal{F})$ is isomorphic to the desarguesian plane $\operatorname{PG}(2, q^2)$ (see [1], [4]). A

^{*}This research begun while the first author was a C.N.R. visiting professor at the University of Naples during May 1996.

Received by the editors September 1997.

Communicated by Albrecht Beutelspacher.

¹⁹⁹¹ Mathematics Subject Classification. Primary 51E20, Secondary 51E21.

Key words and phrases. Unitals, regular spreads.

Baer subline of $PG(2, q^2)$ is represented in $\pi(\Sigma', \Sigma, \mathcal{F})$ either by a line or by a conic in a plane α which contains a line m of \mathcal{F} . In the last case the line m is external to the conic (see [10]).

Let \mathcal{O} be an ovoid of a hyperplane Ω of Σ' , and suppose that the plane $\Sigma \cap \Omega$ is tangent at \mathcal{O} in a point p. If s is the line of \mathcal{F} incident with p and r a point of s different from p, let \mathcal{U} be the cone which projects \mathcal{O} from r. Then the points of $\mathcal{U} \setminus \{s\}$ together with the point of $\pi(\Sigma', \Sigma, \mathcal{F})$ represented by s define a unital U of $\pi(\Sigma', \Sigma, \mathcal{F})$ ([5] §4, Remark (4)) called a Buekenhout - Metz unital.

If β is a fixed isomorphism from $\operatorname{PG}(2,q^2)$ to $\pi(\Sigma',\Sigma,\mathcal{F})$, denote by l_{∞} the line of $\operatorname{PG}(2,q^2)$ mapped by β in the line represented by Σ . A classical unital, which is parabolic with respect to the line l_{∞} , is represented in $\pi(\Sigma',\Sigma,\mathcal{F})$ by an elliptic cone \mathcal{U} of Σ' such that $\Sigma \cap \mathcal{U} = s$ is a line of \mathcal{F} , and each plane of Σ' which contains a line of \mathcal{F} either is tangent to \mathcal{U} or intersects \mathcal{U} in a conic which represents a Baer subline of of $\pi(\Sigma',\Sigma,\mathcal{F})$ (see [5])

Let α be a plane of Σ' which represents a line of $\pi(\Sigma', \Sigma, \mathcal{F})$. Then α intersects Σ in a line m of \mathcal{F} . It has been proved in [7] that there is a conic C of α disjoint from m which is not a Baer-subline of $\pi(\Sigma', \Sigma, \mathcal{F})$. Let s be a fixed line of \mathcal{F} different from m. If p is a fixed point of s, then there is an elliptic quadric $Q^-(3,q)$ of s containing s and s if s is the elliptic cone which projects s from a point of s different from s, then s defines a non-classical Buekenhout-Metz unital of s different from s, then s defines a non-classical Buekenhout-Metz unital of s different from s (see [7]). In this paper we give a simple proof the following theorem proved in [6]

Theorem Let U be a Buekenhout-Metz unital of $\pi(\Sigma', \Sigma, \mathcal{F})$ defined by an elliptic cone \mathcal{U} of Σ' . Then there is a regular spread \mathcal{F}' of Σ , such that \mathcal{U} defines a classical unital of the plane $\pi(\Sigma', \Sigma, \mathcal{F}')$ which is parabolic with respect to the line of $\pi(\Sigma', \Sigma, \mathcal{F}')$ represented by Σ .

Proof. Let $\Lambda^* = \operatorname{PG}(5, q^2)$ and let $(x_0, x_1, x_2, x_3, x_4, x_5)$ be the homogeneous coordinates of a point of Λ^* . Denote by σ the involutory collineation of Λ^* defined by $(x_0, x_1, x_2, x_3, x_4, x_5)^{\sigma} = (\bar{x}_3, \bar{x}_4, \bar{x}_5, \bar{x}_0, \bar{x}_1, \bar{x}_2)$ where $\bar{a} = a^q$ for all a in $\operatorname{GF}(q^2)$. The points fixed by σ belong to $\Lambda = \{(x_0, x_1, x_2, \bar{x}_0, \bar{x}_1, \bar{x}_2) \mid x_0, x_1, x_2 \in \operatorname{GF}(q^2)\}$ which is a subgeometry of Λ^* isomorphic to $\operatorname{PG}(5, q)$.

Let π be the plane of Λ^* with equations $x_3 = x_4 = x_5 = 0$.

Then π is disjoint from Λ and the plane $\bar{\pi} = \pi^{\sigma}$ has equations $x_0 = x_1 = x_2 = 0$. For each point x of π , let l(x) be the line joining the points x and x^{σ} . Then $l(x) \cap \Lambda$ is a line of Λ , i.e. l(x) contains exactly q+1 point of Λ . If l(x) and l(y) are not disjoint, then $\langle x, y, x^{\sigma}, y^{\sigma} \rangle$ is a plane. This is impossible because the line $\langle x, y \rangle$ of π and the line $\langle x^{\sigma}, y^{\sigma} \rangle$ of π^{σ} are disjoint, we conclude that $\mathcal{S} = \{l(x) \mid x \in \pi\}$ is a line-spread of $\Lambda = \mathrm{PG}(5, q)$.

For each line m of π let $\mathcal{S}_m = \{l(x) \mid x \in m\}$. Then \mathcal{S}_m is a regular spread of the 3-dimensional subspace $< m, m^{\sigma} > \cap \Lambda$ of Λ (see [3]). If a 3-dimensional subspace Σ of Λ contains two lines l(x) and l(y) of \mathcal{S} , and m is the line of π joining the points x and y, then $\Sigma = < m, m^{\sigma} > \cap \Lambda$ and

$$\mathcal{S}_{\Sigma} = \{ n \in \mathcal{S} \mid n \cap \Sigma \neq \emptyset \} = \mathcal{S}_m$$

is a regular spread of Σ . Hence the incidence structure

$$\Pi = (\mathcal{S}, \{\mathcal{S}_m \mid m \text{ is a line of } \pi\})$$

is isomorphic to $\pi = PG(2, q^2)$ via the map $\tau : x \mapsto l(x)$ (see [2]).

If Σ' is a hyperplane of Λ , then there is exactly one 3-dimensional subspace Σ of Σ' such that \mathcal{S}_{Σ} is a (regular) spread of Σ . Then the map ρ from Π to $\pi(\Sigma', \Sigma, \mathcal{S}_{\Sigma})$, which maps the line l(x) of \mathcal{S} into $l(x) \cap \Sigma'$, is an isomorphism.

Let $Q^+(5, q^2)$ be the hyperbolic quadric of $\Lambda^* = \operatorname{PG}(5, q^2)$ defined by the equation $x_0x_5 + x_1x_4 + x_2x_3 = 0$. Then the plane π and π^{σ} are contained in $Q^+(5, q^2)$, and $Q^+(5, q^2) \cap \Lambda = Q^-(5, q)$ is the elliptic quadric of Λ defined by the equation $x_0x_2^q + x_1^{1+q} + x_2x_0^q = 0$, which is quadratic over $\operatorname{GF}(q)$.

If a line l(x) of \mathcal{S} contains a point of $Q^-(5,q)$, then l(x) is contained in $Q^-(5,q)$ because it is incident with three points of $Q^+(5,q^2)$. This implies that $\mathcal{H} = \{l(x) \mid l(x) \cap Q^-(5,q) \neq \emptyset\}$ is a spread of $Q^-(5,q)^{-1}$. If a 3-dimensional subspace Σ of Λ contains two lines of \mathcal{H} , then \mathcal{S}_{Σ} is a regular spread of Σ , and $Q^-(5,q)$ intersects Σ in a non-singular hyperbolic quadric $Q^+(3,q)$. Thus there are exactly q+1 lines of the spread \mathcal{S}_{Σ} contained in \mathcal{H} and these lines form a regulus of Σ (see [8]). Moreover $H(3,q^2) = \{x = (a_0,a_1,a_2,0,0,0) \in \pi \mid l(x) \in \mathcal{H}\}$ is the hermitian curve of π defined by the equation $a_0a_2^q + a_1^{1+q} + a_2a_0^q = 0$ (see [8]).

Let $s = \mathcal{U} \cap \Sigma$ be the line of \mathcal{F} contained in Σ . Embed Σ' in Λ in such a way that Σ' is the tangent hyperplane of $Q^-(5,q)$ at the vertex of \mathcal{U} , and $\Sigma' \cap Q^-(5,q) = \mathcal{U}$. Then s belongs to $Q^-(5,q)$, and Σ is the polar of s with respect to $Q^-(5,q)$.

If s = l(x) and m is the line of π tangent to $H(2, q^2)$ at x, then $\Gamma = \langle m, m^{\sigma} \rangle \cap \Lambda$ is a 3-dimensional subspace of Σ' such that \mathcal{S}_m is a regular spread of Γ . Therefore s is the unique line of \mathcal{H} contained in Γ , and $s = \langle m, m^{\sigma} \rangle$ intersects $Q^+(5, q^2)$ in the planes $s = \langle m, s \rangle$ and $s = \langle m, s \rangle$. Hence $s = \langle m, s \rangle$ is the polar of the line $s = \langle m, s \rangle$ with respect to $S = \langle m, s \rangle$ and $S = \langle m, s \rangle$. Hence we have proved that $S = \langle m, s \rangle$ by the isomorphism $S = \langle m, s \rangle$ from $S = \langle m, s \rangle$ have $S = \langle m, s \rangle$. Hence we have proved that $S = \langle m, s \rangle$ defines a classical unital of $S = \langle m, s \rangle$.

References

- [1] J. André, Uber nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z. 60 (1954), 156-186.
- [2] R. C. Bose, On a representation of the Baer subplane of the desarguesian plane $PG(2, q^2)$ in a projective five dimensional space PG(5, q). Colloquio Internazionale Teorie Combinatorie, Roma 1973, Tomo I, 381-391.
- [3] R. H. Bruck, Construction problems in finite projective spaces. *Combinatorial mathematics and its applications*, Chapel Hill, 1969, 426-514.
- [4] R. H. Bruck and R. C. Bose, The construction of translation planes from projective spaces. *J. Algebra*, 1 (1964), 85-102.
- [5] F. Buekenhout, Existence of unitals in finite translation planes of order q^2 with a kernel of order q. Geom. Dedicata 5 (1976), 189-194.
- [6] L. R. A. Casse and C. T. Quinn, The Bruck-Bose map and Buekenhout-Metz unitals. R.C. Bose Memorial Conference, Fort Collins 1995, to appear.

¹A spread of $Q^{-}(5,q)$ is a partition in lines of the points of $Q^{-}(5,q)$.

- [7] R. Metz, On a class of unitals. *Geom. Dedicata*, 8 (1979), 125-126.
- [8] J. A. Thas, Semi-partial geometries and spreads of classical polar spaces. J. Combin. Theory Ser. A, 35 (1983), 58-66.
- [9] J. A. Thas: Old and new results on spreads ond ovoids of finite classical polar spaces *Ann. Discrete Math.* 52 (1992), 529-544.
- [10] R. Vincenti, Alcuni tipi di varietà \mathcal{V}_2^3 di $S_{4,q}$ e sottopiani di Baer. Suppl. BUMI 2(1980), 31-44.

L. R. A. Casse Department of Pure Mathematics The University of Adelaide G.P.O. Box 498, Adelaide, S.A. 5001 Australia e-mail rcasse@maths.adelaide.edu.au

G. Lunardon Dip. di Matematica e Applicazioni Complesso di Monte S. Angelo - Edificio T Via Cintia 80126 Napoli, Italy