
Characterizations for classical finite hexagons
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Abstract

We characterize some classical finite hexagons as the only generalized
hexagons containing ovoidal subspaces all of whose points are spanregular.

1 Introduction

A generalized n-gon Γ = (P ,B, I) of order (s, t) is an incidence structure of points
and lines with s+1 points incident with a line and t+1 lines incident with a point,
s, t ≥ 1, such that Γ has no ordinary k-gons for any 2 ≤ k < n, and any two elements
are inside some ordinary n−gon. Distances are measured in the incidence graph.
If two points x, y are at distance 2, we call them collinear and write x ∼ y.
If two points x, y are at distance 4 and n > 4, the unique point at distance 2 from
x and at distance 2 from y is denoted by x1y.
If two elements u, v are at distance k < n, we denote the unique element at distance 1
from x and at distance k− 1 from y by projxy, and call this the projection of y onto
x.
The set of all elements at distance i from an element u is denoted by Γi(u).

The trace xy, with x and y opposite elements (= at maximal distance n), is the
set of all elements (t+1 if x is a point) at distance 2 from x and distance n−2 from
y. The point x is said to be regular, if ∀y, z opposite x, |xy ∩ xz| ≥ 2 ⇒ xy = xz.
This implies that two traces xy1 and xy2 with x regular have 0, 1 or t+1 points in
common.
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The point x is said to be spanregular, if x is regular and for all points p, a, b with
d(x, p)=2, d(p, a)=n, d(p, b)=n : x ∈ pa ∩ pb, |pa ∩ pb| ≥ 2 ⇒ pa = pb. One could
give the following interpretation: x is spanregular if x is regular and every point
collinear with x behaves as a regular point in the neighbourhood of x.

Given some trace pa with u, v ∈ pa, we have the equivalent notations pa = (u1

v)a = 〈u, v〉a. The trace 〈u, v〉a through u and v and defined by a is called an ideal
line, if every trace 〈u, v〉b through u and v coincides with 〈u, v〉a. So we can use the
notation 〈u, v〉 — independent of a — if this trace is an ideal line.

A sub-n-gon Γ′ of order (s′, t′) of a generalized n-gon Γ of order (s, t) is a subge-
ometry of Γ which is itself a generalized n-gon of order (s′, t′). If s′ = s, Γ′ is called
full. If t′ = t, Γ′ is called ideal. A generalized n-gon of order (s, t) is called thin,
whenever s or t is equal to 1, and is called thick whenever s, t ≥ 2.

2 Definition of ovoidal subspace

An ovoidal subspace A of a generalized 2m-gon Γ = (P ,L, I) is a proper non-empty
set of points A ⊂ P , with an induced set of lines A′ = {L ∈ L | Γ1(L) ⊂ A}, such
that all elements of Γ are at distance ≤ m from a certain point of A, and such that
for all elements of Γ\(A ∪ A′) at distance < m from a certain point p of A, this
point p is unique.
The notion ‘ovoidal’ is inspired by the ovoids, being special cases of ovoidal sub-
spaces.

To show the likeness between the definition of Γ itself and the definition of an
ovoidal subspace of Γ, we define the distance between a point b and a point set
A as d(b,A) = min{d(b, a)|a ∈ A}. Then we can formally write their respective
definitions as follows (disregarding the order (s, t)):

Γ (1) Given a; max{d(a, b)|b element of Γ} = 2m
(2) Given a; ∀b element of Γ : d(a, b) < 2m
⇒ ∃ unique shortest path between a, b

A (1) Given A; max{d(A, b)|b element of Γ} = m
(2) Given A; ∀b element of Γ\(A ∪A′) : d(A, b) < m
⇒ ∃ unique shortest path between A, b

For Γ a generalized quadrangle of order (s, t), an ovoidal subspace is the same
as a geometric hyperplane A, which is defined as a set of points such that every line
intersects A in exactly 1 or s+1 points. One can easily show that A is an ovoid
(∀L : |L∩A| = 1), the point set of a subquadrangle of order (s, t′), st′ = t (called a
grid if t′ = 1), or the set of all points collinear with a given point.

For Γ a generalized quadrangle of order s (i.e. order (s, s)), it is known that
all points are regular (and then Γ is known, i.e. Γ is the generalized quadrangle
W (s) arising from a symplectic polarity of PG(3, s)) iff all points of a geometric
hyperplane A are (span-)regular. For these proofs we refer to Payne & Thas [3]:
5.2.5 (A an ovoid), 5.2.6 (A the point set of a grid), 1.3.6(iv) (A the set of all points
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collinear with a given point x).

We extend this theorem to generalized hexagons.

3 Main Result

We will use the following notations for the known finite generalized hexagons:

H(q) the split Cayley hexagon (of order (q, q)) over the finite field GF(q),
cfr. [6], par. 2.

T (q, 3√q) the triality hexagon (of order (q, 3√q)) over the finite field GF (q)
with field automorphism σ : x 7→ x3.

Main Result
Let Γ be a generalized hexagon of order (s, t) having an ovoidal subspace A, satisfy-
ing
(?) any 2 opposite points of Γ are contained in a thin ideal subhexagon D,
then all points of A are spanregular ⇔ Γ ∼= H(q) or T (q, 3√q).

From the proof, it will follow that the condition (?) becomes superfluous in
certain cases.

4 Preparations for the proof of the Main Result

4.1 Equivalent definition of ovoidal subspaces in generalized hexa gons

Lemma 1 Let Γ = (P ,L, I) be a generalized hexagon of order (s, t). An ovoidal
subspace A is a set of points such that each point of the hexagon not in A, is
collinear with a unique point of A.

Proof. ⇒ Take x ∈ Γ\A. As the distance between 2 points is even, x is at dis-
tance 2 from a certain point p of A. By the second condition, this point p is unique.

⇐ Take x ∈ Γ. If x ∈ A, it is at distance 0 ≤ 3 from a point of A. If x /∈ A, it
is at distance 2 < 3 from a unique point of A. �

We will use the following properties of ovoidal subspaces of generalized hexagons
frequently.

• Whenever a line meets A in 2 points, all points of the line belong to A —
because they are collinear with two different points of A.

• Whenever two points x, y at distance 4 belong to A, x1 y belongs also to A
(in the other case, x1y would be collinear with 2 points of A, x1y being off
A).
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4.2 Classification of ovoidal subspaces in generalized hexa gons

Theorem 1 An ovoidal subspace of a generalized hexagon of order (s, t) is either
an ovoid, or the set of all points at distance 1 or 3 from a given line L, or the point

set of a full generalized subhexagon of order (s,
√

t
s
).

Proof.

1. If every point, lying inside or outside A, is collinear with exactly one point of
A, the subspace A is an ovoid — by definition.

2. Suppose there is a point in A, collinear with a second point of A; this means,
suppose A contains a line L.

(a) We show that for 2 points of A, their distance dA measured in A will be
the same as their distance dΓ measured in Γ, provided we add to A all
lines N of Γ with Γ1(N) ⊆ A. Say x, y ∈ A.
If dΓ(x, y) < 6, the unique path of length dΓ between x and y also belongs
to A. It follows that dΓ(x, y) = dA(x, y).
Suppose dΓ(x, y) = 6. 1 Suppose dΓ(x, L) = 5 = dΓ(y, L). Draw the
unique path (x, xx2, x2, x2x3, x3, L). As d(x, x3) = 4 and x, x3 ∈ A, we
know that all points of this path belong to A. As dΓ(y, xx2) = 5, we
can project y onto xx2, and call this projection y′. As d(y, y′) = 4 and
y, y′ ∈ A, all points of the path between y and y′ belong to A. So we
constructed a path in A of length 6 between x and y: dΓ(x, y) = dA(x, y).
2 For dΓ(x, L) 6= 5 or dΓ(y, L) 6= 5, the proof is completely similar.

(b) Now we claim that there are two points of A at distance 6 from each
other. Take a point p of Γ, at distance 5 of L and denote the joining
path by (p, pp2, p2, p2p3, p3, L). 1 If p ∈ A, one can find s pairs (p, u),

u ∈ L, with u at distance 6 from p. 2 If p /∈ A, p is collinear with a
unique point x of A. a If x = p2, then take a point q collinear with
p, but not on pp2. This point q does not belong to A (as p is collinear
with just one point of A), so is itself collinear with a unique point y ∈ A.

As d(x, y) = 6, x, y,∈ A, the claim follows. b If p2 6= x ∈ pp2, then
(x, xp2, p2, p2p3, p3, L) belongs to A, and so does p, a contradiction. c If
x /∈ pp2, then d(x, p3) = 6.

(c) At this point, we know 2 points of A at distance 6 (in A), say x and y.
So A contains at least one path (x, xx′, x′,M, y′, y′y, y) between x and y
(by (a)).

If A contains an appartment, it is a full subhexagon of order (s, t′). By
Thas [5], we know st′2 = t. (Using the notations of the article mentioned,
we know P ′ = point set of A, V = P and W = φ. So |W | = d = 0, hence
t = st′2 if s = s′.) If Γ has order s, A will be of order (s, 1).

If A does not contain any appartment, we show that A = Γ1(M)∪Γ3(M).
1 We show that every point of A is at distance ≤ 3 from M .
Suppose z ∈ A, z ∈ Γ5(M), projMz = z′. Without loss of generality,
z′ 6= y′, so d(z, yy′) = 5. As projyy′z = y′′ belongs to A, there are 2
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paths of length 6 joining z and y′. This is an appartment, and hence a
contradiction.
2 We show that every point of Γ at distance ≤ 3 from M belongs to A.
Suppose u /∈ A, u ∈ Γ3(M), projMu = u′. Take a point z collinear with u,
at distance 5 from M . As z /∈ A (by the previous section), z is collinear
with a unique point z′ of A. If z′ ∈ Γ3(M), then there is a pentagon with
edges {z′, z, u, u′, u′1z′} (if d(u′, z′) = 4) or a quadrangle (if d(u′, z′) = 2).
If z′ ∈ Γ1(M), it’s even worse: a quadrangle or a triangle arises.

�

5 Proof of the Main Result

5.1 Organization

By the previous classification, we distinguish 3 different types of ovoidal subspaces
in a generalized hexagon. We will consider each of them separately in the proof of
the Main Result. Our proof is organized as follows:

1. To start with, we let A be an ovoid. As for all known finite generalized
hexagons, it are only the ones with order s = t which possibly possess an
ovoid, we first consider this particular case. In fact, this proof is already
known. The main idea is to count the thin ideal subhexagons D of the given
hexagon Γ. This counting argument (1) can be written as follows:

X ≤ β ≤ Y

with

X the number of pairs of opposite points through which there exists a D
containing 2 points of A;

β the number of pairs of opposite points through which there exists a D;

Y the number of pairs of opposite points.

Whenever 1 X = β, each D contains 2 points of A. Whenever 2 β = Y , we
know that through each x, y ∈ P , there is a D.

For A being an ovoid in Γ of order s, condition 1 as well as condition 2 will
be satisfied. Hence the Main Result holds without condition (?).

2. Then we consider A = Γ1(L)∪Γ3(L), Γ of order s. In lemma 2 we do approxi-
mately the same counting as mentioned before, and — as s = t — we conclude
that 1 and 2 are satisfied. Hence the second part of the proof of the Main
Result is completely similar to the first part. Here, too, the condition (?) is
redundant.
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3. Let A be the point set of a full subhexagon in the third part. Here we can
prove that Γ should be of order s, while A has order (s, 1). Indeed, if Γ of
order (s, t) contains a subhexagon A of order (s, t′), we know t′ ≤ s ≤ t (see [6]
1.8.8). As Γ has spanregular points, we know t ≤ s (see [6] 1.9.5). So t = s,
and t′ = 1 ([6]).
Unfortunately, we cannot use the same counting argument (1), as X is never
equal to Y if A is a thin full subhexagon. Nevertheless, we are able to re-
arrange the proof with only half of the countingargument: we assume that 2
β = Y (this is exactly condition (?)), and we don’t use the (wrong) assumption
1 that X = β.

4. But by now, we can also re-arrange the proof in case of A = Γ1(L) ∪ Γ3(L):
we don’t require s to be equal to t, but we assume condition (?). Only using
condition 2 , we are still able to complete the proof.

5. At last, we can — technically — do the same for A being an ovoid. Suppose
you don’t know anything of the order (s, t) of Γ, then — assuming condition
(?) — the Main Result is still true. (However, it is known T (q, 3√q) does not
have an ovoid.)

5.2 A an ovoid, Γ of order s

Theorem 2 Let Γ be a finite generalized hexagon of order s containing an ovoid A.
Every point of A is spanregular ⇔ Γ is isomorphic to H(q), q = s.

Proof. This proof is given by V. De Smet and H. Van Maldeghem in [2]. �

5.3 A = Γ1(L) ∪ Γ3(L), Γ of order s.

For this part of the proof, we will use a similar counting argument (lemma 2) as
used in [2].

Lemma 2 Let Γ be a finite generalized hexagon of order (s, t), which contains a set
A = Γ1(M) ∪ Γ3(M) for which all points are spanregular. Then every thin ideal
subhexagon of Γ contains 2 collinear points of A if and only if s = t.

Proof.

1. First we count the thin ideal subhexagons containing M . There are (s+1)s3t2

2

sets {u, v} of opposite points in A. As u is spanregular, there is a thin ideal
subhexagon through u and v, named Γ(u, v), containing M (see [6] 1.9.10).
But in every ideal subhexagon Γ(u, v), one can find t2 sets {u′, v′} of opposite

points in A. So there are s3(s+1)
2

thin ideal subhexagons containing M — and
hence containing 2 + 2t points of A.

2. Now we count the thin ideal subhexagons D containing two collinear points
u, v of Γ3(M). Hence M is not a line of D, as there are only 2 points on the
line uv in D. We count in 2 different ways the couples ({u, v},D), with {u, v}
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a set of collinear points in Γ3(M), and D a thin ideal subhexagon containing
u and v (as u is spanregular, there will be an ideal subhexagon through u).
Denoting the number of D’s by X, it follows that

(s+ 1)s(s− 1)t

2
· s2 = 1 ·X

3. Now we compare these 2 quantities with the total number of thin ideal sub-
hexagons in Γ. We count the pairs ({u, v},D) with {u, v} a set of opposite
points in Γ, and D a thin ideal subhexagon containing u and v. Denoting the
total number of D’s by α, and noting that for each set {u, v} there is at most
1 subhexagon D, we know

(1 + s)(1 + st+ s2t2)s3t2

2
· 1 ≥ 2(1 + t+ t2)t2

2
· α

The total number of thin ideal subhexagons containing 2 (collinear) points of
A will be less than or equal to α:

(s+ 1)s3

2
+

(s+ 1)s3t(s− 1)

2
≤ α ≤ (1 + s)(1 + st+ s2t2)s3

2(1 + t+ t2)
(1)

Equality in both cases is satisfied if and only if t2(t− s)(s− 1) = 0.

For s = t, we can conclude two things: the equality between the first and
second quantity expresses that every D contains 2 collinear points of A; while
the second equality expresses that through every 2 points of Γ, there is a thin
ideal subhexagon D. �

Corollary

Let Γ be a finite generalized hexagon of order (s, t), which contains a set A =
Γ1(M) ∪ Γ3(M) for which all points are spanregular. Then, through every 2 points
at distance 6, there exists 1 thin ideal subhexagon; through every 2 points at distance
4, there are s thin ideal subhexagons; through every 2 points at distance 2, there are
s2 thin ideal subhexagons; through every point, there are s3 thin ideal subhexagons.

Theorem 3 Let Γ = (P ,L, I) be a finite generalized hexagon of order s. Consider
the set A consisting of all points at distance 1 or 3 of a certain line. Every point of
A is spanregular ⇔ Γ is isomorphic to H(q), q = s.

Proof.

⇐ This follows from Ronan [4].

⇒ Due to Ronan [4] we have to prove all traces of Γ are ideal lines. So, for
2 points x, y ∈ P with d(x, y) = 4, z = x 1 y we must prove that zw,
w ∈ Γ4(x) ∩ Γ4(y) ∩ Γ6(z), is independent of w.
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Figure 1: X 6= Y,X = Z

From the corollary, it follows that there are s thin ideal subhexagons Di con-
taining x and y. They can be obtained by choosing a point yi on a line
through y at distance 5 from x and they all contain 2 collinear points of
A. Since there is only one trace zw in Di (there are only 2 points on a line),
zw = zw

′
, ∀w,w′ ∈ Γ4(x)∩Γ4(y)∩Di. So we have to prove that zw1 = . . . = zws

with wi ∈ Di.
If x /∈ A, we denote the unique point of A collinear with x by a capital letter
X, possibly with some index i (depending on the thin ideal subhexagon Di
where this point belongs to). The same for y ∼ Y and z ∼ Z. We denote the
line yY by L.

(a) If x ∈ A or y ∈ A then it is immediate that zw is ideal.

(b) If X = Y = z then it is immediate that zw is ideal.

(c) Suppose X 6= Y,X = Z.
With every point yi ∈ L\{y} (with y1 = Y , without loss of generality) ,
there corresponds a thin ideal subhexagon Di through x, y and yi. First
we look at D1 and the hyperbolic line 〈x, y〉1 in D1. We will show that
the hyperbolic lines 〈x, y〉i in the other Di’s are the same.
Let y2 be a point of L\{y, y1} and let D2 be the thin ideal subhexagon

through x, y and y2. By lemma 2, each Di contains 2 collinear points of
A, say ri and si. If d(risi, z) = 5 and projrisiz = ri, then d(ri, z) = 4. If
d(risi, z) = 3 and projrisiz = ri, then d(si, z) = 4. If d(risi, z) = 1, then
ri = si or ri = z, a contradiction. So z is at distance 4 from one of these
2 points; say at distance 4 from ri. Let Di = D2. Since r2 and L are in
D2, also the shortest path between them lies in D2. So the projection of
r2 onto L should be y2 (as d(r2, y) = 6), and we denote r2 1 y2 by w2.
As d(w2, xz) = 5, also the path between w2 and x belongs to D2. Say
x2 := w2 1x.
Denote projxx2y1 by x1, and x1 1y1 by w1. Suppose that 〈x, y〉2 = zw2 is
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different from 〈x, y〉1 = zw1 . So there is a line N through z on which the
point a1 at distance 4 from w1 is different from the point a2 at distance
4 from w2. Denote ai 1 wi by bi. One can show (see [6] 1.9.9) that
whenever a trace contains a spanregular point, this trace is an ideal line.
As y1 and r2 are spanregular, we have ideal lines 〈x1, y1〉 and 〈x2, y2〉.
So wz1 = ww2

1 and wz2 = ww1
2 . As b2 ∈ wz2 = ww1

2 , d(b2, w1) = 4. Denote
b2 1 w1 by c. As c ∈ ww2

1 = wz1 , d(c, z) = 4. But d(c, z) = 6 as one
supposed that (z, za2, a2, a2b2, b2, b2c, c) is a path of length 6. So this is
a contradiction. To solve this, a1 should be a2, and hence b1 = c, and
a1, b1, b2 are collinear.

(d) Suppose X 6= Y, Y = Z. Similar to the previous case.

(e) Suppose X 6= Y 6= Z 6= X. If Z ∈ zw for some w ∈ Γ4(x)∩ Γ4(y) ∩ Γ6(z)
then 〈x, y〉w is ideal since it contains the spanregular point Z. If not, take
a point w ∈ Γ4(x)∩Γ4(y)∩Γ6(z) and put projzZw = t. By case (c) (with
x replaced by t, and with X replaced by T = Z), we have that 〈t, y〉w is
ideal, so 〈x, y〉w is ideal. �

5.4 A a full subhexagon, and conditon ( ?) is satisfied

Theorem 4 Let Γ = (P ,L, I) be a finite generalized hexagon of order (s, t). Con-
sider a proper full subhexagon A of Γ, and suppose there is a thin ideal subhexagon D
through any 2 points of Γ. Then every point of A is spanregular ⇔ Γ is isomorphic
to H(q), q = s = t, with q a power of 3.

Proof.
⇐ This follows from Ronan [4].

⇒ By the preliminary remark in lemma 2, we know that Γ has order s, and A
is thin.

If s = 2, the result is trivially true by Cohen and Tits [1]. Hence we may assume
s > 2.

Due to Ronan [4] we have to prove that Γ has ideal lines. So, for 2 points
x, y ∈ P with d(x, y) = 4, z = x 1 y we must prove that 〈x, y〉w = zw, w ∈
Γ4(x) ∩ Γ4(y) ∩ Γ6(z), is independent of w.

As we supposed that any 2 opposite points are contained in a thin ideal sub-
hexagon D, there are s Di’s containing x and y. They can be obtained by choosing
a point yi 6= y on a fixed line through y at distance 5 from x. Since there is only one
trace zw in Di, zw = zw

′ ∀w,w′ ∈ Γ4(x) ∩ Γ4(y) ∩ Γ6(z) ∩ Di. So we have to prove
that zw1 = . . . = zws with wi ∈ Di.

If x /∈ A, we denote the unique point of A collinear with x by a capital letter
X and some index i (depending on the thin ideal subhexagon Di where this point
belongs to). The same for y ∼ Y and z ∼ Z.
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1. If x ∈ A or y ∈ A then it is immediate that zw is ideal.

2. If X = Y = z then it is immediate that zw is ideal.

3. Suppose X 6= Y 6= Z 6= X and d(X, Y ) = 6, so D1 = Γ(y,X) 6= Γ(x, Y ) = D2.
Attaching indices, we get X = X1, Y = Y2. We denote projxX1Y2 by x2,
projyY2X1 by y1, and w1 := X1 1y1, w2 := x2 1Y2.
Take a point w3 ∈ Γ3(xX1) ∩ Γ3(yY2), w3 6= z, and suppose Γ(z, w3) = D3 not
equal to D1 or D2. We show that zw1 = zw2 = zw3. As X1 ∈ wz1 and Y2 ∈ wz2,
these traces are ideal lines. So wz1 = ww2

1 = ww3
1 and wz2 = ww1

2 = ww3
2 . Using

the same arguments (and notations) as in the proof of theorem 3 case (c), we
know that zw1 = zw2 and also ww1

3 = ww2
3 . Using this knowledge, we show that

zw1 = zw3.
Suppose zw1 6= zw3 ; this means there is a line N through z on which the point
a1 = a2 at distance 4 from w1 (and w2) is different from the point a3 at distance
4 from w3. Denote ai1wi by bi. In the proof of theorem 3, we showed already
that a1, b1 and b2 are collinear. As b1 ∈ wz1 = ww3

1 , d(b1, w3) = 4. Similarly
d(b2, w3) = 4. But then we have a pentagon, a quadrangle or a triangle, unless
w3 1 b2 = w3 1 b1 and w3 1 bi ∼ bi, i = 1, 2. Conclusion: d(b1b2, w3) = 3 and
a1 = a2 = a3.

4. Suppose X 6= Y 6= Z 6= X with d(X, Y ) = 4, and suppose s ≥ 4. So the path
between X = X1 and Y = Y1 belongs also to A and we can denote X1 1 Y1

by the capital letter W1. Take a point w3 ∈ (Γ3(xX1) ∩ Γ3(yY1))\D1 and say
projyY1w3 = y3, projxX1w3 = x3. Take a line through z, different from zx, zy
or zZ, and project w3 onto this line. The projection is the point u. As u /∈ A
(otherwise z /∈ A would be collinear with 2 points of the ovoidal subspace),
u is collinear with a unique point U of A. Suppose this spanregular point
is also at distance 4 from X1 and Y1. Then we take another line through z,
we project w3 onto this line, denoting the projection and its unique collinear
point of A by v and V , respectively. Now we show that V is at distance 6
from at least one of the three points X1, Y1 or U . The points X1, Y1, U define
an ordinary sixgon in the thin full subhexagon A. Suppose d(U, V ) = 4 and
T := U 1 V . As there are only 2 lines through one point in A, T should be
on the line 〈U,U 1 Y1〉 or on the line 〈U,U 1X1〉. Say T ∈ 〈U,U 1 Y1〉. If
T 6= U 1Y1, d(V, Y1) = 6. If T = U 1Y1, V should be on the line 〈U 1Y1, Y1〉
(as there are only 2 lines through a point in A), hence d(V,X1) = 6. So in
this situation one can find a spanregular point V = V ′ at distance 6 from X1,
Y1 or U . Suppose d(V ′, X1) = 6. We now use case (3.) of this proof, for
X1 6= V ′ 6= Z 6= X1.
First suppose d(w3, V

′) = 6, and see figure 2. Put projxX1V
′ = x2, projvV ′X1 =

v′1, projvV ′x3 = v′3, w3 1v = v3, x3 1v′3 = w′3, X1 1v′1 = w′1, x2 1V ′ = w′2. By
case (3.) of the proof, zw

′
1 = zw

′
2 = zw

′
3 = za, for all a ∈ Γ3(xx3) ∩ Γ3(vv3) ∩

Γ6(z). As w3 and w′3 are in the same thin ideal subhexagon D3 = Γ(x3, v), we
know that 〈x, v〉w3 = 〈x, v〉w′3. As x, u, v, y ∈ Γ2(z) ∩ D3, 〈x, v〉w3 = 〈x, y〉w3 .
So 〈x, y〉w3 = 〈x, v〉w3 = 〈x, v〉w′3 = 〈x, v〉a, for all a ∈ Γ3(xx3)∩Γ3(vv3)∩Γ6(z).
This finishes the proof if d(w3, V

′) = 6.
Suppose d(w3, V

′) = 4. Then 〈x, v〉w′2 = 〈x, v〉w3 by case (3.) of this proof.
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Figure 2: d(X1, Y1) = 4, d(w3, V
′) = 6

Using 〈x, y〉w3 = 〈x, v〉w3, we have the same result as before.
Suppose d(w3, V

′) = 2. Then V ′ = v3. As in case (c) of the proof of theorem
3, one shows that 〈x, v〉w3 = 〈x, v〉w′1 .

4.bis Suppose s = t = 3.
As we assumed the existence of five lines through a point in the previous
section, we now investigate the case s = t = 3, for X 6= Y 6= Z 6= X and
d(X, Y ) = 4. So X1, Y1 are in the same D1, and W1 := X1 1 Y1. Take w3 at
distance 3 from xX1 and yY1, and define x3 := projxX1

w3 and y3 := projyY1
w3.

As we must prove 〈x, y〉W1 to be equal to 〈x, y〉w3, we suppose Z /∈ 〈x, y〉w3

(otherwise the proof is done). As Z is spanregular, x, Z define an ideal line
〈x, Z〉. If y would be in 〈x, Z〉, this would imply Z to be in 〈x, y〉w3 — a
contradiction. For the same reason, x /∈ 〈y, Z〉.
Now we look at the fourth line through z, let’s call it L. As 〈x, Z〉and 〈y, Z〉
are different ideal lines, their intersection only contains the point Z. So their
respective intersection points with L are different — and by this named tx and
ty, respectively.
Now we consider again the traces 〈x, y〉W1 and 〈x, y〉w3 . If tx would be in
〈x, y〉w3, the trace 〈x, y〉w3 contains 2 points (x and tx) of the ideal line 〈x, Z〉,
and hence 〈x, y〉w3 = 〈x, Z〉. This is of course a contradiction. For the same
reason, ty /∈ 〈x, y〉w3. We can conclude that |〈x, y〉w3 ∩ L ∩ 〈x, y〉W1| = 1, and
we call this intersection point t. We put a1 := t1W1 and a3 := t1w3.
As W z

1 contains spanregular points X1 and Y1, this trace is ideal . As Ww3
1

intersects W z
1 in at least 2 points, Ww3

1 should be equal to W z
1 . So a1 ∈Ww3

1 ,
which means d(a1, w3) = 4. If a1 is not on the line ta3, there arises an ordinary
pentagon with edges t, a1, a1 1w3, w3, a3. So a1 is on ta3

Now we construct s1 := projzZW1; s3 := projzZw3; b1 := s1 1W1; b3 := s3 1w3.
By a previous argument, neither s1 nor s3 coincide with Z (because 〈x, Z〉 is
ideal and doesn’t contain y). We know that b1 ∈W z

1 = Ww3
1 , so d(b1, w3) = 4.
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As there are only 4 lines through w3, and the lines w3x3, w3a3, w3y3 already
correspond to the respective points X1, a1, Y1 ∈Ww3

1 , we know that b1 1w3 is
on b3w3. But this results in an ordinary pentagon b1, s1, s3, b3, b3 1 b1 if b1 is
not on s3b3. Conclusion: b1 is on s3b3 and s1 = s3. So zW1 = zw3 , and this
part of the proof is completed.

5. Suppose X 6= Y = Z.
Take w3 ∈ Γ3(xX) ∩ Γ4(y), and say projxXw3 = x3. Take a line N through
z, different from zx or zy, and say projNw3 = v3. As v3 /∈ A, v3 is collinear
with a unique point V ∈ A, V /∈ v3z. At this point, we can use parts (3.)
and (4.) of the proof to conclude that 〈x, v3〉w3 = 〈x, v3〉wi, i = 1, 2, 3. As
x, y, v3 ∈ Γ2(z) ∩ D3, we know 〈x, y〉w3 = 〈x, v3〉w3 , so 〈x, y〉w3 is ideal.

By now, we know Γ ∼= H(q). As Γ contains a full as well as ideal subhexagons,
q must be a power of 3 by [6] 3.5.7.

5.5 A = Γ1(L) ∪ Γ3(L), Γ of order (s, t), and condition ( ?) is satisfied

Theorem 5 Let Γ = (P ,L, I) be a finite generalized hexagon of order (s, t). Con-
sider the set A consisting of all points at distance 1 or 3 from a certain line L, and
suppose there is a thin ideal subhexagon D through any 2 points of Γ. Then every
point of A is spanregular ⇔ Γ is isomorphic to H(s) or to T (s, 3

√
s).

Proof. If s 6= t, we cannot use lemma 2. But by assuming β = Y (see 5.1.1), we
can re-arrange the (provisional) proof of theorem 3 in the same way as in proof 4:
the new proof only uses the second equality in (1).

Where possible, we refer to the proof of theorem 4.

⇐ This follows from Ronan [4].

⇒ Due to Ronan [4] we have to prove that Γ has ideal lines.

For zw = zw
′ ∀w,w′ ∈ Γ4(x) ∩ Γ4(y) ∩ Di: cfr. theorem 4.

For zw1 = . . . = zws with wi ∈ Di: cfr. below.

1. cfr. theorem 4 (1.)

2. cfr. theorem 4 (2.)

3. cfr. theorem 4 (3.)

4. cfr. theorem 4 (4.): Suppose X 6= Y 6= Z 6= X and d(X, Y ) = 4. So the path
between X = X1 and Y = Y1 belongs also to A and we can denote X1 1 Y1

by the capital letter W1. Take a point w3 ∈ (Γ3(xX1) ∩ Γ3(yY1))\D1 and say
projyY1w3 = y3, projxX1w3 = x3. Take a line through z, different from zx, zy
or zZ, and project w3 onto this line. The projection is the point u1. As u1 /∈ A
(otherwise z /∈ A would be collinear with 2 point of the ovoidal subspace), u1

is collinear with a unique point U1 of A.
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New for this proof:
We can do the same for the remaining lines through z, to obtain the points
U1, . . . , U t−2.
(•) If we suppose that none of these points U j is at distance 6 from X1 or
at distance 6 from Y1, then they should all be at distance 4 from X1 and Y1,
and hence at distance 2 from W1 (as A contains no appartment). So W1 is
a point of the ‘central’ line L of A. None of the t lines W1X1,W1Y1,W1U

j is
equal to L. Indeed, suppose W1U

1 = L. We know Z ∈ A = Γ1(L) ∪ Γ3(L),
so d(Z,W1U

1) = 3 (as Z doesn’t belong to W1U
1). But this results in an

ordinary pentagon. Conclusion: the line L is the projection of Z onto W1,
and this completes the linepencil Γ(W1). So d(W1, Z) = 4. This means:
Z ∈ zW1 = 〈x, y〉W1. By this, 〈x, y〉W1 contains a spanregular point and hence
is ideal.
If on the other hand the assumption (•) is false, i.e. if there is a point U j at
distance 6 from X1 or Y1, then we refer to theorem 4 (4.) for the remaining
part of the proof.

5. cfr. theorem 4 (5.) �

5.6 A an ovoid, Γ of order (s, t), and condition ( ?) is satisfied

Theorem 6 Let Γ = (P ,L, I) be a finite generalized hexagon of order (s, t) contain-
ing an ovoid A. Suppose there is a thin ideal subhexagon D through any 2 points of
Γ. Then every point of A is spanregular ⇔ Γ is isomorphic to H(q), q = s.

Proof. In a completely similar way as in the proof of theorem 4 — noting that all
points of A are at distance 6 from each other (and hence case (4.) of the proof of 4
cannot occur) —, we prove that Γ is classical. As it is known that T (q, 3√q) does
not have an ovoid (see [6] 7.2.4), Γ is isomorphic to H(q), s = t = q. �
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