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Abstract

This article studies covers in PG(3, q) and in generalized quadrangles. The
excess of a cover is defined to be the difference between the number of lines
in the cover and the number of lines in a spread. In contrast with the theory
of partial spreads which tells us that large partial spreads can be extended to
spreads, in PG(3, q) and in some generalized quadrangles, there exist minimal
covers with small excess. For such minimal covers with small excess, we
describe the structure of the set of points lying on at least two lines of the
cover.

1 Introduction

Let Σ = PG(3, q) be the 3-dimensional projective space over the finite field Fq of
order q. A 0-cover of Σ is a mapping α from the set of lines of Σ into Z associating
a weight αL to each line L such that for each point of Σ, the sum of the weights of
the lines passing through that point is at least zero. A minimal 0-cover is a 0-cover
α such that the weight of every line of Σ is minimal. This means that every line of
Σ contains at least one point with weight zero. The excess of a 0-cover is the sum
of the weights of the lines of Σ.
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A partial spread is a set of skew lines of Σ. A partial spread is called maximal
when it is not contained in a larger partial spread. A spread of Σ is a set of q2 + 1
lines of Σ which form a partition of the points of Σ. A cover of Σ is a set of lines
of Σ such that each point of Σ belongs to at least one line of the cover. A cover is
called minimal when no proper subset of it is still a cover. Equivalently, a coverM
is minimal when each line of M contains a point on no other line of M. The excess
of a cover is equal to the number of lines in the cover minus q2 + 1. A point of Σ is
called a multiple point of a cover when it belongs to at least two lines of the cover.

A blocking set K of the projective plane PG(2, q), defined over Fq , is a set of
points such that each line of PG(2, q) contains at least one point of K. A blocking
set K containing a line of PG(2, q) is called a trivial blocking set. When K does not
contain a line, it is called a non-trivial blocking set.

Let L be a collection of lines of PG(3, q), where each line is accorded a non-
negative integer called its weight. The set of points which lie on at least one element
of L is called the sum of the lines L. Further, the weight of a point p in the sum of
lines L is the sum of the weights of the lines of L passing through p.

A generalized quadrangle GQ(s, t), with parameters (s, t), s ≥ 1, t ≥ 1, is an
incidence structure S = (P,B, I) in which P and B are disjoint, non-empty sets of
objects, called respectively points and lines, and for which I is a symmetric point-line
incidence relation satisfying the following axioms:

(i) each point is incident with 1 + t lines and two distinct points are incident with
at most one line;
(ii) each line is incident with 1 + s points and two distinct lines are incident with at
most one point;
(iii) if x is a point and L is a line not incident with x, then there is a unique pair
(y,M) ∈ P ×B for which x I M I y I L.

A spread of S is a set of lines that partitions the point set, that is, a set of st+ 1
pairwise non-concurrent lines. A (minimal) cover is defined as above. If M is a
minimal cover with st + 1 + r lines, we say M has excess r.

Partial spreads have already been studied in detail. With respect to maximality,
the following results are known:
(i) in PG(3, q), a partial spread containing more than q2 +1−

√
2q lines is contained

in a spread of PG(3, q) [5];
(ii) in PG(3, q), q non-square, a partial spread containing q2 + 1− δ lines, for which
δ > 0 and 8δ3 − 18δ2 + 8δ + 4 < 3q2, is contained in a spread of PG(3, q) [12];
(iii) in a GQ(s, t), a partial spread containing more than st− s/t lines is contained
in a spread [16, 2.7.1].

We address the “dual” problem of 0-covers and covers. For instance, for which
values of r does there exist a minimal 0-cover of excess r?

The following fundamental examples show that PG(3, q) and all GQ(s, t) have
minimal covers with excess respectively q and t− 1. In PG(3, q), consider the star
of lines through a fixed point; these lines form a minimal cover of excess q. In
S = GQ(s, t), let L be a line of S and put M = L⊥ \ {L}. Then M is a minimal
cover with |M| = (1 + s)t = st + 1 + (t− 1).
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In fact, we will show that in PG(3, q) there exist minimal covers with excess r for
all r with 0 ≤ r ≤ q. A similar result holds for all GQ(q, q2) that are point-line duals
of those arising from flocks of quadratic cones. In these generalized quadrangles,
there exist minimal covers with excess r for all r with 0 ≤ r ≤ q2 − 1. However,
we also give an example of a generalized quadrangle having no minimal cover with
excess 1.

We also remark that in S=GQ(s, t), the point-line dual of a cover is a blocking
set, that is, a set K of points of S such that each line of S is incident with some
point of K. A blocking set with excess r is a blocking set of cardinality st+ 1 + r.

Hence our results for covers in generalized quadrangles of order (s, t) can be
translated into results on blocking sets of the dual generalized quadrangles.

2 Flock generalized quadrangles

2.1 Flock generalized quadrangles

To describe a flock GQ, we proceed in the following way.

A q-clan C = {At||t ∈ Fq} is a set of q matrices At =

(
xt yt
0 zt

)
, t ∈ Fq,

such that, whenever s 6= t, the matrix As − At is anisotropic, which means that
x̄(As −At)x̄

T = 0 has only the trivial solution x̄ = (0, 0).
Starting with a q-clan C, a GQ(q2, q) S(C) is constructed as a group coset geome-

try. Let K denote the group consisting of the set K = {(α, c, β) ∈ F2
q×Fq×F2

q||α, β ∈
F2
q , c ∈ Fq}, together with the binary operation (α, c, β)(α′, c′, β ′) = (α+ α′, c+ c′ +
β · α′, β + β ′). (Here β · α′ is the usual dot product of vectors in F2

q .)
Then define q + 1 subgroups of K having order q2: A(∞) = {(0̄, 0, β) ∈ K||β ∈

F2
q};A(t) = {(α, αAtα

T , αKt) ∈ K||α ∈ F2
q}, t ∈ Fq. Here Kt = At + AT

t , t ∈ Fq.
Put J = {A(t)||t ∈ Fq ∪ {∞}}, and for each A ∈ J , define a subgroup A∗

containing A in the following way: A∗(∞) = {(0̄, c, β) ∈ K||c ∈ Fq, β ∈ F2
q};A∗(t) =

{(α, c, αKt) ∈ K||α ∈ F2
q , c ∈ Fq}.

Put J ∗ = {A∗||A ∈ J }. Then J is a 4-gonal family for K, that is, J and
J ∗ satisfy the properties of W.M. Kantor [10] with s = q2, t = q, so that a GQ
S(C) = (P,B, I) may be constructed with the following points, lines and incidence.

The points are: (i) (∞), (ii) right cosets A∗(t)g, g ∈ K, t ∈ Fq ∪ {∞}, (iii)
elements g ∈ K. The lines are: (a) [A(t)], t ∈ Fq ∪ {∞} and (b) right cosets
A(t)g, g ∈ K, t ∈ Fq ∪ {∞}. The incidence: (∞) is incident with each line of type
(a), the point A∗(t)g is incident with [A(t)] and with each line A(t)h of type (b)
contained in it, the point g of type (iii) is incident with each line A(t)g of type (b)
containing it. There are no further incidences.

2.2 The Knarr construction

For q odd, N. Knarr [11] has given the following geometrical construction of the
flock generalized quadrangles starting with a BLT-set in W (3, q).

Consider in PG(3, q), q odd, the symplectic geometry W (3, q). A BLT-set of lines
of W (3, q) is a set S ′ of q + 1 totally singular lines of W (3, q), no two concurrent,
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such that each totally singular line of W (3, q) not in S ′ is concurrent with exactly 0
or 2 lines of S ′.

To construct the flock GQ, start with a symplectic polarity ζ of PG(5, q). Let
p ∈ PG(5, q) and let PG(3, q) be a 3-dimensional subspace of PG(5, q) for which
p 6∈ PG(3, q) ⊆ pζ . In PG(3, q), ζ induces a symplectic polarity ζ ′, and hence
a symplectic geometry W (3, q). Let V = {L0, . . . , Lq} be a BLT-set of lines of
W (3, q). Construct a geometry S(V ) = (P,B, I) in the following way.

The points are: (i) p, (ii) lines of PG(5, q) not containing p but contained in one
of the planes πt = 〈p, Lt〉, 0 ≤ t ≤ q, (iii) points of PG(5, q) \ pζ . The lines are: (a)
planes πt = 〈p, Lt〉, 0 ≤ t ≤ q, and (b) totally singular planes of ζ not contained in
pζ and meeting some πt in a line (not through p). The incidence relation I is the
natural incidence inherited from PG(5, q).

Knarr shows that S(V ) is a flock generalized quadrangle, where the flock is
associated with the BLT-set via [2].

3 Minimal covers in PG(3, q)

We have already seen that PG(3, q) admits minimal covers of excess 0, that is,
spreads, and of excess q. In this section we construct further examples of minimal
covers of PG(3, q).

Theorem 1 Let S be a spread of PG(3, q) and let R = ∪mi=1Ri be the union of m
reguli contained in S, with Ri 6⊆ ∪j 6=iRj, for all i = 1, . . . , m. For i = 1, . . . , m,
let Ropp

i be the opposite regulus to Ri. If R contains m(q + 1) − r lines of S, then
M = (S \ R) ∪mi=1 R

opp
i is a minimal cover of PG(3, q) of excess r.

Proof. It is immediate thatM is a cover, and that no line ofM∩S can be deleted
to obtain a smaller cover. Suppose thatM\{L} is a cover, where L is a line of Ropp

i

for some i. Then each point of L lies on a line of a regulus Ropp
j , for some j 6= i. Thus

Ri ⊆ ∪j 6=iRj ; a contradiction. Since all opposite reguli Ropp
i are pairwise disjoint,

|M| = q2 + 1− (m(q + 1) − r) +m(q + 1); so M has excess r. �

If S is the regular spread, then since every three lines of S lie in a regulus
contained in S, it is possible to construct a great variety of minimal covers of this
kind.

Note also that the condition of Theorem 1 is trivially fulfilled for m < (q+ 3)/2.
Suppose that S is a spread comprising q reguli sharing exactly one line (there ex-

ist projectively distinct classes of such spreads, corresponding to flocks of quadratic
cones [8, Theorem 2.2]). Choosing R to be the union of r + 1 of these reguli gives
a minimal cover of excess r for each 0 ≤ r ≤ q − 1.

Let S be the regular spread in PG(3, q) for q odd, and let R be the union of
three reguli in S, pairwise meeting in a line but with no common line (such a set
R exists; under the Klein correspondence it is the union of three conics, pairwise
tangent in three distinct points, on a 3-dimensional elliptic quadric contained in the
Klein quadric). This provides a different example of a minimal cover of PG(3, q), q
odd, of excess 3.
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Let S be a spread comprising q+1 reguli which share exactly two lines (there exist
projectively distinct classes of such spreads, corresponding to flocks of hyperbolic
quadrics [1, 17, 18]). Choosing R to be the union of m of these reguli gives a minimal
cover of excess 2(m−1) for each 1 ≤ m ≤ q+1, that is, excesses 0, 2, 4, . . . , 2q occur.

All the examples of minimal covers constructed in this section have the property
that the collection of multiple points forms a sum of lines of PG(3, q). In Section 4
we show that this is a feature of minimal covers of small excess.

4 Minimal 0-covers in PG(3, q)

In this section, let α be a minimal 0-cover of excess r. Let {p1, . . . , pq3+q2+q+1} and
{π1, . . . , πq3+q2+q+1} be respectively the point set and plane set of PG(3, q).

Definition 1 The excess ai of a point pi, also called ex(pi), is defined to be the sum
of the weights of the lines of α passing through that point.

The excess bi of a plane πi is the sum of the excesses of the points of that plane.
The excess cL of a line L is the sum of the excesses of the points of the line.
The excess of PG(3, q) is the sum of the excesses of all points of PG(3, q).

Lemma 1 (i) The excess of PG(3, q) is r(q + 1);
(ii) The sum of the excesses of all the points of each plane πi is equal to r (mod q).

Proof. (i)
∑q3+q2+q+1
i=1 ai =

∑
pi∈PG(3,q)

∑
pi∈L αL =

∑
L

∑
pi∈L αL =

∑
L(q + 1)αL =

(q + 1)r. To prove (ii), let π be a plane. Let R =
∑
p∈π ex(p). Then each line L

contained in π contributes (q + 1)αL to R, while each other line contributes αL to
R. Hence R ≡ r (mod q). �

Theorem 2 A minimal 0-cover in PG(3, q) has excess 0 or at least ε where q + ε
is the size of the smallest non-trivial blocking sets in PG(2, q).

Proof. Let the excess r of the 0-cover satisfy 0 < r < ε.
In PG(2, q), q odd, there exists a non-trivial blocking set of size 3(q + 1)/2 and

in PG(2, q), q even, there exists a non-trivial blocking set of size 3q/2 + 1 [9]. So we
can assume that r < (q + 3)/2.

We first note that if L is a line of excess 0, then all planes π through L have
excess r. Namely, r(q+1) =

∑q+1
i=1 bi where bi is the excess of the plane πi containing

L. By Lemma 1, we have bi = r + liq. So r(q + 1) = r(q + 1) + q
∑q+1
i=1 li. Hence,∑q+1

i=1 li = 0. As li ≥ 0, we have li = 0 and so bi = r, i = 1, . . . , q + 1.
Case 1. There is a point p of excess 1.
Then it is possible to find a line L through p whose excess is also equal to one.

Indeed each point has non-negative excess and the excess of PG(3, q) is equal to
r(q + 1). But r(q + 1) − 1 is smaller than q2 + q + 1 which is the total number of
lines through p.

Through this line L, there is exactly one plane π of excess r + q. Copying the
arguments above, r(q + 1) = 1 +

∑q+1
i=1 (bi − 1) where bi is the excess of the plane πi

containing L, and where we separately counted the excess of the line L. Continuing
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as above, the equality
∑q+1
i=1 li = 1 is obtained. Hence, there is exactly one plane πi

passing through L with excess r + q since li ≥ 0, i = 1, . . . , q + 1.
This is impossible. If π is a plane of excess r+ q, then, by using the observation

made before Case 1, all lines in that plane have positive excess. Hence the points
of π with positive excess form a blocking set in π. Since the number of points in
π with positive excess is at most q + r, and since this is smaller than the size of
the smallest non-trivial blocking sets, there is a line M in π whose points all have
positive excess.

So it is possible to reduce the weight of that line M and still have a 0-cover.
Hence the original 0-cover was not minimal.

Case 2. All points have excess greater than or equal to some value k > 1 and
there is a point of excess k.

Let p be a point of excess k, then as in Case 1, it is possible to prove that there
is a line L passing through p and having excess k.

Using the same arguments as for k = 1, it is possible to prove that there is a
plane π passing through L of excess at least r + q and at most r + kq.

Since through a line of excess 0, there only pass planes of excess r, all lines in π
have positive excess. Hence, the points of π with positive excess form a blocking set
in π. Since there are at most (kq + r)/k < q + r such points, again there is a line
only consisting of points with positive excess. This gives the same contradiction as
in Case 1.

This conclusion gives a contradiction since the excess of a point is finite. Thus
if the excess of the minimal 0-cover is less than ε, then each point has excess 0 and
the excess of the minimal 0-cover is 0. �

Corollaries

Let q + r, r > 0, be smaller than the cardinality q + ε of the smallest non-trivial
blocking sets in PG(2, q).

(1) Let N be a minimal cover of PG(3, q), with |N | = q2 + 1 + r, then the
multiple points form a sum of lines with the sum of the weights of the lines equal to
r.

Moreover, this sum of lines is unique.
(2) Let M be a partial spread of PG(3, q), with |M| = q2 + 1− r, then M can

be extended in a unique way to a spread of PG(3, q).
Proof. (1) Give the lines of N weight one, and all the other lines weight zero.
Consider a spread S, and give all the lines of S weight one, and the lines not in S
weight zero.

Then it is possible to define a 0-cover α of excess r by giving a line of PG(3, q)
a new weight which is the difference of its weight in N and its weight in S. Since
the excess of α is smaller than ε, α is not minimal, so there is a line whose weight
is not minimal.

Each point on such a line must have positive excess, but the points with positive
excess are the points lying on at least two lines of the cover N .

Let L1 be a line whose weight in α is not minimal. Lower the weight of L1 a unit.
This gives a new 0-cover α1 with excess r− 1. Either r− 1 = 0 or 0 < r− 1 < ε. In
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the latter case, we can repeat the arguments and show that there is a line L2 whose
weight is not minimal in α1. Again, L2 completely consists of points with positive
excess in α since the excess of a point in α is greater than or equal to its excess in
α1. Lower the weight of L2 a unit; this gives a new 0-cover α2 with excess r − 2.

Continuing in this way, a 0-cover αr of excess 0, and r lines L1, . . . , Lr, completely
consisting of points with positive excess in α, are obtained.

In αr, there are no points with positive excess. Hence, the points of α with
positive excess must all belong to a line L1, . . . , Lr.

Since the excess of PG(3, q) with respect to the 0-cover α is equal to r(q+1), the
collection of points with positive excess in α forms a sum of these lines L1, . . . , Lr,
where each line is accorded a weight equal to the number of times it appears in
L1, . . . , Lr.

Suppose the collection of points with positive excess can be written in two distinct
ways as the sum of lines L1, . . . , Lr and M1, . . . ,Mr. Let M1 be a line different from
all lines Lj , j = 1, . . . , r, or let M1 be equal to a line Lj , but with different weights
in the corresponding sums. In the latter case, suppose that the weight of M1 in the
second sum is larger than the weight in the first sum. Then the points of M1 must
also belong to other lines Lj in the first sum since their weights in both sums are
equal to their excess in α. Since we have less than q + 1 such lines L1, . . . , Lr, this
is impossible.

(2) Here, it is possible to define a 0-cover by taking a spread S of PG(3, q) and
define the 0-cover as the difference of S and of M. Now, the points with positive
excess form a sum of lines and the sum of the weights of these lines is r. Since a
point with positive excess can only have excess one, these lines are disjoint lines
L1, . . . , Lr. Moreover the points with positive excess are the points of Σ not lying
on a line of the partial spread. Hence, the union of M and {L1, . . . , Lr} must form
a spread of PG(3, q).

By (1), M can be extended in a unique way to a spread. �

Remarks

1. The preceding corollaries were also proved by J. Eisfeld [7].

2. By Blokhuis [3, 4], in PG(2, p), p prime, |K| ≥ 3(p+ 1)/2 for every non-trivial
blocking set K, and in PG(2, p2h+1), p prime, h > 0, |K| ≥ p2h+1 + ph+1 + 1,
for every non-trivial blocking set K.

In PG(2, q), q square, by Bruen and Thas [6], |K| ≥ q +
√
q + 1 for every

non-trivial blocking set K.

5 Minimal covers in generalized quadrangles

In this section, we construct minimal covers in generalized quadrangles. Again, it is
possible to construct an example of a minimal cover with small excess; an example
which occurs in all generalized quadrangles.

Let L be a line of S and put M = L⊥ \ {L}. Then M is a minimal cover with
|M| = (1 + s)t = st + 1 + (t− 1).
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The problem of constructing minimal covers in generalized quadrangles is harder
than the corresponding problem in PG(3, q). There exist generalized quadrangles
which do not have spreads. For instance, a GQ(t2, t) does not have a spread [16,
1.8.3].

So here arises the fundamental problem of the minimal cardinality of a cover
of the generalized quadrangle. A natural problem is to search for a minimal cover
of excess one. In contrast to the situation in PG(3, q), we will give an example of
a generalized quadrangle with a spread, but not having a minimal cover of excess
one. Nevertheless for the dual flock generalized quadrangles we will be able to give
a result comparable to the one obtained for the minimal covers in PG(3, q). Then,
in Section 6, we will concentrate on minimal covers with small excess.

Since minimal covers are minimal blocking sets in the dual generalized quadran-
gles, we will use both types of objects.

5.1 Examples

(1) Let S ′ be a subquadrangle of order q of a GQ S of order (q2, q). Each point of
S \ S ′ is on a unique line of S ′ [16, 2.2.1]. Hence the set M of (1 + q)(1 + q2) lines
of S ′ forms a minimal cover of S with excess q2 + q.

(2) Suppose S has a set T = {x0, x1, . . . , xs} of pairwise non-collinear points such
that T⊥ = {y0, y1, . . . , ys} also has size 1+s. For example, this occurs if S has order
s and {x0, x1} is a regular pair. And it occurs if S has order (q, q2) and {x0, x1, x2}
is a 3-regular triple (cf. [16] for definitions and examples). Each point of S not in
T ∪T⊥ is collinear with exactly two points of T ∪T⊥ [16, 1.4.1]. LetM+ be the set
of all lines incident with at least one point of T ∪ T⊥. ThenM+ is a cover, but not
a minimal one. Let M be obtained by removing the t− s lines through x0 incident
with no point of T⊥ and the t− s lines through y0, y0 ∈ T⊥, incident with no point
of T . Then |M| = (1 + s)2 + 2(1 + s)(t− s)− 2(t− s) = st+ 1 + s(t− s+ 2). This
set M is a minimal cover with excess s(t− s+ 2).

(3) Let S = GQ(s, t) be a generalized quadrangle with a regular pair of lines
{L0, L1}. Let {L0, L1}⊥ = {M0, . . . ,Ms} and {M0, . . . ,Ms}⊥ = {L0, . . . , Ls}.

LetG be the (s+1)×(s+1) grid defined by these lines. Then the lines intersecting
L0, but not lying in G, together with the lines L1, . . . , Ls form a minimal cover of
size st + t− 1.

For instance, in the unique GQ(3,3) with all lines regular, this gives a minimal
cover of size st+ 2.

5.2 Minimal blocking sets in flock generalized quadrangles

5.2.1 The case q is even

Consider a flock generalized quadrangle as described in Section 2.1. Let H be a 2×2

matrix over Fq having no eigenvalue in Fq and let P =

(
0 1
1 0

)
. Then, by Thas
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and Payne [19], the set K = {(∞)} ∪ {(α, c, αHP )||α ∈ F2
q , c ∈ Fq} is an ovoid of

the generalized quadrangle S(C).
The existence of these ovoids leads to the following result.

Theorem 3 A flock generalized quadrangle GQ(q2, q), with q even, contains mini-
mal blocking sets of excess r, 0 ≤ r ≤ q2 − 1.

Proof. Let K be defined as above. Let p = (α′, c′, α′HP ). We determine {(∞), p}⊥.
The elements of this set are of type A∗(t)g for t ∈ Fq ∪ {∞} since they are incident
with (∞). They must contain the coset A(t)p. Hence, these are the sets A∗(∞)p =
{(α′, γ, δ)||γ ∈ Fq , δ ∈ F2

q} and A∗(t)p = {(α + α′, c, αKt + α′HP )||α ∈ F2
q , c ∈ Fq}.

Now we determine {(∞), p}⊥⊥. The elements of this set consist of (∞) and of q
elements g ∈ K for which we know that A(t)g ⊂ A∗(t)p, t ∈ Fq ∪ {∞}.

From the description of A∗(∞)p above, necessarily g = (α′, c, δ), for some c ∈ Fq
and some δ ∈ F2

q . From A(t)(α′, c, δ) = {(α+α′, αAtα
T + c+αKtα

′T , αKt + δ)‖α ∈
F 2
q },⊂ A∗(t)p, necessarily α′HP = δ. Hence g = (α′, c, α′HP ) for c ∈ Fq, and these

points belong to the ovoid.
Partitioning the points p of K \ {(∞)} into the q2 sets {(∞), p}⊥⊥, we obtain

minimal blocking sets of excess i − 1 when we replace in K exactly i of these sets
by their perp {(∞), p}⊥. �

5.2.2 The case q is odd

Consider a flock GQ S described by using the Knarr construction. Let π be a plane
in pζ through p, but with π∩PG(3, q) skew to all the lines of the BLT-set V . Further,
let PG(3, q) be a 3-dimensional subspace of PG(5, q) with π ⊂ PG(3, q) 6⊂ pζ .

Then K = (PG(3, q) \ π) ∪ {p} is an ovoid of the GQ S [19].

Theorem 4 A flock GQ(q2, q), with q odd, contains minimal blocking sets of excess
r, 0 ≤ r ≤ q2 − 1.

Proof. Consider an element p1 ∈ K \{p}. Then {p, p1}⊥⊥ is the line pp1 of PG(5, q)
[21, Theorem 7.1] and so, as for q even, {p, p1}⊥⊥ is contained in K. Now proceed
as in the even case. �

Remark

It is possible to give a result similar to Theorem 1 by means of the classical example
of a flock GQ; the Hermitian variety H(3, q2).

If π is a secant plane of H(3, q2), then the intersection of π with H(3, q2) is an
ovoid of H(3, q2) consisting of a classical unital H(2, q2) in π. In the terminology of
generalized quadrangles, all points of H(3, q2) are regular, and the span of any two
points of H(2, q2) is contained in H(2, q2). In the terminology of projective geom-
etry, take a Baer subline l contained in H(2, q2) and let L be the line of PG(3, q2)
containing this Baer subline. Applying the polarity τ of H(3, q2), L is mapped onto
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a line Lτ intersecting H(3, q2) in a Baer subline, which is denoted, in the terminol-
ogy of generalized quadrangles, by l⊥. Again applying τ , Lτ

2
is mapped onto L and

l⊥⊥ = l.
Let l1, . . . , lm be a collection of m Baer sublines contained in H(2, q2) and assume

that li 6⊆ ∪j 6=ilj for all i = 1, . . . , m. Assume | ∪mi=1 li| = m(q + 1)− r.
Then (H(2, q2) \ ∪mi=1li) ∪mi=1 l

⊥
i is a minimal blocking set of excess r.

Let p0 be a fixed point of H(2, q2). The remaining q3 points of H(2, q2) can be
partitioned into q2 Baer sublines li = {p0, pi1, . . . , piq}, 1 ≤ i ≤ q2.

Using these Baer sublines, it is possible to construct minimal blocking sets Mi,
1 ≤ i ≤ q2, for which Mi has excess i − 1. Each line on p0 is covered i times, but
the lines not passing through p0 are each covered exactly once.

The variation on the minimal covers of excess three can also be obtained. Let
p1, p2, p3 be three non-collinear points of H(2, q2). Replace the points of the Baer
subline 〈p1, p2〉 ∩ H(2, q2) with those of {p1, p2}⊥, those of 〈p2, p3〉 ∩ H(2, q2) with
those of {p2, p3}⊥, and those of 〈p1, p3〉 ∩ H(2, q2) with those of {p1, p3}⊥. The
resulting minimal blocking set has excess three with three points p1, p2, p3 such that
the lines through one of these points all have two points of the blocking set.

5.3 Upper bound on the size of a minimal blocking set

Theorem 5 Let K be a minimal blocking set in GQ(s, t), s ≥ 2. Then

|K| ≤ 1 + st +
st(1 + st)

1 + s+ t
.

Proof. Let k = |K| and suppose that there are θ tangent lines to K. Since K is
minimal, necessarily θ ≥ k.

Let the secants be {L1, . . . , L(1+t)(1+st)−θ}, and let ki = |K ∩ Li|. Then
∑
i ki =

|K|(1 + t)− θ.
Let r ∈ K. Since K has a tangent line at r, we have |(r⊥ ∩K) \ {r}| ≤ st. So∑

i ki(ki − 1) ≤ |K|st, and so
∑
i k

2
i ≤ |K|(st+ t + 1)− θ.

Now we have ((1 + t)(1 + st)− θ)∑i k
2
i − (

∑
i ki)

2 ≥ 0 which implies

|K|(1 + t)(1 + st)(st+ t+ 1)

≥ |K|2(t+ 1)2 + (1 + t)(st+ 1)θ + θ|K|(st+ t + 1)− 2θ|K|(t + 1).

Replacing θ by |K| gives the upper bound on |K|. �

Remark

For the known cases for the parameters (s, t):
(1) For GQ(s, s2), |K| < s4 + 2s while |GQ(s, s2)| = s4 + s3 + s+ 1;
(2) For GQ(t2, t), |K| < t4 + 2t while |GQ(t2, t)| = t5 + t3 + t2 + 1;
(3) For GQ(s, s), |K| < s3/2 + 3s2/4 + 5s/8 + 1 while |GQ(s, s)| = s3 + s2 + s+ 1;
(4) For GQ(q+ 1, q− 1), |K| < q3/2 + 3q2/4− 3q/8 + 1/4 while |GQ(q+ 1, q− 1)| =
q3 + 2q2;
(5) For GQ(q−1, q+1), |K| < q3/2+3q2/4−3q/8+1/4 while |GQ(q−1, q+1)| = q3.
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6 Small minimal covers in generalized quadrangles

We will now investigate the properties of small minimal covers in generalized quad-
rangles. We will use the most basic elements of the theory of tight sets (See
[13, 14, 15]).

Definition 2 A subset A of the point set P of S is called i-tight provided |A| =
i(s+ 1) and for each point x ∈ A it holds that |x⊥ ∩ A| = s + i. This condition is
equivalent to having |A| = i(s+ 1) and |x⊥ ∩A| = i for each point x ∈ P \ A.

The theory of i-tight sets starts with [16, 1.10.1]. The additional facts about
tight sets that we use are:

Theorem 6 (1) The point set P of GQ(s, t) is (st+1)-tight and the empty set is
0-tight.
(2) If A and B are disjoint tight sets, then A ∪B is tight.
(3) If A and B are tight with B ⊆ A, then A \B is tight.

It is easy to prove that the unique type of 1-tight set is the set of points on a line.
Hence it follows that the union of k disjoint lines is k-tight, and the set of points
not on k disjoint lines is (1 + st− k)-tight. It can also be shown that an irreducible
2-tight set (a tight set not the union of two proper subsets each of which is tight)
is of the form X ∪ Y , where |X| = 1 + s, |Y | = 1 + s, Y ⊆ X⊥ and X ⊆ Y ⊥. Such
irreducible 2-tight sets arise when {x, y} is a regular pair and s = t. Here we may
put X = {x, y}⊥⊥ and Y = {x, y}⊥. Such 2-tight sets also arise when t = s2 and
{x, y, z} is a 3-regular triple of points. In this case we may put X = {x, y, z}⊥⊥ and
Y = {x, y, z}⊥.

From now on, let M be a minimal cover with excess r, r ≤ 2s. Let Ai = {x ∈
P ||x is incident with exactly i lines of M}, 1 ≤ i ≤ t + 1. Put ai = |Ai|. Then
counting first the number of points in P , and then the ordered pairs (x, L), where
x is a point incident with the line L of M, we obtain

t+1∑
j=1

aj = (1 + s)(1 + st) (1)

t+1∑
j=1

jaj = (1 + s)(st + 1 + r) (2)

t+1∑
j=2

(j − 1)aj = r(s+ 1). (3)

Definition 3 A point of A1 will be called a simple point. A point of Aj, 2 ≤ j ≤
t + 1, will be called a multiple point with multiplicity j.

From this last equation it follows that there are at most (1+s)r multiple points:

|A2 ∪ · · · ∪At+1| ≤ (1 + s)r. (4)

Partition M into two parts M =M1 ∪M2 where M1 = {L ∈ M||L⊥ ∩M =
{L}}, and where M2 = {L ∈M||(L⊥ ∩M) \ {L} 6= ∅}.
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Let k = |M2|, so |M1| = (st+1)+r−k. And put S1 = {x ∈ P ||x is on some line L
∈M1}; S2 = P \ S1.

It follows that S1 is an (st + 1 − (k − r))-tight set, so that S2 is (k − r)-tight,
and k ≥ r. The important principle here is that we now know that each point x of
S2 satisfies |x⊥ ∩ S2| = s+ k − r.

The next lemma says that no multiple point has multiplicity greater than r+ 1.

Lemma 2 The sets Aj are empty when j ≥ r + 2.

Proof. By hypothesis r ≤ 2s and j ≥ r + 2. Suppose z ∈ Aj. Let L1, . . . , Lj be
the lines of M2 on z, and let x be any point different from z on one of L1, . . . , Lj,
say x is on L1. Then x⊥ ∩ S2 contains the s + 1 points of L1. But |x⊥ ∩ S2|
= s+ k− r = s+ 1 + (k − r− 1). As x⊥ ∩S2 must have k− r− 1 > k− j (because
j > r + 1) points not on L1, . . . , Lj, some two of those k − r − 1 points must be on
the same line of M2. Since there are no triangles, if x is collinear with two points
of S2 that are on the same line, then all three points are on the same line. Hence
x must lie on a line of M2 in addition to L1. This forces z⊥ to contain at least
1 + js multiple points. Using (4) we have 1 + (r+ 2)s ≤ 1 + js ≤ (1 + s)r, implying
1 + 2s ≤ r, contradicting our hypothesis. Hence there must be no point z ∈ Aj. �

Lemma 3 Suppose z1 ∈ Ai, z2 ∈ Aj, 2 ≤ i, j, and i + j > r + 2. If z1 ∼ z2 and
x ∈ z1z2 \ {z1, z2}, then x ∈ S2.

Proof. Suppose x ∈ z1z2 ∩ S1, where z1 ∈ Ai, z2 ∈ Aj, 2 ≤ i, j, and i + j > r + 2.
Since x ∈ S1, clearly z1z2 6∈ M. And x 6∈ S2 implies that |x⊥ ∩ S2| = k − r.
But x⊥ ∩ S2 must have k − r − 2 points covered by k − (i + j) lines of M2, where
k − r − 2 > k − (i + j). Hence some two points of (x⊥ ∩ S2) \ {z1, z2} must lie on
the same line L of M2, forcing x to be on L, that is, x ∈ S2. �

Lemma 4 Suppose z1 ∈ Ai, z2 ∈ Aj, 2 ≤ i, j, and i + j > r + 2. If z1 ∼ z2 and
x ∈ z1z2 \ {z1, z2}, then x is a multiple point.

Proof. Assume the hypothesis. By the preceding lemma each point of z1z2 is in
S2. Suppose that x ∈ z1z2 \ {z1, z2} and x ∈ S2 ∩ A1. So x is on a unique line of
M2 and |x⊥ ∩ S2| = s + k − r. First of all, suppose z1z2 ∈ M2. Let L1, . . . , Li−1

be the lines of M2 different from z1z2 through z1, and let M1, . . . ,Mj−1 be the lines
of M2 different from z1z2 through z2. By hypothesis z1z2 is the unique line of M2

through x. But x⊥ ∩ S2 must contain (s + k − r) − (s + 1) = k − r − 1 points of
S2 covered by k − (i − 1 + j − 1 + 1) = k − i − j + 1 lines of M2 different from
L1, . . . , Li−1,M1, . . . ,Mj−1, z1z2. Since k − r − 1 > k − i − j + 1, x must lie on a
second line of M2.

Now suppose z1z2 6∈ M2. We know each point x of z1z2 is on at least one line
of M2. Also, x⊥ ∩ S2 contains the 1 + s points of z1z2 and s additional points on a
line L of M2 through x. Since each point of z1z2 \ {z1, z2} is on at least one line of
M2, there are at most k − (i+ j)− (s− 1) lines of M2, all different from L, which
can contain the remaining s+ k− r− (1 + 2s) = k− r− s− 1 points of x⊥∩S2. But
again k − r− s− 1 > k− i− j − s+ 1, so at least two of those k − r − s− 1 points
of x⊥ ∩S2 must belong to the same line ofM2. Note that this line is different from
L. Hence, x belongs to a second line of M2. The point x is a multiple point. �
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Remark

In the preceding lemma it must be the case that z1z2 6∈ M2, since otherwise because
each point of z1z2 is a multiple point, z1z2 could be removed fromM2 andM\{z1z2}
would still be a cover. This proves the following corollary.

Corollary

If z ∈ Ar+1, 1 ≤ r ≤ 2s, and z ∈ L ∈M2, then the only multiple point on L is z.

Theorem 7 Let M be a minimal cover with excess r, 1 ≤ r ≤ 2s.
(1) If z ∈ Ar+1, then z⊥ contains all multiple points; on a line passing through

z, either z is the only multiple point, or all points are multiple.
(2) If |Ar+1| = ar+1 ≥ 2, then there is a line L 6∈ M such that the set of points
incident with L is the set of multiple points, and they all have multiplicity r + 1.

Proof. Suppose z ∈ Ar+1 and let L0, L1, . . . , Lr be the lines of M2 through z.
Suppose there is a multiple point w, w 6∼ z. Since Lr contains no multiple point
other than z, the line wx through w meeting Lr at some point x must not be in
M2. Clearly x⊥ ∩ S2 contains the s + 1 points of zx = Lr, the multiple point w,
and s+ k− r− (s+ 1)− 1 = k− r− 2 points on at most k− (r+ 1 + 2) = k− r− 3
lines of M2, different from L0, . . . , Lr and not passing through x. This forces x to
be collinear with two points of a line of M2. Since this line is different from Lr, x
belongs to at least two lines of M2, and so x is a multiple point.

This impossibility shows that each multiple point w must be collinear with z.
The remaining part follows from Lemma 4.

Now suppose there are two points z1, z2 ∈ Ar+1. So z1 ∼ z2, and each point
of z1z2 is a multiple point. Let z1 belong to the lines L0, . . . , Lr of M. The line
z⊥1 ∩z⊥2 = z1z2 must contain all multiple points. Hence a2 +a3 + · · ·+ar+1 = s+1, so
that by (1) a1 = (1 + s)st. Let L = z1z2 = {z1, z2, . . . , zs+1} be the line of multiple
points. Since L 6∈ M2, and since each line of M2 is incident with a unique point
of L, the points of z⊥1 ∩ S2 must be exactly the points of L0, L1, . . . , Lr, L. Hence
|z⊥1 ∩S2| = 1 + s(r+ 2) = s+ k− r implies that k = 1 + rs+ r+ s = (r+ 1)(s+ 1).
Since no point of L is on more than r+ 1 lines ofM2, it must be that each point of
L is in Ar+1. �

Corollary

LetM be a minimal cover with excess 1. Then there exists a line L in the generalized
quadrangle, not belonging to the minimal cover, such that all the points of L have
multiplicity two.
Proof. Specializing the preceding results, we see that aj = 0 for j ≥ 3. So by (3)
we have a2 = 1 + s. Moreover, by Theorem 7, there is a line L 6∈ M such that A2

is the set of points incident with L. So each point of L is on two lines of M2, and
each point of S not covered by these 2(1 + s) lines ofM2 is on a unique line ofM1.

�
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Remark

The preceding theorem now makes it possible to give an example of a generalized
quadrangle with spreads, but with no minimal cover of excess 1.

The unique GQ(5,3) has 24 spreads and 4608 ovoids [14], but we will show that
it has no minimal cover with excess 1.

For a minimal cover M with excess 1 must be of the following type. There is
some line K0 with multiple points x0, x1, . . . , x5. Then the other lines through xi
can be labeled so that xi is on K0, Li,Mi, Ni, 0 ≤ i ≤ 5, and M =M1 ∪M2 where
M2 = {L0,M0, L1,M1, . . . , L5,M5}. So k = 12, k− r = 11, and st+ 1− (k− r) = 5.
So there must be 5 lines K1, . . . , K5 inM1 that form a partial spread and cover the
points of N0, . . . , N5 not on K0. Hence {K0, K1, . . . , K5}⊥ = {N0, . . . , N5}.

But then by (the point-line dual of) [16, 1.3.6(i)], it must be that 3 ≥ 5, a patent
impossibility. So GQ(5,3) has no minimal cover with excess 1.

7 Minimal covers with excess 2

To conclude the study of small minimal covers in generalized quadrangles, we look
more in detail to the minimal covers of excess two.

Let M be a minimal cover with excess 2, so r = 2. Specializing the results of
Section 6, we see that aj = 0 for j ≥ 4. And by (3) we have a2 + 2a3 = 2(1 + s).

Since 3+2 = 5 > r+2, each point on a line joining a triple point with a multiple
point is a multiple point. And each triple point is collinear with each multiple point.
Moreover, as all triple points are collinear, they must all lie on one line.

There are a number of cases which have to be treated separately.
Case 1. a3 = s+ 1. In this case there are no double points, and there is a line

L all of whose points are triple points. Clearly L 6∈ M2, since otherwise M would
not be minimal.

Any GQ(s, 3) has minimal covers M for which a3 = s + 1. Namely, for a fixed
line L of GQ(s, 3), M = L⊥ \ {L} is a minimal cover for which a3 = s + 1. For a
GQ(s, 3), when a3 = s + 1, also M2 = M. Finally, also the minimal covers with
r = 2 described in Theorems 3 and 4 are of this type.

Case 2. 1 ≤ a3 ≤ s. Then a3 = 1 since a3 ≥ 2 implies a3 = s+ 1 (Theorem 7).
So with a3 = 1, it follows that a2 = 2s, and the one point z ∈ A3 is collinear

with all 2s points of A2, and any line incident with z and one point of A2 must have
s points of A2. Such a line cannot be inM, for otherwiseM would not be minimal.
So we have z on three lines M1,M2,M3 of M that have no further multiple points.
And z is on two lines L1, L2 not inM, each of whose s other points are on two lines
of M. So there are k = 3 + 4s lines in M2, and S2 is (1 + 4s)-tight. Also S1 is
s(t−4)-tight and is covered by s(t−4) pairwise non-concurrent lines, none of which
meets any of the lines in M2.

We have an example of this type, with M = M2. In GQ(2,4), the unique
triple point will be z = (12). The three lines through z in M2 are the three
lines in the syntheme-duad subquadrangle GQ(2,2). One other line through z has
the points 1 and 2′; the other has points 1′ and 2. So put M1 = ∅ and M2 =
{(12, 34, 56), (12, 35, 46), (12, 36, 45), (1, 13, 3′), (1, 14, 4′), (2′, 23, 3), (2′, 24, 4),
(1′, 15, 5), (1′, 16, 6), (2, 25, 5′), (2, 26, 6′)}.
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Case 3. a3 = 0; a2 = 2(1 + s).
The general theory does not yet determine what form this type of minimal cover

must assume. However, we give one that occurs in GQ(2,2).
PutM1 = {(16, 23, 45)};M2 = {(12, 34, 56), (34, 15, 26), (15, 36, 24), (36, 25, 14),

(25, 46, 13), (46, 12, 35)}.
The first two points in each line of M2 are points of A2 and the third is a point

of A1. Note that the points of A2 are the corners of a hexagon.
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