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Abstract

For a finite field GF(q), to a q-clan of matrices there are associated gen-
eralized quadrangles, flocks of quadratic cones in PG(3, q), translation planes
and, for q even, ovals in PG(2, q). The connections with generalized quadran-
gles, flocks and translation planes have recently been extended to the case of
an infinite field K, under certain extra assumptions. In this note we extend
the theory of ovals in PG(2, q) associated with q-clans, q even, to ovals in
PG(2, K) associated with K-clans for (infinite) fields K of characteristic 2.
Again, certain extra assumptions on the field K are made.

1 Introduction

The term q-clan geometry is often used to refer to the well-developed theory of
flocks of quadratic cones and their associated generalized quadrangles and transla-
tion planes, over a finite field GF(q). In [4] F. De Clerck and H. Van Maldeghem
used the coordinatization of a generalized quadrangle to extend this theory to the
case of an infinite field K. They introduced a natural definition of a K-clan as a
family of matrices and showed that there is an associated generalized quadrangle if
and only if the associated flock is derivable.

Moving to the point of view of coset geometries and following the work of W.M.
Kantor and S.E. Payne for finite fields, L. Bader and S.E. Payne [1] have further
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investigated K-clan geometry. They first defined (possibly infinite) 4-gonal families,
which are equivalent to elation generalized quadrangles, and called a K-clan 4-gonal
if it gives rise to a generalized quadrangle.

S.E. Payne [9] and W. Cherowitzo, T. Penttila, I. Pinneri and G.F. Royle [3] have
constructed the so-called herds of ovals, associated with q-clans when q is even (see
also the work of L. Storme and J.A. Thas [12]). Our aim in this study is to extend
the theory of herds to infinite fields (of characteristic 2). However, as occurred in the
analogous extension of the theory of flocks, we need to add some extra hypotheses
on the field in order to obtain ovals.

In Section 2 we present definitions and results, most of which appear in [1, 4],
which are needed in the rest of the paper. As we are only interested in fields K of
even characteristic, we rephrase known results for our particular purposes.

Throughout Section 3 we assume that K is a full field of characteristic 2. Using
arguments similar to those found in [3], we show that to a partial K-clan C there
corresponds a family of arcs in PG(2, K). If C is a K-clan then the arcs are complete,
and if C is a 4-gonal K-clan then the arcs are ovals.

In Section 4 we suppose the field K is perfect, and we construct a family of ovals
in PG(2, K) associated with a 4-gonal K-clan.

Section 5 deals with subquadrangles. As in the finite case, a generalized quad-
rangle associated with a 4-gonal K-clan admits a family of subquadrangles. If the
field is perfect, then each of these is isomorphic to the infinite analogue of Tits’
generalized quadrangle, usually denoted by T2(O), for an oval O in PG(2, K).

Finally, in Section 6 we briefly recall the known classes of examples of 4-gonal
K-clans for K an infinite field of characteristic 2 and display their associated ovals.

2 Preliminaries

We recall the construction of a group coset geometry, first suggested by Kantor [8]
in the finite case. Let s, t be cardinal numbers. Let G be a group, let I be a set
of indices of order t + 1 (that is, there is a bijection from I to X ∪ {∗} where X is
any set of order t and ∗ is a symbol not in X) and suppose there exist two families
F = {A(i) : i ∈ I} and F∗ = {A∗(i) : i ∈ I} of subgroups of G with A(i) < A∗(i),
|A(i)| = |A(j)| = s, |A∗(i)| = |A∗(j)|, [A∗(i) : A(i)] = [A∗(j) : A(j)] = t for all
i, j ∈ I and satisfying:
(K1) A(i)A(j) ∩A(k) = 1;
(K2) A∗(i) ∩A(j) = 1;
(K3) A∗(i)A(j) = G;
(K4) A∗(i) = A(i) ∪ {A(i)g : g ∈ G and A(i)g ∩A(j) = ∅ for all j 6= i}

= A(i) ∪ {g ∈ G : A(i)g ∩A(j) = ∅ for all j 6= i}
for all distinct i, j, k ∈ I.
We remark that if G is finite and (K1) and (K2) hold then (K3) and (K4) are trivially
satisfied.

The triple (G,F ,F∗) is called a Kantor family, and has a corresponding group
coset geometry Q(G,F ,F∗) defined as follows: Points are: (i) Elements g ∈ G; (ii)
Cosets A∗(i)g for i ∈ I and g ∈ G; (iii) The symbol (∞). Lines are: (a) Cosets
A(i)g for i ∈ I and g ∈ G; (b) Symbols [A(i)] for i ∈ I. Incidence is: the point (∞)
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is on each line [A(i)], the point A∗(i)g is on the line [A(i)] and each line A(i)h for
which A(i)h ⊆ A∗(i)g and the point g is on each line A(i)g. There are no further
incidences.

Theorem 1 ([8, 1]) Let (G,F ,F∗) be a Kantor family. Then the corresponding
group coset geometry Q(G,F ,F∗) is an elation generalized quadrangle with param-
eters (s, t), base point (∞) and elation group G. Conversely, any elation generalized
quadrangle with parameters (s, t), base point (∞) and elation group G is isomorphic
to the group coset geometry of a suitable Kantor family comprising subgroups of G.

�

For the next example, we need the following definitions. Let K be a field. An
arc in the projective plane PG(2, K) is a set of points, no three collinear, while a
complete arc is an arc which is not properly contained in another arc. A line is an
external, tangent or secant of an arc according as it meets the arc in 0, 1 or 2 points.
An oval is an arc which admits a unique tangent at each of its points.

Example 1 Let K be a field and let O = {(1, bt, ct) : t ∈ K} ∪ {(0, 0, 1)} be an
oval in PG(2, K), with tangents concurrent in the point N = (0, 1, 0). (In particular,
O∪{N} is an arc.) LetG denote the group K×K×K under componentwise addition
and define the subgroups:

A(∞) = {(0, 0, z) : z ∈ K}
A(t) = {(x, xbt, xct) : x ∈ K} for t ∈ K
Z = {(0, y, 0) : y ∈ K}

A∗(t) = A(t)Z for t ∈ K ∪ {∞}.

If we write F = {A(t) : t ∈ K ∪ {∞}} and F∗ = {A∗(t) : t ∈ K ∪ {∞}} then we
will now show that (G,F ,F∗) is a Kantor family, and we denote the corresponding
generalized quadrangle by T2(O), following Tits (see [5] or [14]). For t ∈ K ∪ {∞}
we have: A(t) < A∗(t), |A(t)| = |K|, |A∗(t)| = |K|2 and [A∗(t) : A(t)] = |K|.

We use the map φ : G → PG(2, K), (x, y, z) 7→ (x, y, z). Under this map,
φ : A(∞) 7→ (0, 0, 1) = P∞ and A(t) 7→ (1, bt, ct) = Pt for t ∈ K; so φ(F) = O.
Further, φ : Z 7→ (0, 1, 0) = N and for t ∈ K ∪ {∞} we have φ : A∗(t) 7→ PtN.

Since O is an arc, no three of its points have linearly dependent coordinate
vectors, hence (K1) holds. Second, since for each t 6= u we have Pu 6∈ PtN, so
A(u) ∩ A∗(t) = 1 and (K2) holds. Since for each t 6= u the point Pu and the
line PtN together span PG(2, K), (K3) follows. Finally, (K4) follows since for each
t ∈ K ∪ {∞}, the tangent PtN comprises the point Pt together with every point P
for which PPt is tangent to O. �

We will need the following lemma which deals with the existence of Kantor
families on subgroups of G.

Lemma 1 Let G be a group and let (G,F ,F∗) be a Kantor family, where F =
{A(i) : i ∈ I} and F∗ = {A∗(i) : i ∈ I} are families of subgroups of G, I is a set
of indices of order t + 1 and |A(i)| = s for i ∈ I. Let H be a subgroup of G, let
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B(i) = A(i) ∩H and B∗(i) = A∗(i) ∩ H for i ∈ I and let I ′ = {i ∈ I : B(i) 6= 1}.
Suppose there exist cardinal numbers s′, t′ such that |I ′| = t′ + 1, |B(i)| = |B(j)| =
s′, |B∗(i)| = |B∗(j)| and [B∗(i) : B(i)] = [B∗(j) : B(j)] = t′ for all i, j ∈ I ′. Let
F ′ = {B(i) : i ∈ I ′} and F∗′ = {B∗(i) : i ∈ I ′}.
(1) If H is finite then (H,F ′,F∗′) is a Kantor family.
(2) If B∗(i)B(j) = H for all i, j ∈ I ′, i 6= j, then (H,F ′,F∗′) is a Kantor family.

Proof.
Proof of (K1). Let x ∈ B(i)B(j)∩B(k) for distinct i, j, k ∈ I ′. Then x ∈ A(i)A(j)∩
A(k) for distinct i, j, k ∈ I, so x = 1 since (G,F ,F∗) is a Kantor family.
Proof of (K2). Let x ∈ B∗(i)∩B(j) for distinct i, j ∈ I ′. Then x ∈ A∗(i)∩A(j) for
distinct i, j ∈ I, so x = 1 since (G,F ,F∗) is a Kantor family.
If H is finite then (K3) and (K4) are trivially satisfied, hence part (1) holds.

Suppose now that H is not finite, and suppose that B∗(i)B(j) = H for all
i, j ∈ I ′, i 6= j. We have already shown that (K1) and (K2) hold.
Proof of (K3): The additional hypothesis above is precisely (K3).
Proof of (K4): Fix i ∈ I ′. For h ∈ B∗(i), since B∗(i) = A∗(i) ∩ H, we have
h ∈ A∗(i) = A(i) ∪ {A(i)g : g ∈ G and A(i)g ∩ A(j) = ∅ for all j 6= i}. If h ∈ A(i)
then h ∈ A(i)∩H = B(i). Otherwise, there exists g ∈ G such that h ∈ A(i)g where
A(i)g ∩ A(j) = ∅ for all j ∈ I with j 6= i. Now h ∈ A(i)g implies A(i)g = A(i)h,
so h ∈ A(i)h and A(i)h ∩ A(j) = A(i)g ∩ A(j) = ∅ for all j ∈ I with j 6= i implies
that B(i)h ∩ B(j) = ∅ for all i ∈ I ′ with j 6= i. We have therefore shown that
B∗(i) ⊆ B(i) ∪ {B(i)g : g ∈ H and B(i)g ∩B(j) = ∅ for all j 6= i}.
For the reverse inclusion, first recall that B(i) ⊆ B∗(i). Choose h ∈ H such that
B(i)h∩B(j) = ∅ for all j ∈ I ′ with j 6= i. We will prove that A(i)h∩A(j) = ∅ for all
j ∈ I ′ with j 6= i; hence showing that h ∈ A∗(i) and therefore h ∈ B∗(i). Suppose,
aiming for a contradiction, that there exists g ∈ A(i)h ∩ A(j) for some j ∈ I ′ with
j 6= i. Since B(i)h∩B(j) = ∅ it follows that g 6∈ H. Let gi ∈ A(i) and gj ∈ A(j) be
such that g = gih = gj . Since g 6∈ H and h ∈ H, we have gi, gj 6∈ H. On the other
hand, since B∗(i)B(j) = H, there exist hi ∈ B∗(i) ⊆ A∗(i) and hj ∈ B(j) ⊆ A(j)
such that h = hihj. We have h = hihj = g−1

i gj ; so gihi = gjh
−1
j ∈ A∗(i) ∩ A(j) = 1

and hence gj = hj ∈ H and gi = h−1
i ∈ H; giving the required contradiction. �

We now review a construction method for Kantor families using collections of
matrices over a field K. These are analogous to q-clans in the case that K = GF(q)
(see, for example, [1, 9, 10, 14]). Although some of the results below can be stated
in more generality, we will restrict our attention to fields of characteristic 2.

Let K be a field of characteristic 2 and let C =

{
At =

(
xt yt
0 zt

)
: t ∈ K

}
be

a collection of matrices with xt, yt, zt ∈ K. Let G = {(α, c, β) : α, β ∈ K2, c ∈ K}
and define a multiplication · on G by

(α, c, β) · (α′, c′, β ′) = (α + α′, c+ c′ + βPα′
T
, β + β ′)

where P =

(
0 1
1 0

)
. Then (G, ·) is a group (in fact it is isomorphic to the group
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used in [1, Section 3], under the map (α, c, β) 7→ (α, c, βP )). We define subgroups

Z = {(0, c, 0) : c ∈ K}
A(∞) = {(0, 0, β) : β ∈ K2}
A(t) = {(α, αAtα

T , αyt) : α ∈ K2} for t ∈ K
A∗(t) = A(t)Z for t ∈ K ∪ {∞}.

Let F = {A(t) : t ∈ K ∪ {∞}} and F∗ = {A∗(t) : t ∈ K ∪ {∞}}.
In this case we denote the group coset geometryQ(G,F ,F∗) by GQ(C). De Clerck

and Van Maldeghem [4] and Bader and Payne [1] have investigated the conditions
on C under which (G,F ,F∗) is a Kantor family and therefore GQ(C) is a generalized
quadrangle.

Theorem 2 ([4, 1]) Let K be a field of characteristic 2 and let

C =

{
At =

(
xt yt
0 zt

)
: t ∈ K

}

be a collection of matrices with xt, yt, zt ∈ K. Then GQ(C) is a generalized quad-
rangle if and only if the following conditions hold for all u ∈ K and for all α ∈
K2 \ {(0, 0)} :
(a) The map K → K, t 7→ αAtα

T is injective;
(b) The map K → K, t 7→ αAtα

T is surjective;
(c) The map K → K, t 7→ yt is injective;

(d) The map K \ {u} → K \ {0}, t 7→ α(At+Au)αT

(yt+yu)2 is bijective. �

Similarly, the relationship between flocks of a quadratic cone in PG(3, q) and
q-clans [13] suggests the following generalization to any field K.

Let K be a field. A flock of a quadratic cone Q with vertex V in PG(3, K)
is a collection of planes whose intersections with Q partition the points of Q \ V
into disjoint irreducible conics. A partial flock of Q is a collection of planes whose
intersections with Q are pairwise disjoint irreducible conics. In PG(3, K), let Q =
{(X0, X1, X2, X3) : X2

2 = X0X1} be the quadratic cone with vertex V = (0, 0, 0, 1).

Given a collection C =

{
At =

(
xt yt
0 zt

)
: t ∈ K

}
of matrices with xt, yt, zt ∈ K,

we can define a collection of planes in PG(3, K) by F(C) = {xtX0 + ztX1 + ytX2 +
X3 = 0 : t ∈ K}. De Clerck and Van Maldeghem [4] sought conditions on C in order
that F(C) should be a flock of Q.

Theorem 3 ([4]) Let K be a field of characteristic 2 and let

C =

{
At =

(
xt yt
0 zt

)
: t ∈ K

}

be a collection of matrices with xt, yt, zt ∈ K. Let F(C) = {xtX0+ztX1+ytX2+X3 =
0 : t ∈ K}. Then F(C) is a partial flock of the quadratic cone Q : X2

2 = X0X1 if
and only if condition (a) of Theorem 2 holds. Further, F(C) is a flock if and only if
conditions (a) and (b) of Theorem 2 hold. �
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De Clerck and Van Maldeghem [4] coined the term K-clan for a collection of
upper-triangular matrices over K which correspond in this way to a flock of a
quadratic cone in PG(3, K). Also, Bader and Payne [1, Section 4] argued that there
is no loss of generality in assuming that each matrix is upper-triangular and that
A0 is the zero matrix. Thus we have the following definitions. Let K be a field of

characteristic 2, and let C =

{
At =

(
xt yt
0 zt

)
: t ∈ K

}
be a collection of (upper

triangular) matrices with xt, yt, zt ∈ K. Then C is a partial K-clan if condition (a)
of Theorem 2 holds. Further, C is a K-clan if conditions (a) and (b) of Theorem 2
hold.

In particular, if C is a partial K-clan then it is straightforward to verify that
each of the maps t 7→ xt and t 7→ zt is injective. If C is a K-clan then each of the
maps t 7→ xt and t 7→ zt is bijective.

A K-clan C is called 4-gonal if the associated group coset geometry GQ(C) is a
generalized quadrangle, that is, if Q(G,F ,F∗) is a Kantor family, which is if and
only if C satisfies properties (a)–(d) of Theorem 2.

3 Arcs from partial K-clans over full fields

Let K be a field of characteristic 2 and let C1 = {k ∈ K : x2+x+k is irreducible over
K}. We say that K is full if for every k1, k2 ∈ C1 we have k1 + k2 6∈ C1. For example,
the finite field GF(2h), h ≥ 1, is full and in that case C1 is the set of elements of
(absolute) trace 1. In fact, the union of the finite fields GF(2h) for all odd h ≥ 1, is
full.

Throughout this section we assume that K is a full field of characteristic 2. We
first give an alternative condition for a K-clan which is useful in this case. It follows
immediately by arguments analogous to those of Thas [13] for finite K.

Lemma 2 ([13]) Let C =

{
At =

(
xt yt
0 zt

)
: t ∈ K

}
be a collection of matrices

with xt, yt, zt ∈ K such that the map K → K, t 7→ yt is injective. Then C is a partial
K-clan if and only if (xt +xu)(zt + zu)(yt + yu)−2 ∈ C1 for all t, u ∈ K with t 6= u. �

Theorem 4 Let K be a full field of characteristic 2 and let

C =

{
At =

(
xt yt
0 zt

)
: t ∈ K

}

be a collection of matrices with xt, yt, zt ∈ K. For α ∈ K2 \ {(0, 0)} define the
following sets of points in PG(2, K) :

Oα = {(1, y2
t , αAtα

T ) : t ∈ K} ∪ {(0, 1, 0)}
Hα = Oα ∪ {(0, 0, 1)}.

(i) C is a partial K-clan and t 7→ yt is injective if and only if Hα is an arc for all
α ∈ K2 \ {(0, 0)}.
(ii) If C is a K-clan and t 7→ yt is injective then Hα is a complete arc for all



Arcs and ovals in infinite K-clan geometry 133

α ∈ K2 \ {(0, 0)}.
(iii) C is a 4-gonal K-clan if and only if Oα is an oval with tangents concurrent in
the point (0, 0, 1) for all α ∈ K2 \ {(0, 0)}. In this case Hα is a complete arc.
(iv) C satisfies (a), (c) and (d) of Theorem 2 and t 7→ y2

t is surjective if and only
if Hα \ {(0, 1, 0)} is an oval with tangents concurrent in the point (0, 1, 0) for all
α ∈ K2 \ {(0, 0)}. In this case Hα is a complete arc.

Proof. (i) Suppose C is a partial K-clan and t 7→ yt is injective, and let α =
(a, b) ∈ K2 \ {(0, 0)}. The map t 7→ y2

t is injective; so each line of PG(2, K) on
the point (0, 0, 1) contains at most one further point of Hα. Since the map t 7→
αAtα

T is injective, each line of PG(2, K) on the point (0, 1, 0) contains at most one
further point of Hα. Suppose there exist distinct t, u, v ∈ K such that (1, y2

t , αAtα
T ),

(1, y2
u, αAuα

T ) and (1, y2
v, αAvα

T ) are collinear. Then there exists λ ∈ K such that

αAtα
T + αAuα

T

(yt + yu)2
=
αAuα

T + αAvα
T

(yu + yv)2
=
αAvα

T + αAtα
T

(yv + yt)2
= λ.

If b 6= 0, consider

(xt + xu)
(
αAtα

T + αAuα
T
)

b2(yt + yu)2

=
(xt + xu) (a2xt + abyt + b2zt + a2xu + abyu + b2zu)

b2(yt + yu)2

=
a2(xt + xu)

2

b2(yt + yu)2
+
a(xt + xu)

b(yt + yu)
+

(xt + xu)(zt + zu)

(yt + yu)2

By Lemma 2, we have (xt + xu)(zt + zu)(yt + yu)
−2 ∈ C1. Further, if k ∈ C1 then

k2
1 + k1 + k ∈ C1 for every k1 ∈ K, so we have

(xt + xu)
(
αAtα

T + αAuα
T
)

b2(yt + yu)2
= (λ/b2)(xt + xu) = λα(xt + xu) ∈ C1

where λα = λ/b2. Similarly, λα(xu + xv) ∈ C1 and λα(xv + xt) ∈ C1. But this
contradicts the hypothesis that K is full, since λα(xt+xu) = λα(xu+xv)+λα(xv+xt).
If b = 0, then analogous arguments show that (λ/a2)(zt + zu), (λ/a2)(zu + zv),
(λ/a2)(zv + zt) ∈ C1, and the analogous contradiction is obtained. Thus Hα is an
arc in PG(2, K).

Conversely, suppose that Hα is an arc for all α ∈ K2 \{(0, 0)}. Let t, u ∈ K with
t 6= u. For each α ∈ K2\{(0, 0)}, the points (0, 0, 1), (1, y2

t , αAtα
T ) and (1, y2

u, αAtα
T )

are not collinear, so y2
t 6= y2

u; thus yt 6= yu and the map t 7→ yt is injective. For
each α ∈ K2 \ {(0, 0)}, the points (0, 1, 0), (1, y2

t , αAtα
T ) and (1, y2

u, αAuα
T ) are not

collinear, so αAtα
T 6= αAuα

T and the map t 7→ αAtα
T is injective; so K is a partial

K-clan.
(ii) Suppose t 7→ yt is injective. Now let C be a K-clan and let α ∈ K2 \ {(0, 0)}.

By part (i), Hα is an arc. Suppose there exists a point P ∈ PG(2, K)\Hα such that
Hα ∪ {P} is an arc. Then necessarily P = (1, y, z) with y, z 6= 0. Since t 7→ αAtα

T

is surjective, there exists t ∈ K such that αAtα
T = z. But then P, (0, 1, 0) and

(1, y2
t , αAtα

T ) are collinear; a contradiction.
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(iii) Let α ∈ K2 \ {(0, 0)}. The point (0, 1, 0) lies on the line [1, 0, 0] which is a
tangent, and on the lines [a, 0, 1] for a ∈ K. For a ∈ K, the map u 7→ αAuα

T is
bijective if and only if there exists a unique u ∈ K such that αAuα

T = a which
is if and only if [a, 0, 1] contains the unique point (1, y2

u, αAuα
T ) of Oα. The point

(1, y2
t , αAtα

T ) lies on the line [y2
t , 1, 0] (which is a tangent if and only if t 7→ y2

t

is injective) and on the lines [ay2
t + αAtα

T , a, 1] for a ∈ K. For a ∈ K, the map
u 7→ (α(At + Au)α

T )/(yt + yu)2 is bijective if and only if there exists a unique
u ∈ K \ {t} such that (α(At + Au)α

T )/(yt + yu)
2 = a which is if and only if

[ay2
t + αAtα

T , a, 1] contains the unique further point (1, y2
u, αAuα

T ) of Oα.

(iv) Let α ∈ K2 \ {(0, 0)}. The point (0, 0, 1) lies on the line [1, 0, 0] which is
a tangent, and on the lines [a, 1, 0] for a ∈ K. For a ∈ K, the map u 7→ y2

u is
bijective if and only if there exists a unique u ∈ K such that y2

u = a which is if
and only if [a, 1, 0] contains the unique point (1, y2

u, αAuα
T ) of Hα \ {(0, 1, 0)}. The

point (1, y2
t , αAtα

T ) lies on the line [αAtα
T , 0, 1] (which is a tangent if and only if

t 7→ αAtα
T is injective) and on the lines [ay2

t + αAtα
T , a, 1] for a ∈ K. For a ∈ K,

the map u 7→ (α(At +Au)α
T )/(yt + yu)

2 is bijective if and only if there exists u ∈ K
such that (α(At + Au)αT )/(yt + yu)2 = a which is if and only if [ay2

t + αAtα
T , a, 1]

contains the point (1, y2
u, αAuα

T ) of Hα \ {(0, 1, 0)}. �

If K is finite, then in [3] representative elements (0, 1) and (1, s1/2) are used
in place of all α ∈ K2 \ {(0, 0)}. In that case, we see that (0, 1)At(0, 1)T = zt and
(1, s1/2)At(1, s

1/2)T = xt+s
1/2yt+szt = fs(t). Further, a scale factor of 1/(1+s1/2+s)

is included in the definition of fs; for in that case the scale factor ensures that
fs(1) = 1 which is desirable so that the resulting maps are o-polynomials. Thus the
family of ovals constructed in Theorem 4(iii) is the herd constructed in [3].

We remark that in the proofs of the “only if” statements in (iii) and (iv) of
this theorem, in order to show that each arc has a single tangent at each point,
we need the ‘surjective’ part property (d) of Theorem 2 for each α ∈ K2 \ {(0, 0)}.
Equivalently, we require the flock F(C) to be derivable with respect to each element
of K (see the remarks following Theorem 3.6 in [1]). It is possible that (infinite)
K-clans giving rise to flocks which are not derivable for every element of K might
provide examples of complete arcs which do not have the same number of tangents
at each point, in contrast to the finite case.

Further, in the proof of the “if” statement in (i) of this theorem, it is only
necessary that no two further points of Hα should be collinear with either (0, 1, 0)
or (0, 0, 1). Equivalently, t 7→ yt and t 7→ αAtα

T are both injective. If K is finite,
this means that each map is a permutation of the elements of K.

Note that our definition of partial K-clan is taken directly from [1], in particular
a partial K-clan has the same cardinality as K. A weaker definition of partial K-clan
is possible, as a set of (upper triangular) matrices which define a partial flock. In
this case the cardinality could be less than that of K; it could even be finite. With
this weaker definition and the appropriate minor changes, Theorem 4 and Theorem
5 (in the next section) still hold.
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4 Arcs from 4-gonal K-clans over perfect fields

Let K be a field of characteristic 2. We say that K is perfect if the map x 7→ x2 is
an automorphism of K. For example, each finite field GF(2h), h ≥ 1, and the union
of all such fields with h odd, is perfect.

In the case that K is perfect, a partial K-clan is such that t 7→ yt is injective,
since for t, u ∈ K with t 6= u, the equation α(At + Au)α

T = a2(xt + xu) + ab(yt +
yu) + b2(zt + zu) = 0 has only the trivial solution α = (0, 0) and so yt 6= yu (else
b = a((xt + xu)(zt + zu))

1/2, a 6= 0 provides non-trivial solutions).
Throughout this section we assume that K is a perfect field of characteristic 2.

Using arguments similar to those in Section 3, we show that to a 4-gonal K-clan
there corresponds a family of ovals in PG(2, K).

Theorem 5 Let K be a perfect field of characteristic 2. Let

C =

{
At =

(
xt yt
0 zt

)
: t ∈ K

}

be a collection of matrices with xt, yt, zt ∈ K. For α ∈ K2 \ {(0, 0)} define the
following sets of points in PG(2, K) :

Oα = {(1, y2
t , αAtα

T ) : t ∈ K} ∪ {(0, 1, 0)}
Hα = Oα ∪ {(0, 0, 1)}.

(i) C is a 4-gonal K-clan if and only if Oα is an oval with tangents concurrent in
the point (0, 0, 1) for all α ∈ K2 \ {(0, 0)}. In this case Hα is a complete arc.
(ii) C satisfies (a), (c) and (d) of Theorem 2 and t 7→ yt is surjective if and only
if Hα \ {(0, 1, 0)} is an oval with tangents concurrent in the point (0, 1, 0) for all
α ∈ K2 \ {(0, 0)}. In this case Hα is a complete arc.

Proof. The proofs are analogous to those of parts (iii) and (iv) of Theorem 4. �

5 Subquadrangles of GQ(C)

Throughout this section we assume that K is a field of characteristic 2 and that the

collection of matrices C =

{
At =

(
xt yt
0 zt

)
: t ∈ K

}
is a 4-gonal K-clan. We now

investigate some subquadrangles of the generalized quadrangle GQ(C).
Let L be a subfield of K such that if t ∈ L then xt, yt, zt ∈ L. This situation

would arise if L = K, or if L is a proper subfield of K and each of xt, yt, zt is a
polynomial function with coefficients in L.

For each α ∈ L2 \ {(0, 0)}, define Gα,L = {(xα, z, yα) : x, y, z ∈ L}. Then Gα,L is
a subgroup of G and we let

Aα,L(∞) = A(∞) ∩ Gα,L = {(0, 0, yα) : y ∈ L}
Aα,L(t) = A(t) ∩ Gα,L = {(xα, x2αAtα

T , xytα) : x ∈ L} for t ∈ L
A∗α,L(t) = Aα,L(t)Z for t ∈ L ∪ {∞}.

Let Fα,L = {Aα,L(t) : t ∈ L ∪ {∞}} and F∗α,L = {A∗α,L(t) : t ∈ L ∪ {∞}}.



136 L. Bader – C.M. O’Keefe

Theorem 6 With the notation of this section, (Gα,L,Fα,L,F∗α,L) is a Kantor family,
hence Q(G,F ,F∗) = Qα,L is a generalized quadrangle.

Proof. Let s′ = t′ = |L|. In the notation of Lemma 1, I ′ = L ∪ {∞} and it is
immediate that (Gα,L,Fα,L,F∗α,L) satisfies all the hypotheses of that lemma, provided
we can show that the hypothesis in part (2) holds. An element of Gα,L is of the form
(xα, z, yα) for some x, y, z ∈ L. This lies in A∗α,L(∞)Aα,L(j) for any j ∈ I ′ since

(xα, z, yα) =

(0, z + x2αAjα
T + (yα+ xyjα)P (xα)T , yα+ xyjα) · (xα, x2αAjα

T , xyjα).

Also, it lies in A∗α,L(i)Aα,L(∞) for any i ∈ I ′ since

(xα, z, yα) = (xα, z, xyiα) · (0, 0, yα+ xyiα).

Finally, it is an element of A∗α,L(i)Aα,L(j) for some i, j ∈ I ′ with i 6= j if there exist
elements u, v, a ∈ L such that

(xα, z, yα) = (uα, v, uyiα) · (aα, a2αAjα
T , ayjα)

=
(
(u+ a)α, v + a2αAjα

T + (uyiα)P (aα)T , (uyi + ayj)α
)

which is if there exist u, a ∈ L such that u+ a = x and uyi + ayj = y. The existence
(and uniqueness) of such u, a ∈ L follows since yi 6= yj . �

By arguments analogous to those used by Payne and Maneri [11, Theorem 1] and
[9], it is immediate that, for each α ∈ L2\{(0, 0)}, there exists a subquadrangle Sα,L
of GQ(C) which is isomorphic to Qα,L and contains the points (∞) and (0, 0, 0) of
GQ(C). Each such subquadrangle is an elation generalized quadrangle with parame-
ters (|L|, |L|), with base point (∞) and with elation group Gα,L. Further, Gα,L = Gβ,L
if and only if α = λβ for some λ ∈ L \ {0}.

Suppose from now on that L is perfect. We investigate the subquadrangles Sα,L
further.

Let α ∈ L2 \ {(0, 0)}. Then Gα,L is a 3-dimensional vector space over L and the
map

φ : Gα,L → PG(2, L)

(xα, z, yα) 7→ (x, y,
√
z)

is an isomorphism. We call (x, y,
√
z) the standard coordinates for Gα,L. In standard

coordinates, Aα,L(∞) is the point (0, 1, 0) and Aα,L(t) is the point (1, yt,
√
αAtαT )

for t ∈ L.

Theorem 7 Let L be a perfect subfield of a field K of characteristic 2. Let

C =

{
At =

(
xt yt
0 zt

)
: t ∈ K

}
be a 4-gonal K-clan such that if t ∈ L then

xt, yt, zt ∈ L. For α ∈ L2 \ {(0, 0)}, define the following sets of points in PG(2, L) :

Oα,L = {(1, yt,
√
αAtαT ) : t ∈ L} ∪ {(0, 1, 0)}

Hα,L = Oα,L ∪ {(0, 0, 1)}



Arcs and ovals in infinite K-clan geometry 137

(i) Hα,L is an arc in PG(2, L).
(ii) If t 7→ αAtα

T is surjective on L for all α ∈ L2 \ {(0, 0)} then Hα,L \ {(0, 1, 0)}
is an oval with tangents concurrent in (0, 1, 0). In this case Hα,L is a complete arc.
(iii) If the maps L→ L, t 7→ αAtα

T and L\{t} → L\{0}, u 7→ (α(At+Au)α
T )/(yt+

yu)
2, for all t, are surjective for all α ∈ L2\{(0, 0)} then Oα,L is an oval in PG(2, K)

with tangents concurrent in (0, 0, 1).

Proof. (i) First, the line joining (0, 1, 0) and (0, 0, 1) contains no further point of
Hα,L. Since t 7→ yt is an injection, each further line on (0, 0, 1) contains at most one
further point of Hα,L. Also, the map t 7→

√
αAtαT is injective so each further line

on (0, 1, 0) contains at most one further point of Hα,L. Finally, suppose three points
of Hα,L \ {(0, 1, 0), (0, 0, 1)} are collinear. Then there exist λ, µ, ν ∈ L \ {0} and
distinct t, u, v ∈ L such that

(λ, λyt, λ
√
αAtαT ) + (µ, µyu, µ

√
αAuαT ) = (ν, νyv, ν

√
αAvαT ).

Applying the inverse of the standard coordinates isomorphism, we obtain

(λα, λ2αAtα
T , λytα) · (µα, µ2αAuα

T , µyuα) = (να, ν2αAvα
T , νyvα)

as elements of Gα,L. But this contradicts property (K1) for the Kantor family
(Gα,L,Fα,L,F∗α,L) since the left hand side is a non-zero element of Aα,L(t)Aα,L(u)
and the right hand side is a non-zero element of Aα,L(v).

(ii) Suppose t 7→ αAtα
T is surjective on L. If there exists P ∈ PG(2, L) such

that Hα,L ∪ {P} is an arc, then P = (1, y, z) with y, z 6= 0. Let t ∈ L be such that
z2 = αAtα

T . But then the three points (0, 1, 0), P and (1, yt,
√
αAtαT ) are collinear;

a contradiction. Finally, the line [1, 0, 0] on (0, 1, 0) contains the unique point (0, 0, 1)
of Hα,L \ {(0, 1, 0)}. For a ∈ L, let t ∈ L be such that a2 = αAtα

T and the line
[a, 0, 1] on (0, 1, 0) contains the unique point (1, yt,

√
αAtαT ) of Hα,L \ {(0, 1, 0)}.

(iii) Let α ∈ L2 \ {(0, 0)} and suppose that the maps t 7→ αAtα
T and u 7→

(α(At + Au)α
T )/(yt + yu)

2, for all t, are surjective. The point (0, 1, 0) lies on the
line [1, 0, 0] which is tangent to Oα and on the lines [a, 0, 1] for a ∈ L. For a ∈ L,
since the map t 7→ αAtα

T is bijective on L, there exists a unique t ∈ L such that
a2 = αAtα

T ; so [a, 0, 1] contains the unique point (1, yt,
√
αAtαT ) of Oα. Let t ∈ L.

The point (1, yt,
√
αAtαT ) lies on the line [yt, 1, 0] which is tangent toOα,L (as t 7→ yt

is injective) and on the lines [ayt+
√
αAtαT , a, 1] for a ∈ L. For a ∈ L, since the map

u 7→ α(At+Au)αT

(yt+yu)2 is bijective, there exists a unique u ∈ L such that a2 = α(At+Au)αT

(yt+yu)2 ;

so [ayt +
√
αAtαT , a, 1] contains the unique point (1, yu,

√
αAuαT ) of Oα,L. Thus

Oα,L is an oval, and each tangent passes through (0, 0, 1). �

Corollary Let K be a perfect field of characteristic 2. Let

C =

{
At =

(
xt yt
0 zt

)
: t ∈ K

}

be a 4-gonal K-clan. For α ∈ K2 \ {(0, 0)}, define the following sets of points in
PG(2, K) :

Oα = Oα,K = {(1, yt,
√
αAtαT ) : t ∈ K} ∪ {(0, 1, 0)}

Hα = Hα,K = Oα,K ∪ {(0, 0, 1)}
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Then Oα is an oval with tangents concurrent in (0, 0, 1), so Hα is a complete arc.
Also, Hα \ {(0, 1, 0) is an oval with tangents concurrent in (0, 1, 0). Further, Sα =
Sα,K is a generalized quadrangle isomorphic to T2(Oα).

Proof. We only need to prove the last statement. In the case that Oα is an
oval, the standard isomorphism is a correspondence between the Kantor family
(Gα,Fα,F∗α) = (Gα,K,Fα,K,F∗α,K) and the Kantor family in Example 1; so Sα is
isomorphic to T2(Oα). �

6 Examples

De Clerck and Van Maldeghem [4] and Bader and Payne [1] have discussed several
infinite families of K-clans, most of which are generalisations of q-clans.

In the following, let K be a field of characteristic 2.

Example 2 (Classical, [4, Ex 1], [1, Ex 1]) Let a ∈ K be such that x2 + x + a

is irreducible over K and let C =

{
At =

(
t t
0 at

)
: t ∈ K

}
. Then C is a 4-gonal

K-clan and for α = (α1, α2) ∈ K2 \ {(0, 0)}, we obtain the oval

Oα =
{(

1, t2, (α2
1 + α1α2 + aα2

2)t
)

: t ∈ K
}
∪ {(0, 1, 0)}.

All these ovals are irreducible conics.

Example 3 (FTWKB [2, 6, 7, 15], [4, Ex 4], [1, Ex 2]) Suppose the map K →

K, x 7→ x3 is a bijection and let C =

{
At =

(
t t2

0 t3

)
: t ∈ K

}
. Then C is a 4-

gonal K-clan (see [7, Remark 7]) and for α = (α1, α2) ∈ K2 \ {(0, 0)}, we obtain the
oval

Oα =
{(

1, t4, α2
1t + α1α2t

2 + α2
2t

3
)

: t ∈ K
}
∪ {(0, 1, 0)}.

These ovals are translation ovals.

Example 4 (Payne [9], [1, Ex 4]) Let K be the union of the finite fields GF(2h) for

all odd h; so K is both full and perfect. Let C =

{
At =

(
t t3

0 t5

)
: t ∈ K

}
. Then

C is a 4-gonal K-clan and for α = (α1, α2) ∈ K2 \ {(0, 0)}, we obtain the oval

Oα =
{(

1, t6, α2
1t + α1α2t

3 + α2
2t

5
)

: t ∈ K
}
∪ {(0, 1, 0)}.

Example 5 (Subiaco [3], [1, Ex 8]) Let K be the union of the finite fields GF(2h)

for all odd h; so K is both full and perfect. Let C =

{
At =

(
f(t) t1/2

0 g(t)

)
: t ∈ K

}
where x2 + dx+ 1 is irreducible over K and

f(t) =
d2t4 + d3t3 + (d2 + d4)t2

t4 + d2t2 + 1
+
(
t

d

)1/2

g(t) =
(d2 + d4)t3 + d3t2 + d2t

t4 + d2t2 + 1
+
(
t

d

)1/2

Then C is a 4-gonal K-clan and we obtain ovals as above.



Arcs and ovals in infinite K-clan geometry 139

References

[1] L. Bader and S. E. Payne. On infinite K-clan geometry. J. Geom., to appear.

[2] D. Betten. 4-dimensionale Translationsebenen mit 8-dimensionaler
Kollineationsgruppe. Geom. Dedicata, 2:327–339, 1973.

[3] W. Cherowitzo, T. Penttila, I. Pinneri, and G. F. Royle. Flocks and ovals.
Geom. Dedicata, 60:17–37, 1996.

[4] F. De Clerck and H. Van Maldeghem. On flocks of infinite quadratic cones.
Bull. Belg. Math. Soc. Simon Stevin, 3:399–415, 1994.

[5] P. Dembowski. Finite Geometries. Springer-Verlag, Berlin-Heidelberg, 1968.

[6] J. C. Fisher and J. A. Thas. Flocks in PG(3, q). Math. Z., 169:1–11, 1979.

[7] W. M. Kantor. Generalized quadrangles associated withG2(q). J. Combin. The-
ory Ser. A, 29:212–219, 1980.

[8] W. M. Kantor. Some generalized quadrangles with parameters (q2, q). Math.
Z., 192:45–50, 1986.

[9] S. E. Payne. A new infinite family of generalized quadrangles. Congr. Numer.,
49:115–128, 1985.

[10] S. E. Payne. An essay on skew translation generalized quadrangles. Geom.
Dedicata, 32:93–118, 1989.

[11] S. E. Payne and C. E. Maneri. A family of skew-translation generalized quad-
rangles of even order. Congr. Numer., 36:127–135, 1982.

[12] L. Storme and J. A. Thas. k-arcs and partial flocks. Lin. Alg. Appl., 226–
228:33–45, 1995.

[13] J. A. Thas. Generalized quadrangles and flocks of cones. Europ. J. Combina-
torics, 8:441–452, 1987.

[14] J. A. Thas. Generalized polygons. In F. Buekenhout, editor, Handbook of Inci-
dence Geometry, Buildings and Foundations, chapter 9, pages 383–432. North-
Holland, Amsterdam, 1995.

[15] M. Walker. A class of translation planes. Geom. Dedicata, 5:135–146, 1976.

Laura Bader Christine M. O’Keefe
Dipartimento di Matematica Department of Pure Mathematics
II Università di Roma “Tor Vergata” The University of Adelaide
Via della Ricerca Scientifica 5005 AUSTRALIA
I-00133 Roma ITALY cokeefe@maths.adelaide.edu.au
bader@mat.utovrm.it http://www.maths.adelaide.edu.au/Pure/cokeefe


