Convergence of difference analogues to the Darboux problem with functional dependence

H. Leszczyński

Abstract

We consider the Darboux problem with functional dependence for $z, D_{x} z$ and $D_{y} z$ on the right-hand side of the differential equation. We investigate a wide class of difference schemes for the differential-functional problem. In the present paper we prove convergence theorems by means of consistency and stability statements.

1 Introduction

Take $a, b>0$ and $\alpha, \beta \geq 0$. Define $E=[0, a] \times[0, b], E^{0}=[-\alpha, a] \times[-\beta, b] \backslash(0, a] \times$ $(0, b]$, and $B=[-\alpha, 0] \times[-\beta, 0]$ Given a function $z: E^{0} \cup E \rightarrow R$ and a point $(x, y) \in E$, we define the functional $z_{(x, y)}: B \rightarrow R$ by $z_{(x, y)}(\xi, \eta)=z(x+\xi, y+\eta)$ for $(\xi, \eta) \in B$. Suppose that we are given a function $f: \Omega:=E \times X_{0} \times X_{1} \times X_{2} \rightarrow R$, where X_{0}, X_{1}, X_{2} are some subsets of the set of all functions from B to R. Take a differentiable function $\phi: E^{0} \rightarrow R$. Consider the Darboux problem

$$
\begin{gather*}
D_{x y} z(x, y)=f\left(x, y, z_{(x, y)},\left(D_{x} z\right)_{(x, y)},\left(D_{y} z\right)_{(x, y)}\right), \tag{1}\\
z(x, y)=\phi(x, y), \quad(x, y) \in E^{0} . \tag{2}
\end{gather*}
$$

We will assume that there exists a classical solution to problem (1), (2), i.e. a continuous function $v: E^{0} \cup E \rightarrow R$ which satisfies (2) on E^{0}, is of class C^{2} on E, and satisfies (1) on the set E.

[^0]Fix a constant $c \geq 1$. Define the set of acceptable steps

$$
I_{d}=\left\{(h, k) \in(0, a] \times(0, b] \left\lvert\, \frac{\alpha}{h}\right., \frac{\beta}{k} \in \mathcal{N}_{0}, \quad k \frac{1}{c} \leq h \leq k c\right\},
$$

where the symbol \mathcal{N}_{0} denotes all natural numbers including 0 . We write $x_{i}=i h$ and $y_{j}=j k$. Take $Z_{h k}=\left\{\left(x_{i}, y_{j}\right) \mid i, j \in \mathcal{Z}\right\}$. Denote by $E_{h k}^{0}$ the set of all $\left(x_{i}, y_{j}\right) \in E^{0} \cap Z_{h k}$. Denote $E_{h k}^{+}=(0, a] \times(0, b] \cap Z_{h k}$. Define

$$
\begin{aligned}
& E_{h k}=\left\{\left(x_{i}, y_{j}\right) \in Z_{h k} \mid\left(x_{i+1}, y_{j+1}\right) \in E_{h k}^{+}\right\} \\
& \tilde{E}_{h k}=\left(E^{0} \cup E\right) \cap Z_{h k}, \quad B_{h k}=B \cap Z_{h k} .
\end{aligned}
$$

If $z: \tilde{E}_{h k} \rightarrow R$, we denote $z^{(i, j)}=z\left(x_{i}, y_{j}\right)$. Let $\mathcal{F}(X, Y)$ be the set of all functions from a set X into Y.

We will need some difference operators $\delta_{1}, \delta_{2}, \delta_{12}$ which correspond to the derivatives $D_{x}, D_{y}, D_{x y}$, respectively. We define these operators as follows

$$
\begin{aligned}
\delta_{1} z^{(i, j)} & =\frac{z^{(i+1, j)}-z^{(i, j)}}{h}, \quad\left(x_{i}, y_{j}\right),\left(x_{i+1}, y_{j}\right) \in \tilde{E}_{h k}, \\
\delta_{2} z^{(i, j)} & =\frac{z^{(i, j+1)}-z^{(i, j)}}{k}, \quad\left(x_{i}, y_{j}\right),\left(x_{i}, y_{j+1}\right) \in \tilde{E}_{h k}, \\
\delta_{12} z^{(i, j)} & =\frac{z^{(i+1, j+1)}-z^{(i+1, j)}-z^{(i, j+1)}+z^{(i, j)}}{h k}, \quad\left(x_{i}, y_{j}\right),\left(x_{i+1}, y_{j+1}\right) \in \tilde{E}_{h k},
\end{aligned}
$$

for $z \in \mathcal{F}\left(\tilde{E}_{h k}, R\right)$.
Define also a discrete counterpart of $z_{(x, y)}$. If $z \in \mathcal{F}\left(\tilde{E}_{h k}, R\right)$ and $\left(x_{i}, y_{j}\right) \in$ $E_{h k}$, then we define the function $z_{[i, j]} \in \mathcal{F}\left(B_{h k}, R\right)$ by $z_{[i, j]}\left(x_{\mu}, y_{\nu}\right)=z^{(i+\mu, j+\nu)}$ for $\left(x_{\mu}, y_{\nu}\right) \in B_{h k}$.

Suppose that $f_{h k}: \Omega_{h k}:=E_{h k} \times \mathcal{F}\left(B_{h k}, R^{3}\right) \rightarrow R$ and $\phi_{h k}: E_{h k}^{0} \rightarrow R$. We consider the difference scheme in correspondence with differential-functional problem (1), (2).

$$
\begin{align*}
& \delta_{12} z^{(i, j)}=f_{h k}\left(x_{i}, y_{j}, z_{[i, j]},\left(\delta_{1} z\right)_{[i, j]},\left(\delta_{2} z\right)_{[i, j]}\right) \quad\left(x_{i}, y_{j}\right) \in E_{h k}, \tag{3}\\
& z^{(i, j)}=\phi_{h k}^{(i, j)}, \quad\left(x_{i}, y_{j}\right) \in E_{h k}^{0} . \tag{4}
\end{align*}
$$

In [KL] we investigate the Darboux problem without partial derivatives in the righthand side. We develop there a general theory of convergence under some relatively weak assumptions of non-linear Perron-type estimates of the right-hand-side function. This theory corresponds with the existence and uniqueness theory for hyperbolic equations in this way that typical integral forms of the Darboux problem and their basic properties are reflected on the ground of difference schemes by also very natural inverse summation formulas from which one can deduce a priori bounds for all discrete solutions and their errors, that is: the differences between the solutions to the difference scheme and the solution to differential problem restricted to the mesh. In the above mentioned item of the literature as well as in [L2] and [L3], we can find a standard way of dealing with convergence theorems, namely:
if the difference scheme is consistent with the differential or differential-functional problem (at least on a class of solutions which are sufficiently regular) and if it is stable (not too sensitive with respect to perturbations of the right-hand sides and the initial data), then the solutions to difference scheme converge to the solution of the differential problem provided it exists and it is unique. The paper [L3] is devouted to a class of finite difference approximations to parabolic problems and the convergence is obtained by some realization of discrete maximum principle. In [L2] we consider a strongly coupled hyperbolic system of first-order equations whose difference analogues are proved to converge due to a recurrence comparison formula for a properly transformed error equation. Considering difference schemes for the Darboux problem with functional dependence, we begin our analysis of error equations by means of an inverse formula, which is very similar to getting an integral fixed point equation for differential-functional problem (1), (2).

2 Main examples

We illustrate in the present section how to specify the above difference operators and how to produce a new right-hand side in the difference scheme on the ground of the function f. Finally, we give two very common types of functional dependence which could be easily specified from (1).
Example 1. Suppose that we are given three interpolation operators I_{0}, I_{1}, I_{2} : $\mathcal{F}\left(B_{h, k}, R\right) \rightarrow C(B, R)$. We can define the discrete counterpart of the function f in the following way

$$
\begin{equation*}
f_{h k}\left(x_{i}, y_{j}, w_{0}, w_{1}, w_{2}\right)=f\left(x_{i}, y_{j}, I_{0} w_{0}, I_{1} w_{1}, I_{2} w_{2}\right) \tag{5}
\end{equation*}
$$

for $\left(x_{i}, y_{j}\right) \in B_{h k}$ and $w_{\nu} \in \mathcal{F}\left(B_{h k}, R\right),(\nu=0,1,2)$. If there is no functional dependence, i.e. if $f\left(x, y, w_{0}, w_{1}, w_{2}\right)=\tilde{f}\left(x, y, w_{0}(0,0), w_{1}(0,0), w_{2}(0,0)\right)$ for some function $\tilde{f}: E \times R^{3} \rightarrow R$ and for all $\left(x, y, w_{0}, w_{1}, w_{2}\right) \in \Omega$, then we can put simply $\left(I_{\nu} w_{\nu}\right)(x, y)=w_{\nu}(0,0)$ in formula (5), and we have the difference scheme

$$
\begin{equation*}
\delta_{12} z^{(i, j)}=\tilde{f}\left(x_{i}, y_{j}, z^{(i, j)}, \delta_{1} z^{(i, j)}, \delta_{2} z^{(i, j)}\right) . \tag{6}
\end{equation*}
$$

It is seen that in that case the function $f_{h k}$ coincides with the function f restricted to the mesh.
Example 2. Suppose that we are given the same operators I_{0}, I_{1}, I_{2} as in Example 1. Take another interpolation operator $\tilde{I}: C(B, R) \rightarrow C\left(B^{\prime}(h, k), R\right)$, where

$$
B^{\prime}(h, k)=\{(x+\xi, y+\eta) \mid(x, y) \in B,(\xi, \eta) \in[0, h / 2] \times[0, k / 2]\}
$$

Define the function $F_{h, k}: \Omega \rightarrow R$ by

$$
\begin{align*}
& F_{h k}(P)=f(P)+ \tag{7}\\
& \quad \frac{h}{2} D_{x} f(P)+\frac{k}{2} D_{y} f(P)+D_{w_{0}} f(P)\left(\left(\tilde{I} w_{0}\right)_{(h / 2, k / 2)}-w_{0}\right)+ \\
& \quad D_{w_{1}} f(P)\left(\left(\tilde{I} w_{1}\right)_{(h / 2, k / 2)}-w_{1}\right)+D_{w_{2}} f(P)\left(\left(\tilde{I} w_{2}\right)_{(h / 2, k / 2)}-w_{2}\right)
\end{align*}
$$

for $P=\left(x, y, w_{0}, w_{1}, w_{2}\right) \in \Omega$. Now, instead of formula (5), we write

$$
\begin{equation*}
f_{h k}\left(x_{i}, y_{j}, w_{0}, w_{1}, w_{2}\right)=F_{h k}\left(x_{i}, y_{j}, I_{0} w_{0}, I_{1} w_{1}, I_{2} w_{2}\right) \tag{8}
\end{equation*}
$$

for $\left(x_{i}, y_{j}\right) \in E_{h k}$ and $w_{\nu} \in \mathcal{F}\left(B_{h k}, R\right),(\nu=0,1,2)$. It is seen that the function $F_{h k}(x, y, \ldots)$ approximates the value $f(x+h / 2, y+k / 2, \ldots)$ for it is derived from the Taylor formula of second order, possible when the function f is sufficiently regular. This difference scheme, as such, is to approximate the solution to the differentialfunctional problem much better than the scheme in Example 1.
Example 3. The interpolation operators I_{0}, I_{1}, I_{2} in Examples 1 and 2 should provide a relevant approximation for sufficiently regular functions. One such example is the spline interpolation: we define $I_{0}=I_{1}=I_{2}$ by

$$
\begin{align*}
& \left(I_{\nu} w_{\nu}\right)(s, t)= \tag{9}\\
& \quad w_{\nu}^{(i, j)}\left(1-\frac{s-x_{i}}{h}\right)\left(1-\frac{t-y_{j}}{k}\right)+w_{\nu}^{(i+1, j+1)} \frac{s-x_{i}}{h} \frac{t-y_{j}}{k}+ \\
& w_{\nu}^{(i+1, j)} \frac{s-x_{i}}{h}\left(1-\frac{t-y_{j}}{k}\right)+w_{\nu}^{(i, j+1)}\left(1-\frac{s-x_{i}}{h}\right) \frac{t-y_{j}}{k}
\end{align*}
$$

for $\nu=0,1,2$ and for $(s, t) \in B,\left(x_{i}, y_{j}\right) \in B_{h k}$ such that $x_{i} \leq s \leq x_{i+1}$ and $y_{j} \leq t \leq y_{j+1}$.
Example 4. Besides typical examples such as the Darboux problems for equations without functional dependence such as

$$
D_{x y} z(x, y)=F\left(x, y, z(x, y), D_{x} z(x, y), D_{y} z(x, y)\right),
$$

we can find in equation (1) some equations with deviations and with the Volterratype integral dependence. Suppose that $F: E \times R^{3} \rightarrow R, \omega_{0}, \omega_{1}, \omega_{2}: E \rightarrow E_{0} \cup E$ and $G_{0}, G_{1}, G_{2}: B \times R \rightarrow R$. Assume that these functions are continuous and that the functions ω_{ν} for $\nu=0,1,2$ satisfy the condition

$$
(x-\alpha, y-\beta) \leq \omega_{\nu}(x, y) \leq(x, y) \text { for }(x, y) \in E
$$

Consider the equations

$$
\begin{equation*}
D_{x y} z(x, y)=F\left(x, y, z\left(\omega_{0}(x, y)\right), D_{x} z\left(\omega_{1}(x, y)\right), D_{y} z\left(\omega_{2}(x, y)\right)\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{align*}
& D_{x y} z(x, y)= \tag{11}\\
& \quad F\left(x, y, \int_{B} G_{0}(s, t, z(s+x, t+y)) d t d s\right. \\
& \left.\quad \int_{B} G_{1}\left(s, t, D_{x} z(s+x, t+y)\right) d t d s, \int_{B} G_{2}\left(s, t, D_{y} z(s+x, t+y)\right) d t d s\right) .
\end{align*}
$$

The first (deviated) equation can be specified from equation (1) when we substitute

$$
\begin{aligned}
& f\left(x, y, w_{0}, w_{1}, w_{2}\right)= \\
& \quad F\left(x, y, w_{0}\left(\omega_{0}(x, y)-(x, y)\right), w_{1}\left(\omega_{1}(x, y)-(x, y)\right), w_{2}\left(\omega_{2}(x, y)-(x, y)\right)\right)
\end{aligned}
$$

for $\left(x, y, w_{0}, w_{1}, w_{2}\right) \in \Omega$. Indeed, we have then the equality

$$
\begin{aligned}
& f\left(x, y, z_{(x, y)},\left(D_{x} z\right)_{(x, y)},\left(D_{y} z\right)_{(x, y)}\right)= \\
& \quad F\left(x, y, z\left(\left(\omega_{0}(x, y)-(x, y)\right)+(x, y)\right),\right. \\
& \left.\quad D_{x} z\left(\left(\omega_{1}(x, y)-(x, y)\right)+(x, y)\right), D_{y} z\left(\left(\omega_{2}(x, y)-(x, y)\right)+(x, y)\right)\right)
\end{aligned}
$$

The differential-integral equation can be obtained from equation (1) when we define the function f on Ω by

$$
\begin{aligned}
& f\left(x, y, w_{0}, w_{1}, w_{2}\right)= \\
& \qquad F\left(x, y, \int_{B} G_{0}\left(s, t, w_{0}(s, t)\right) d t d s,\right. \\
& \left.\quad \int_{B} G_{1}\left(s, t, w_{1}(s, t)\right) d t d s, \int_{B} G_{2}\left(s, t, w_{2}(s, t)\right) d t d s\right)
\end{aligned}
$$

The explanation is similar to that in the former case. Changing w_{ν} into its discrete counterpart $I_{\nu} w_{\nu}$ (cf. (5)) leads to particular quadratures for the above integrals.

3 Notations and assumptions

Define the discrete operators $\mathcal{L}_{0}: \mathcal{F}\left(\tilde{E}_{h k}, R\right) \rightarrow \mathcal{F}\left(E_{h k}^{+}, R\right)$ and

$$
\mathcal{L}_{1}: \mathcal{F}\left(\tilde{E}_{h k}, R\right) \rightarrow \mathcal{F}\left((0, k)+E_{h k}, R\right), \mathcal{L}_{2}: \mathcal{F}\left(\tilde{E}_{h k}, R\right) \rightarrow \mathcal{F}\left((h, 0)+E_{h k}, R\right)
$$

Given a function $z \in \mathcal{F}\left(\tilde{E}_{h k}, R\right)$, we define

$$
\begin{align*}
\mathcal{L}_{0} z^{(i, j)}= & z^{(i, 0)}+z^{(0, j)}-z^{(0,0)}+ \tag{12}\\
& h k \sum_{\mu=0}^{i-1} \sum_{\nu=0}^{j-1} f_{h k}\left(x_{\mu}, y_{\nu}, z_{[\mu, \nu]},\left(\delta_{1} z\right)_{[\mu, \nu]},\left(\delta_{2} z\right)_{[\mu, \nu]}\right), \\
\mathcal{L}_{1} z^{(i, j)}= & \delta_{1} z^{(i, 0)}+k \sum_{\nu=0}^{j-1} f_{h k}\left(x_{i}, y_{\nu}, z_{[i, \nu]},\left(\delta_{1} z\right)_{[i, \nu]},\left(\delta_{2} z\right)_{[i, \nu]}\right), \\
\mathcal{L}_{2} z^{(i, j)}= & \delta_{2} z^{(0, j)}+h \sum_{\mu=0}^{i-1} f_{h k}\left(x_{\mu}, y_{j}, z_{[\mu, j]},\left(\delta_{1} z\right)_{[\mu, j],},\left(\delta_{2} z\right)_{[\mu, j]}\right),
\end{align*}
$$

for $\left(x_{i}, y_{j}\right) \in E_{h k}^{+},(0, k)+E_{h k},(h, 0)+E_{h k}$, respectively. Observe that if the function $z \in \mathcal{F}\left(\widetilde{E}_{h k}, R\right)$ is a solution to equation (3), then we have

$$
\begin{align*}
z^{(i, j)} & =\mathcal{L}_{0} z^{(i, j)} & & \left(\left(x_{i}, y_{j}\right) \in E_{h k}^{+}\right), \tag{13}\\
\delta_{1} z^{(i, j)} & =\mathcal{L}_{1} z^{(i, j)} & & \left(\left(x_{i}, y_{j}\right) \in(0, k)+E_{h k}\right) \\
\delta_{2} z^{(i, j)} & =\mathcal{L}_{2} z^{(i, j)} & & \left(\left(x_{i}, y_{j}\right) \in(h, 0)+E_{h k}\right)
\end{align*}
$$

A function $\gamma: I_{d} \rightarrow R_{+}$is said to be of the class Γ_{0} if $\lim _{(h, k) \rightarrow(0,0)} \gamma(h, k)=0$. We introduce assumptions which will guarantee consistency and stability of the difference scheme.

Assumption 1 Suppose that there is a function $v \in C\left(E^{0} \cup E, R\right)$ which satisfies (1), (2) and the function $v_{\left.\right|_{E^{0}}}=\phi$ is of class C^{2}, the function $v_{\left.\right|_{E}}$ is of class C^{3}. Of the function v satisfying these conditions we will say that it is of class $C^{2,3}$.

Assumption 2 Suppose that there is $\gamma_{0}[w] \in \Gamma_{0}$ such that

$$
\left|f_{h k}\left(x_{i}, y_{j},\left(w_{0}\right)_{\left.\right|_{B_{h k}}},\left(w_{1}\right)_{\left.\right|_{B_{h k}}},\left(w_{2}\right)_{\left.\right|_{B_{h k}}}\right)-f\left(x_{i}, y_{j}, w_{0}, w_{1}, w_{2}\right)\right| \leq \gamma_{0}[w](h, k)
$$

for $\left(x_{i}, y_{j}, w_{0}, w_{1}, w_{2}\right) \in \Omega$, where $w=\left(w_{0}, w_{1}, w_{2}\right)$.
Assumption 3 Suppose that there are constants $L_{0}, L_{1}, L_{2} \in R_{+}$(independent of $(h, k))$ such that

$$
\begin{aligned}
& \left|f_{h k}\left(x_{i}, y_{j}, w_{0}, w_{1}, w_{2}\right)-f_{h k}\left(x_{i}, y_{j}, \bar{w}_{0}, \bar{w}_{1}, \bar{w}_{2}\right)\right| \leq \\
& \quad L_{0}\left\|w_{0}-\bar{w}_{0}\right\|+L_{1}\left\|w_{1}-\bar{w}_{1}\right\|+L_{2}\left\|w_{2}-\bar{w}_{2}\right\|
\end{aligned}
$$

for $\left(x_{i}, y_{j}, w_{0}, w_{1}, w_{2}\right),\left(x_{i}, y_{j}, \bar{w}_{0}, \bar{w}_{1}, \bar{w}_{2}\right) \in \Omega_{h k}$.
If $z \in \mathcal{F}\left(\tilde{E}_{h k}, R\right)$, then we will denote by $\xi_{h k}^{(i, j)}[z]\left(\left(x_{i}, y_{j}\right) \in E_{h k}\right)$ the following residual expression

$$
\begin{equation*}
\xi_{h k}^{(i, j)}[z]=\delta_{12} z^{(i, j)}-f_{h k}\left(x_{i}, y_{j}, z_{[i, j]},\left(\delta_{1} z\right)_{[i, j]},\left(\delta_{2} z\right)_{[i, j]}\right) \tag{14}
\end{equation*}
$$

4 Lemmas on consistency and stability

We start this section with a lemma on the consistency of the difference scheme with the differential-functional problem.

Lemma 1 Suppose that Assumptions 1, 2 and 3 are satisfied. Then the function $\gamma(h, k)=\max _{i, j}\left|\xi_{h k}^{(i, j)}[v]\right|$ is of class Γ_{0}.

Proof. Since the function v is of class $C^{2,3}$ we can expand $\delta_{12} v^{(i, j)}$ in the Taylor power series with the error of the third order. Then we obtain the estimate

$$
\begin{equation*}
\left|\delta_{12} v^{(i, j)}-D_{x y} v\left(x_{i}, y_{j}\right)\right| \leq\|(h, k)\| \sum_{\mu, \nu \geq 0 ; \mu+\nu \leq 3}\left\|D_{x}^{\mu} D_{y}^{\nu} v\right\| \tag{15}
\end{equation*}
$$

for $\left(x_{i}, y_{j}\right) \in E_{h, k}$. Moreover, we can get

$$
\begin{align*}
& \left\|\left(\delta_{1}\left(v_{\left.\right|_{\tilde{E}_{h k}}}\right)_{[i, j]}-\left(D_{x} v\right)_{\left.\right|_{\tilde{E}_{n k}}}\right)_{[i, j]}\right\|= \tag{16}\\
& \max _{\left(x_{\mu}, y_{\nu}\right) \in B_{h k}} \mid \delta_{1} v^{(i+\mu, j+\nu)}-D_{x} v\left(x_{i+\mu}, y_{j+\nu} \mid \leq h\left\|D_{x x} v\right\|,\right. \\
& \left\|\left(\delta_{2}\left(v_{\left.\right|_{\tilde{E}_{h k}}}\right)_{[i, j]}-\left(D_{y} v\right)_{\left.\right|_{\tilde{E}_{h k}}}\right)_{[i, j]}\right\|= \\
& \max _{\left(x_{\mu}, y_{\nu}\right) \in B_{h k}} \mid \delta_{2} v^{(i+\mu, j+\nu)}-D_{y} v\left(x_{i+\mu}, y_{j+\nu} \mid \leq k\left\|D_{y y} v\right\| .\right.
\end{align*}
$$

Consequently, we get

$$
\begin{align*}
& \left|\xi_{h k}^{(i, j)}[v]\right| \leq\|(h, k)\| \sum_{\mu, \nu \geq 0 ; \mu+\nu \leq 3}\left\|D_{x}^{\mu} D_{y}^{\nu} v\right\|+ \tag{17}\\
& \quad \gamma_{0}\left[v, \delta_{1} v, \delta_{2} v\right](h, k)+L_{1} h\left\|D_{x x} v\right\|+L_{2} k\left\|D_{y y} v\right\|
\end{align*}
$$

for $\left(x_{i}, y_{j}\right) \in E_{h k}$, where $\gamma_{0}\left[v, \delta_{1} v, \delta_{2} v\right] \in \Gamma_{0}$ is taken out of Assumption 2. This completes the proof.

We formulate a lemma on stability of the difference scheme.

Lemma 2 Suppose that Assumption 3 is satisfied. Take $z, \bar{z} \in \mathcal{F}\left(\tilde{E}_{h k}, R\right)$; the function z satisfying (3), (4), and the function \bar{z} satisfying the inequalities

$$
\begin{align*}
\left|\xi_{h k}^{(i, j)}[\bar{z}]\right| & \leq \bar{\gamma}(h, k) \quad \text { for }\left(x_{i}, y_{j}\right) \in E_{h k}, \tag{18}\\
\left|z^{(i, j)}-\bar{z}^{(i, j)}\right| & \leq \bar{\gamma}_{0}(h, k) \quad \text { for }\left(x_{i}, y_{j}\right) \in E_{h k}^{0}, \\
\left|\delta_{1} z^{(i, j)}-\delta_{1} \bar{z}^{(i, j)}\right| & \leq \bar{\gamma}_{1}(h, k) \quad \text { for }\left(x_{i}, y_{j}\right),\left(x_{i+1}, y_{j}\right) \in E_{h k}^{0}, \\
\left|\delta_{2} z^{(i, j)}-\delta_{2} \bar{z}^{(i, j)}\right| & \leq \bar{\gamma}_{2}(h, k) \quad \text { for }\left(x_{i}, y_{j}\right),\left(x_{i}, y_{j+1}\right) \in E_{h k}^{0},
\end{align*}
$$

where $\bar{\gamma}, \bar{\gamma}_{0}, \bar{\gamma}_{1}, \bar{\gamma}_{2} \in \Gamma_{0}$. Then we have

$$
\begin{aligned}
\left|z^{(i, j)}-\bar{z}^{(i, j)}\right| & \leq W_{0}\left(x_{i}, y_{j}\right) \quad \text { for } \quad\left(x_{i}, y_{j}\right) \in \tilde{E}_{h k}, \\
\left|\delta_{1} z^{(i, j)}-\delta_{1} \bar{z}^{(i, j)}\right| & \leq W_{1}\left(x_{i}, y_{j}\right) \quad \text { for }\left(x_{i}, y_{j}\right),\left(x_{i+1}, y_{j}\right) \in \tilde{E}_{h k}, \\
\left|\delta_{2} z^{(i, j)}-\delta_{2} \bar{z}^{(i, j)}\right| & \leq W_{2}\left(x_{i}, y_{j}\right) \quad \text { for } \quad\left(x_{i}, y_{j}\right),\left(x_{i}, y_{j+1}\right) \in \tilde{E}_{h k},
\end{aligned}
$$

where the functions $W_{0}, W_{1}, W_{2}: E_{0} \cup E \rightarrow R$ are defined by

$$
\begin{align*}
& W_{0}(x, y)= \begin{cases}3 \bar{\gamma}_{0}(h, k)+x y \bar{\gamma}(h, k)+\int_{0}^{x} \int_{0}^{y} \tilde{W}(s, t) d t d s & \text { on } E, \\
W_{0}(\max \{x, 0\}, \max \{y, 0\}) & \text { on } E_{0},\end{cases} \tag{19}\\
& W_{1}(x, y)= \begin{cases}\bar{\gamma}_{1}(h, k)+y \bar{\gamma}(h, k)+\int_{0}^{y} \tilde{W}(x, t) d t & \text { on } E, \\
W_{1}(\max \{x, 0\}, \max \{y, 0\}) & \text { on } E_{0},\end{cases} \\
& W_{2}(x, y)= \begin{cases}\bar{\gamma}_{2}(h, k)+x \bar{\gamma}(h, k)+\int_{0}^{x} \tilde{W}(s, y) d s & \text { on } E, \\
W_{2}(\max \{x, 0\}, \max \{y, 0\}) & \text { on } E_{0},\end{cases}
\end{align*}
$$

and the function $\tilde{W}: E \rightarrow R_{+}$is a unique solution to the Darboux problem

$$
\begin{align*}
& D_{x y} z(x, y)=L_{0} z(x, y)+L_{1} D_{x} z(x, y)+L_{2} D_{y} z(x, y), \tag{20}\\
& \begin{cases}z(0, y)=\left(3 L_{0} \bar{\gamma}_{0}+L_{1} \bar{\gamma}_{1}+L_{2} \bar{\gamma}_{2}+\bar{\gamma}\left(y L_{1}+1\right) \frac{e e^{y L_{1}-1}}{L_{1}},\right. & \text { for } y \in[0, b], \\
z(x, 0)=\left(3 L_{0} \bar{\gamma}_{0}+L_{1} \bar{\gamma}_{1}+L_{2} \bar{\gamma}_{2}+\bar{\gamma}\left(x L_{2}+1\right)\right) \frac{e^{L_{2}}-1}{L_{2}}, & \text { for } x \in[0, a],\end{cases}
\end{align*}
$$

where $\bar{\gamma}_{\nu}=\bar{\gamma}_{\nu}(h, k)$ for $\nu=0,1,2$, and $\bar{\gamma}=\bar{\gamma}(h, k)$.

Proof. In view of formula (12) we deduce for $\left(x_{i}, y_{j}\right) \in E_{h k}^{+}$the estimate

$$
\begin{aligned}
& \left|z^{(i, j)}-\bar{z}^{(i, j)}\right| \leq \\
& \quad\left|\mathcal{L}_{0} z^{(i, j)}-\mathcal{L}_{0} \bar{z}^{(i, j)}\right|+h k \sum_{\mu=0}^{i-1} \sum_{\nu=0}^{j-1}\left|\xi_{h k}^{(\mu, \nu)}[\bar{z}]\right| \leq \\
& \quad 3 \bar{\gamma}_{0}(h, k)+x_{i} y_{j} \bar{\gamma}(h, k)+ \\
& \quad h k \sum_{\mu=0}^{i-1} \sum_{\nu=0}^{j-1}\left(L_{0}\left\|(z-\bar{z})_{[\mu, \nu]}\right\|+L_{1}\left\|\left(\delta_{1}(z-\bar{z})\right)_{[\mu, \nu]}\right\|+L_{2}\left\|\left(\delta_{2}(z-\bar{z})\right)_{[\mu, \nu]}\right\|\right) \leq \\
& \quad 3 \bar{\gamma}_{0}(h, k)+x_{i} y_{j} \bar{\gamma}(h, k)+ \\
& h k \sum_{\mu=0}^{i-1} \sum_{\nu=0}^{j-1}\left(L_{0} W_{0}\left(x_{\mu}, y_{\nu}\right)+L_{1} W_{1}\left(x_{\mu}, y_{\nu}\right)+L_{2} W_{2}\left(x_{\mu}, y_{\nu}\right)\right) \leq \\
& 3 \bar{\gamma}_{0}(h, k)+x_{i} y_{j} \bar{\gamma}(h, k)+ \\
& \int_{0}^{x_{i}} \int_{0}^{y_{j}}\left(L_{0} W_{0}(s, t)+L_{1} W_{1}(s, t)+L_{2} W_{2}(s, t)\right) d t d s \leq \\
& W_{0}\left(x_{i} \cdot y_{j}\right)
\end{aligned}
$$

Now, we take $\left(x_{i}, y_{j}\right) \in(0, k)+E_{h k}$ and derive the estimate

$$
\begin{aligned}
& \left|\delta_{1} z^{(i, j)}-\delta_{1} \bar{z}^{(i, j)}\right| \leq \\
& \quad\left|\mathcal{L}_{1} z^{(i, j)}-\mathcal{L}_{1} \bar{z}^{(i, j)}\right|+k \sum_{\nu=0}^{j-1}\left|\xi_{h k}^{(i, \nu)}[\bar{z}]\right| \leq \\
& \bar{\gamma}_{1}(h, k)+y_{j} \bar{\gamma}(h, k)+ \\
& \quad k \sum_{\nu=0}^{j-1}\left(L_{0}\left\|(z-\bar{z})_{[i, \nu]}\right\|+L_{1}\left\|\left(\delta_{1}(z-\bar{z})\right)_{[i, \nu]}\right\|+L_{2}\left\|\left(\delta_{2}(z-\bar{z})\right)_{[i, \nu]}\right\|\right) \leq \\
& \quad \bar{\gamma}_{1}(h, k)+y_{j} \bar{\gamma}(h, k)+ \\
& \quad k \sum_{\nu=0}^{j-1}\left(L_{0} W_{0}\left(x_{i}, y_{\nu}\right)+L_{1} W_{1}\left(x_{i}, y_{\nu}\right)+L_{2} W_{2}\left(x_{i}, y_{\nu}\right)\right) \leq \\
& \bar{\gamma}_{1}(h, k)+y_{j} \bar{\gamma}(h, k)+ \\
& \int_{0}^{y_{j}}\left(L_{0} W_{0}\left(x_{i}, t\right)+L_{1} W_{1}\left(x_{i}, t\right)+L_{2} W_{2}\left(x_{i}, t\right)\right) d t \leq \\
& W_{1}\left(x_{i} . y_{j}\right) .
\end{aligned}
$$

Taking $\left(x_{i}, y_{j}\right) \in(h, 0)+E_{h k}$, we derive the estimate

$$
\begin{aligned}
& \left|\delta_{2} z^{(i, j)}-\delta_{2} \bar{z}^{(i, j)}\right| \leq \\
& \quad\left|\mathcal{L}_{2} z^{(i, j)}-\mathcal{L}_{2} \bar{z}^{(i, j)}\right|+k \sum_{\mu=0}^{i-1}\left|\xi_{h k}^{(\mu, j)}[\bar{z}]\right| \leq \\
& \quad \bar{\gamma}_{2}(h, k)+x_{i} \bar{\gamma}(h, k)+ \\
& \quad h \sum_{\mu=0}^{i-1}\left(L_{0}\left\|(z-\bar{z})_{[\mu, j]}\right\|+L_{1}\left\|\left(\delta_{1}(z-\bar{z})\right)_{[\mu, j]}\right\|+L_{2}\left\|\left(\delta_{2}(z-\bar{z})\right)_{[\mu, j]}\right\|\right) \leq \\
& \quad \bar{\gamma}_{2}(h, k)+x_{i} \bar{\gamma}(h, k)+ \\
& k \sum_{\mu=0}^{i-1}\left(L_{0} W_{0}\left(x_{\mu}, y_{j}\right)+L_{1} W_{1}\left(x_{\mu}, y_{j}\right)+L_{2} W_{2}\left(x_{\mu}, y_{j}\right)\right) \leq \\
& \bar{\gamma}_{2}(h, k)+x_{i} \bar{\gamma}(h, k)+ \\
& \int_{0}^{x_{i}}\left(L_{0} W_{0}\left(s, y_{j}\right)+L_{1} W_{1}\left(s, y_{j}\right)+L_{2} W_{2}\left(s, y_{j}\right) d s\right) \leq \\
& W_{2}\left(x_{i} . y_{j}\right) .
\end{aligned}
$$

These estimates establish the assertion of our lemma, which finishes the proof.

5 The main result - convergence theorem

Our convergence result is based on consistency and stability. The main theorem will be followed by some efficient error estimates.

Theorem 1 Suppose that Assumptions 1, 2 and 3 are satisfied. Assume that the function $z \in \mathcal{F}\left(\tilde{E}_{h k}, R\right)$ is a solution to problem (3), (4) satisfying within $E_{h k}^{0}$ the inequalities

$$
\begin{align*}
\left|\phi_{h k}^{(i, j)}-\phi\left(x_{i}, y_{j}\right)\right| & \leq \bar{\gamma}_{0}(h, k) \quad \text { for }\left(x_{i}, y_{j}\right) \in E_{h k}^{0}, \tag{21}\\
\left|\delta_{1} \phi_{h k}^{(i, j)}-\delta_{1} \bar{\phi}^{(i, j)}\right| & \leq \bar{\gamma}_{1}(h, k) \quad \text { for }\left(x_{i}, y_{j}\right),\left(x_{i+1}, y_{j}\right) \in E_{h k}^{0}, \\
\left|\delta_{2} \phi_{h k}^{(i, j)}-\delta_{2} \bar{\phi}^{(i, j)}\right| & \leq \bar{\gamma}_{2}(h, k) \quad \text { for }\left(x_{i}, y_{j}\right),\left(x_{i}, y_{j+1}\right) \in E_{h k}^{0},
\end{align*}
$$

where $\bar{\gamma}, \bar{\gamma}_{0}, \bar{\gamma}_{1}, \bar{\gamma}_{2} \in \Gamma_{0}$. Then we have

$$
\left|v^{(i, j)}-z^{(i, j)}\right|,\left|D_{x} v\left(x_{i}, y_{j}\right)-\delta_{1} \bar{z}^{(i, j)}\right|,\left|D_{y} v\left(x_{i}, y_{j}\right)-\delta_{2} \bar{z}^{(i, j)}\right| \rightarrow 0
$$

as $(h, k) \rightarrow(0,0)$.

Proof. It follows from Lemma 1 that the function $\gamma(h, k)=\max _{i, j}\left|\xi_{h k}^{(i, j)}[v]\right|$ is of class Γ_{0}. Define $\bar{\gamma}_{\epsilon} \Gamma_{0}$ as the right-hand side of inequality (17):

$$
\begin{align*}
& \bar{\gamma}(h, k)=\|(h, k)\| \sum_{\mu, \nu \geq 0 ; \mu+\nu \leq 3}\left\|D_{x}^{\mu} D_{y}^{\nu} v\right\|+ \tag{22}\\
& \quad \gamma_{0}\left[v, \delta_{1} v, \delta_{2} v\right](h, k)+L_{1} h\left\|D_{x x} v\right\|+L_{2} k\left\|D_{y y} v\right\| .
\end{align*}
$$

If we put $\bar{z}=v_{\left.\right|_{\tilde{E}_{h k}}}$, then formulas (17), (22), (21) yield (18). It follows from Lemma 2 that

$$
\begin{aligned}
\left|z^{(i, j)}-v^{(i, j)}\right| & \leq W_{0}\left(x_{i}, y_{j}\right) \text { for }\left(x_{i}, y_{j}\right) \in \tilde{E}_{h k}, \\
\left|\delta_{1} z^{(i, j)}-\delta_{1} v^{(i, j)}\right| & \leq W_{1}\left(x_{i}, y_{j}\right) \text { for }\left(x_{i}, y_{j}\right),\left(x_{i+1}, y_{j}\right) \in \tilde{E}_{h k}, \\
\left|\delta_{2} z^{(i, j)}-\delta_{2} v^{(i, j)}\right| & \leq W_{2}\left(x_{i}, y_{j}\right) \text { for }\left(x_{i}, y_{j}\right),\left(x_{i}, y_{j+1}\right) \in \tilde{E}_{h k},
\end{aligned}
$$

where the functions $W_{0}, W_{1}, W_{2}: E_{0} \cup E \rightarrow R$ are defined by (19) with \tilde{W} satisfying (20). Because of the continuous dependence on the initial data, we claim that the function \tilde{W}, and consequently the functions W_{0}, W_{1}, W_{2} tend to 0 as $(h, k) \rightarrow 0$. Finally, we derive

$$
\begin{align*}
& \left|D_{x} v\left(x_{i}, y_{j}\right)-\delta_{1} z^{(i, j)}\right| \leq \tag{23}\\
& \quad\left|D_{x} v\left(x_{i}, y_{j}\right)-\delta_{1} v^{(i, j)}\right|+\left|\delta_{1} v^{(i, j)}-\delta_{1} z^{(i, j)}\right| \leq h\left\|D_{x x} v\right\|+W_{1}\left(x_{i}, y_{j}\right) \\
& \quad \text { for }\left(x_{i}, y_{j}\right),\left(x_{i+1}, y_{j}\right) \in \tilde{E}_{h k}, \\
& \left|D_{y} v\left(x_{i}, y_{j}\right)-\delta_{2} z^{(i, j)}\right| \leq \\
& \quad\left|D_{y} v\left(x_{i}, y_{j}\right)-\delta_{2} v^{(i, j)}\right|+\left|\delta_{2} v^{(i, j)}-\delta_{2} z^{(i, j)}\right| \leq k\left\|D_{y y} v\right\|+W_{2}\left(x_{i}, y_{j}\right) \\
& \quad \text { for }\left(x_{i}, y_{j}\right),\left(x_{i}, y_{j+1}\right) \in \tilde{E}_{h k} .
\end{align*}
$$

This completes the proof.
In order to give some explicite error estimates we will majorate it by means of the following lemma the function \tilde{W} satisfying equation (20).

Lemma 3 Suppose that a function $z: E \rightarrow R$ satisfies the equation

$$
\begin{cases}D_{x y} z(x, y)=L_{0} z(x, y)+L D_{x} z(x, y)+L D_{y} z(x, y), & \tag{24}\\ z(x, 0)=C(1+x)\left(e^{L x}-1\right) / L, & \text { for } x \in[0, a], \\ z(0, y)=C(1+y)\left(e^{L y}-1\right) / L, & \text { for } y \in[0, b]\end{cases}
$$

for some $C, L \in R_{+}$. Then we have

$$
\begin{equation*}
z(x, y) \leq \frac{C}{L} e^{L(x+y)} \sum_{\nu=0}^{\infty} \frac{\left(\left(L_{0}+L^{2}\right) x y\right)^{\nu}}{(\nu!)^{2}} \leq \frac{C}{L} e^{L(x+y)+\left(L_{0}+L^{2}\right) x y} \tag{25}
\end{equation*}
$$

for $(x, y) \in E$.

Proof. Define the function $\tilde{z}: E \rightarrow R$ as $\tilde{z}(x, y)=e^{-L(x+y)} z(x, y)$ for $(x, y) \in E$. It is clear that the function \tilde{z} satisfies the equation

$$
\begin{equation*}
D_{x y} \tilde{z}(x, y)=e^{-L(x+y)} z(x, y)\left(L_{0}+L^{2}\right)=\tilde{z}(x, y)\left(L_{0}+L^{2}\right) \tag{26}
\end{equation*}
$$

and the initial condition

$$
\begin{cases}\tilde{z}(x, 0)=C(1+x)\left(1-e^{-L x}\right) / L \leq C(1+x) / L, & \text { for } x \in[0, a], \tag{27}\\ \tilde{z}(0, y)=C(1+y)\left(1-e^{-L y}\right) / L \leq C(1+y) / L, & \text { for } y \in[0, b]\end{cases}
$$

If we solve the comparison problem with respect to problem (26), (27), then we obtain the estimate

$$
\begin{equation*}
\tilde{z}(x, y) \leq \frac{C}{L} \sum_{\nu=0}^{\infty} \frac{\left(\left(L_{0}+L^{2}\right) x y\right)^{\nu}}{(\nu!)^{2}} \tag{28}
\end{equation*}
$$

The remaining part of the proof is trivial.

Corollary 1 Suppose that the assumptions of Theorem 1 are satisfied. Then we have

$$
\begin{align*}
& \left|v^{(i, j)}-z^{(i, j)}\right| \leq \tag{29}\\
& \quad 3 \bar{\gamma}_{0}(h, k)+x_{i} y_{j} \bar{\gamma}(h, k)+x_{i} y_{j} \frac{C(h, k)}{L} e^{\left(x_{i}+y_{j}\right) L+x_{i} y_{j}\left(L_{0}+L^{2}\right)}, \\
& \quad \text { for }\left(x_{i}, y_{j}\right) \in E_{h k}^{+}, \\
& \left|D_{x} v\left(x_{i}, y_{j}\right)-\delta_{1} z^{(i, j)}\right| \leq \tag{30}\\
& \quad h\left\|D_{x x} v\right\|+\bar{\gamma}_{1}(h, k)+y_{j} \bar{\gamma}(h, k)+y_{j} \frac{C(h, k)}{L} e^{\left(x_{i}+y_{j}\right) L+x_{i} y_{j}\left(L_{0}+L^{2}\right)}, \\
& \quad \text { for }\left(x_{i}, y_{j}\right),\left(x_{i+1}, y_{j}\right) \in E_{h k}, \\
& \left|D_{y} v\left(x_{i}, y_{j}\right)-\delta_{2} z^{\left.z^{i, j}\right)}\right| \leq \tag{31}\\
& \quad k\left\|D_{y y} v\right\|+\bar{\gamma}_{2}(h, k)+x_{i} \bar{\gamma}(h, k)+x_{i} \frac{C(h, k)}{L} e^{\left(x_{i}+y_{j}\right) L+x_{i} y_{j}\left(L_{0}+L^{2}\right)}, \\
& \quad \text { for }\left(x_{i}, y_{j}\right),\left(x_{i}, y_{j+1}\right) \in E_{h k},
\end{align*}
$$

where

$$
\begin{aligned}
L & =L_{1}+L_{2} \\
C(h, k) & =3 L_{0} \bar{\gamma}_{0}(h, k)+L_{1} \bar{\gamma}_{1}(h, k)+L_{2} \bar{\gamma}_{2}(h, k)+\bar{\gamma}(h, k)(L+1) .
\end{aligned}
$$

Proof. From Lemma 3 we obtain the estimate

$$
\begin{equation*}
\tilde{W}(x, y) \leq \frac{C}{L} e^{L(x+y)+\left(L_{0}+L^{2}\right) x y} \tag{32}
\end{equation*}
$$

with $C=C(h, k)$. Observe that

$$
\begin{aligned}
\int_{0}^{x} \int_{0}^{y} e^{L(s+t)+\left(L_{0}+L^{2}\right) s t} d t d s & \leq x y e^{L(x+y)+\left(L_{0}+L^{2}\right) x y} \\
\int_{0}^{y} e^{L(x+t)+\left(L_{0}+L^{2}\right) x t} d t d s & \leq y e^{L(x+y)+\left(L_{0}+L^{2}\right) x y} \\
\int_{0}^{x} e^{L(s+y)+\left(L_{0}+L^{2}\right) s y} d t d s & \leq x e^{L(x+y)+\left(L_{0}+L^{2}\right) x y}
\end{aligned}
$$

Our assertion follows from the estimates in the proof of Theorem 1. This completes the proof.

Note that Corollary 1 yields some effective error estimates in dependence on the perturbations of the data and on the a priori bounds of classical solutions to the Darboux problem. Applying the more subtle estimate from Lemma 3 and the exact values of the integrals, we can obtain a more accurate error estimate.

6 An existence theorem

We give in Example 4 two generic kinds of functional dependence (deviated and integral) not only because of the awareness of a noticeable imbalance between the deviated and the integral dependence, namely: the Lipschitz condition holds for itegral functionals with somehow regular kernels, whereas any non-trivial deviations affect this property. The same behaviour has been observed while dealing with difference analogues of differential-functional problems. We will quote a theorem from [L1] which includes much more difficult type of equations with delays. First, we quote the assumptions concerning the case in question.
$\mathbf{A}[f]$. Suppose that $f: \Omega_{C L}:=E \times X_{0} \times X_{1} \times X_{2} \rightarrow R$, where $X_{0}=C_{L}(B, R)$ (the class of continuous functions satisfying the Lipschitz condition), $X_{1}=C_{0+L}(B, R)$ (the class of continuous functions satisfying the Lipschitz condition with respect to the second variable) and $X_{2}=C_{L+0}(B, R)$ (the class of continuous functions satisfying the Lipschitz condition with respect to the first variable). Assume that the function f is continuous on Ω_{C} and there are $L, L_{0}, L_{1}, L_{2} \in R_{+}$such that

$$
\begin{aligned}
& \left|f\left(x, y, w_{0}, w_{1}, w_{2}\right)-f\left(\bar{x}, \bar{y}, \bar{w}_{0}, \bar{w}_{1}, \bar{w}_{2}\right)\right| \leq \\
& \quad L\|(x-\bar{x}, y-\bar{y})\|+L_{0}\left\|w_{0}-\bar{w}_{0}\right\|_{L}+L_{1}\left\|w_{1}-\bar{w}_{1}\right\|_{0+L}+L_{2}\left\|w_{2}-\bar{w}_{2}\right\|_{L+0}
\end{aligned}
$$

for all $\left(w_{0}, w_{1}, w_{2}\right),\left(\bar{w}_{0}, \bar{w}_{1}, \bar{w}_{2}\right) \in X_{0} \times X_{1} \times X_{2}$ and $(x, y) \in E$, where the norms $\|\cdot\|_{L},\|\cdot\|_{0+L},\|\cdot\|_{L+0}$ in functional spaces X_{0}, X_{1}, X_{2} are defined by

$$
\begin{aligned}
\left\|w_{0}\right\|_{L} & =\left\|w_{0}\right\|+\sup _{(x, y) \neq(\bar{x}, \bar{y})} \frac{\left|w_{0}(x, y)-w_{0}(\bar{x}, \bar{y})\right|}{\|(x-\bar{x}, y-\bar{y})\|} \\
\left\|w_{1}\right\|_{0+L} & =\left\|w_{1}\right\|+\sup _{(x, y) \neq(x, \bar{y})} \frac{\left|w_{1}(x, y)-w_{1}(x, \bar{y})\right|}{|y-\bar{y}|} \\
\left\|w_{2}\right\|_{L+0} & =\left\|w_{2}\right\|+\sup _{(x, y) \neq(\bar{x}, y)} \frac{\left|w_{2}(x, y)-w_{2}(\bar{x}, y)\right|}{|x-\bar{x}|}
\end{aligned}
$$

for $w_{\nu} \in X_{\nu}(\nu=0,1,2)$.
$\mathbf{A}[\phi]$. Suppose that $\phi: E_{0} \rightarrow R$ is differentiable and $D_{x} \phi \in C_{0+L}\left(E_{0}, R\right), D_{y} \phi \in$ $C_{L+0}\left(E_{0}, R\right)$.

Observe the fact of losing the global character of existence, which results in demanding that the Lipschitz constants L_{1}, L_{2} be sufficiently small.
$\mathbf{A}\left[C_{\nu}\right]$. Suppose that there are $\theta \in(0,1)$ and $C_{f} \in R_{+}$such that

$$
\theta=L_{0}(a b+a+b)+L_{1}(1+b)+L_{2}(1+a) \quad \text { and } \quad\|f(\cdot, \cdot, 0,0,0)\| \leq C_{f}
$$

If the assumption $\mathrm{A}\left[C_{\nu}\right]$ holds, we can define a few positive constants: C, C_{0}, C_{1}, C_{2} by

$$
\begin{align*}
C & =\frac{C_{f}+3 L_{0}\|\phi\|+\|\phi\|_{L}\left(2 L_{0}+L_{1}+L_{2}\right)}{1-\theta} \tag{33}\\
C_{0} & =(a b+a+b) C+3\|\phi\|+2\|\phi\|_{L} \\
C_{1} & =\|\phi\|_{L}+(1+b) C, \quad C_{2}=\|\phi\|_{L}+(1+a) C .
\end{align*}
$$

Define the set $\mathcal{X}_{L}\left[C_{0}, C_{1}, C_{2}\right]$ by the fomula

$$
\begin{aligned}
& \mathcal{X}_{L}\left[C_{0}, C_{1}, C_{2}\right]= \\
& \quad\left\{\left(z_{0}, z_{1}, z_{2}\right) \in \mathcal{X} \mid\left\|z_{0}\right\|_{L} \leq C_{0},\left\|z_{1}\right\|_{0+L} \leq C_{1},\left\|z_{2}\right\|_{L+0} \leq C_{2}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
\left\|z_{0}\right\|_{L} & =\sup _{(x, y) \in E}\left\|\left(z_{0}\right)_{(x, y)}\right\|_{L}, \\
\left\|z_{1}\right\|_{0+L} & =\sup _{(x, y) \in E}\left\|\left(z_{1}\right)_{(x, y)}\right\|_{0+L}, \\
\left\|z_{2}\right\|_{L+0} & =\sup _{(x, y) \in E}\left\|\left(z_{2}\right)_{(x, y)}\right\|_{L+0} .
\end{aligned}
$$

We cite after [L1] the existence theorem for differential-functional problem (1), (2).
Theorem 2 Suppose that the assumptions $A[\phi], A[f]$ and $A\left[C_{\nu}\right]$ are satisfied. Then there is a unique solution $z=\left(z_{0}, z_{1}, z_{2}\right)$ to a natural integral equivalent of problem (1), (2) in the class $\mathcal{X}_{L}\left[C_{0}, C_{1}, C_{2}\right]$. Moreover, we have $z_{1}=D_{x} z_{0}$ and $z_{2}=D_{y} z_{0}$ on $E_{0} \cup E$, and the function z_{0} is a classical solution to problem (1), (2).

Existence results can be found also in [By], [Cz], [LLV]. We shall formulate assumptions which reflect the character of these sufficient conditions for existence and uniqueness. The ideas and methods used in the proofs of stability and convergence statements can be found to be parallel to that of existence and uniqueness.

7 Other stability, consistency and convergence results

Define the discrete norms

$$
\begin{align*}
\|w\|_{L} & =\|w\|+\left\|\delta_{1} w\right\|+\left\|\delta_{2} w\right\| \tag{34}\\
\|w\|_{L+0} & =\|w\|+\left\|\delta_{1} w\right\|, \quad\|w\|_{0+L}=\|w\|+\left\|\delta_{2} w\right\|
\end{align*}
$$

for $w \in \mathcal{F}(X, R)$, where X stands either for $\tilde{E}_{h k}$ or $B_{h k}$ in dependence on the context. The difference operators in the above definition are discrete counterparts of the Lipschitz constants.

Assumption 4 Suppose that there are constants $L_{0}, L_{1}, L_{2} \in R_{+}$(independent of $(h, k))$ such that

$$
\begin{aligned}
& \left|f_{h k}\left(x_{i}, y_{j}, w_{0}, w_{1}, w_{2}\right)-f_{h k}\left(x_{i}, y_{j}, \bar{w}_{0}, \bar{w}_{1}, \bar{w}_{2}\right)\right| \leq \\
& \quad L_{0}\left\|w_{0}-\bar{w}_{0}\right\|_{L}+L_{1}\left\|w_{1}-\bar{w}_{1}\right\|_{0+L}+L_{2}\left\|w_{2}-\bar{w}_{2}\right\|_{L+0}
\end{aligned}
$$

for $\left(x_{i}, y_{j}, w_{0}, w_{1}, w_{2}\right),\left(x_{i}, y_{j}, \bar{w}_{0}, \bar{w}_{1}, \bar{w}_{2}\right) \in \Omega_{h k}$.
Note that what Assumption 4 states of the function $f_{h k}$ is very close to $\mathrm{A}[f]$, compare also Example 1 and 2.

We start the main body of this section with a lemma on the consistency of the difference scheme with the differential-functional problem.

Lemma 4 Suppose that Assumptions 1, 2 and 3 are satisfied. Then the function $\gamma(h, k)=\max _{i, j}\left|\xi_{h k}^{(i, j)}[v]\right|$ is of class Γ_{0}.

We omit the proof as it is similar to that of Lemma 1. We formulate a lemma on stabiliy of the difference scheme.

Lemma 5 Suppose that Assumption 4 is satisfied. Take $z, \bar{z} \in \mathcal{F}\left(\tilde{E}_{h k}, R\right)$; the function z satisfying (3), (4), and the function \bar{z} satisfying the inequalities

$$
\begin{align*}
\left|\xi_{h k}^{(i, j)}[\bar{z}]\right| & \leq \bar{\gamma}(h, k) \quad \text { for }\left(x_{i}, y_{j}\right) \in E_{h k}, \tag{35}\\
\left|z^{(i, j)}-\bar{z}^{(i, j)}\right| & \leq \bar{\gamma}_{0}(h, k) \quad \text { for }\left(x_{i}, y_{j}\right) \in E_{h k}^{0}, \\
\left|\delta_{1} z^{(i, j)}-\delta_{1} \bar{z}^{(i, j)}\right| & \leq \bar{\gamma}_{1}(h, k) \text { for }\left(x_{i}, y_{j}\right),\left(x_{i+1}, y_{j}\right) \in E_{h k}^{0}, \\
\left|\delta_{2} z^{(i, j)}-\delta_{2} \bar{z}^{(i, j)}\right| & \leq \bar{\gamma}_{2}(h, k) \text { for }\left(x_{i}, y_{j}\right),\left(x_{i}, y_{j+1}\right) \in E_{h k}^{0}, \\
\left|\delta_{12} z^{(i, j)}-\delta_{12} \bar{z}^{(i, j)}\right| & \leq \bar{\gamma}_{12}(h, k) \quad \text { for }\left(x_{i}, y_{j}\right),\left(x_{i}, y_{j+1}\right),\left(x_{i+1}, y_{j}\right) \in E_{h k}^{0},
\end{align*}
$$

where $\bar{\gamma}, \bar{\gamma}_{0}, \bar{\gamma}_{1}, \bar{\gamma}_{2}, \bar{\gamma}_{12} \in \Gamma_{0}$. Then we have

$$
\begin{align*}
\left|z^{(i, j)}-\bar{z}^{(i, j)}\right| & \leq C_{0}(h, k) \quad \text { for }\left(x_{i}, y_{j}\right) \in \tilde{E}_{h k}, \tag{36}\\
\left|\delta_{1} z^{(i, j)}-\delta_{1} \bar{z}^{(i, j)}\right| & \leq C_{1}(h, k) \text { for }\left(x_{i}, y_{j}\right),\left(x_{i+1}, y_{j}\right) \in \tilde{E}_{h k}, \\
\left|\delta_{2} z^{(i, j)}-\delta_{2} \bar{z}^{(i, j)}\right| & \leq C_{2}(h, k) \text { for }\left(x_{i}, y_{j}\right),\left(x_{i}, y_{j+1}\right) \in \tilde{E}_{h k}, \\
\left|\delta_{12} z^{(i, j)}-\delta_{12} \bar{z}^{(i, j)}\right| & \leq C_{12}(h, k) \text { for }\left(x_{i}, y_{j}\right),\left(x_{i+1}, y_{j+1}\right) \in \tilde{E}_{h k},
\end{align*}
$$

where

$$
\begin{align*}
C_{0}(h, k) & =3 \bar{\gamma}_{0}(h, k)+a b \bar{\gamma}(h, k)+a b C(h, k), \tag{37}\\
C_{1}(h, k) & =\bar{\gamma}_{1}(h, k)+b \bar{\gamma}(h, k)+b C(h . k), \\
C_{2}(h, k) & =\bar{\gamma}_{2}(h, k)+a \bar{\gamma}(h, k)+a C(h, k), \\
C_{12}(h, k) & =\bar{\gamma}(h, k)+C(h, k)
\end{align*}
$$

with

$$
\begin{align*}
& C(h, k)= \tag{38}\\
& \quad \frac{3 \bar{\gamma}_{0}(h, k) L_{0}+\bar{\gamma}_{1}(h, k)\left(L_{0}+L_{1}\right)+\bar{\gamma}_{2}(h, k)\left(L_{0}+L_{2}\right)+\bar{\gamma}(h, k) \theta}{1-\theta}
\end{align*}
$$

and $C_{0}(h, k), C_{1}(h, k), C_{2}(h, k), C_{12}(h, k) \rightarrow 0$ as $h, k \rightarrow 0$.

Proof. The estimates are obvious on $E_{h k}^{0}$. If we define the error $z-\bar{z}$, then there is no question of the explicite solvability of the error equation. The only matter is how to estabish its relevant estimate. In view of formula (12) and the above remark
on recurrence solvability we deduce for $\left(x_{i}, y_{j}\right) \in E_{h k}^{+}$the estimate

$$
\begin{aligned}
& \left|z^{(i, j)}-\bar{z}^{(i, j)}\right| \leq \\
& \quad\left|\mathcal{L}_{0} z^{(i, j)}-\mathcal{L}_{0} \bar{z}^{(i, j)}\right|+h k \sum_{\mu=0}^{i-1} \sum_{\nu=0}^{j-1}\left|\xi_{h k}^{(\mu, \nu)}[\bar{z}]\right| \leq \\
& \quad 3 \bar{\gamma}_{0}(h, k)+x_{i} y_{j} \bar{\gamma}(h, k)+h k \sum_{\mu=0}^{i-1} \sum_{\nu=0}^{j-1}\left(L_{0}\left\|(z-\bar{z})_{[\mu, \nu]}\right\|_{L}+\right. \\
& \left.\quad L_{1}\left\|\left(\delta_{1}(z-\bar{z})\right)_{[\mu, \nu]}\right\|_{L+0}+L_{2}\left\|\left(\delta_{2}(z-\bar{z})\right)_{[\mu, \nu]}\right\|_{0+L}\right) \leq \\
& \quad 3 \bar{\gamma}_{0}(h, k)+x_{i} y_{j} \bar{\gamma}(h, k)+h k i j\left(L_{0}\left(C_{0}(h, k)+C_{1}(h, k)+C_{2}(h, k)\right)+\right. \\
& \left.\quad L_{1}\left(C_{1}(h, k)+C_{12}(h, k)\right)+L_{2}\left(C_{2}(h, k)+C_{12}(h, k)\right)\right) \leq C_{0}(h, k) .
\end{aligned}
$$

Now, we take $\left(x_{i}, y_{j}\right) \in(0, k)+E_{h k}$ and derive the estimate

$$
\begin{aligned}
& \left|\delta_{1} z^{(i, j)}-\delta_{1} \bar{z}^{(i, j)}\right| \leq \\
& \quad\left|\mathcal{L}_{1} z^{(i, j)}-\mathcal{L}_{1} \bar{z}^{(i, j)}\right|+k \sum_{\nu=0}^{j-1}\left|\xi_{h k}^{(i, \nu)}[\bar{z}]\right| \leq \\
& \quad \bar{\gamma}_{1}(h, k)+y_{j} \bar{\gamma}(h, k)+k j\left(L_{0}\left(C_{0}(h, k)+C_{1}(h, k)+C_{2}(h, k)\right)+\right. \\
& \left.\quad L_{1}\left(C_{1}(h, k)+C_{12}(h, k)\right)+L_{2}\left(C_{2}(h, k)+C_{12}(h, k)\right)\right) \leq C_{1}(h, k) .
\end{aligned}
$$

Taking $\left(x_{i}, y_{j}\right) \in(h, 0)+E_{h k}$, we derive the estimate

$$
\begin{aligned}
& \left|\delta_{2} z^{(i, j)}-\delta_{2} \bar{z}^{(i, j)}\right| \leq \\
& \quad\left|\mathcal{L}_{2} z^{(i, j)}-\mathcal{L}_{2} \bar{z}^{(i, j)}\right|+k \sum_{\mu=0}^{i-1}\left|\xi_{h k}^{(\mu, j)}[\bar{z}]\right| \leq \\
& \quad \bar{\gamma}_{2}(h, k)+x_{i} \bar{\gamma}(h, k)+h i\left(L_{0}\left(C_{0}(h, k)+C_{1}(h, k)+C_{2}(h, k)\right)+\right. \\
& \left.\quad L_{1}\left(C_{1}(h, k)+C_{12}(h, k)\right)+L_{2}\left(C_{2}(h, k)+C_{12}(h, k)\right)\right) \leq C_{2}(h, k) .
\end{aligned}
$$

Finally, taking $\left(x_{i}, y_{j}\right) \in E_{h k}$ such that $\left(x_{i+1}, y_{j}\right),\left(x_{i}, y_{j+1}\right) \in E_{h k}$, we get

$$
\begin{aligned}
& \left|\delta_{12} z^{(i, j)}-\delta_{12} \bar{z}^{(i, j)}\right| \leq \\
& \left.\quad \mid f_{h k}\left(x_{i}, y_{j}, z_{[i, j]},\left(\delta_{1} z\right)_{[i, j]},\left(\delta_{2} z\right)_{[i, j]}\right)\right)- \\
& \left.\quad f_{h k}\left(x_{i}, y_{j}, \bar{z}_{[i, j]},\left(\delta_{1} \bar{z}\right)_{[i, j]},\left(\delta_{2} \bar{z}\right)_{[i, j]}\right)\right)\left|+k \sum_{\mu=0}^{i-1}\right| \xi_{h k}^{(\mu, j)}[\bar{z}] \mid \leq \\
& \quad \bar{\gamma}(h, k)+\left(L_{0}\left(C_{0}(h, k)+C_{1}(h, k)+C_{2}(h, k)\right)+\right. \\
& \left.\quad L_{1}\left(C_{1}(h, k)+C_{12}(h, k)\right)+L_{2}\left(C_{2}(h, k)+C_{12}(h, k)\right)\right) \leq C_{12}(h, k) .
\end{aligned}
$$

These estimates establish the assertion of our lemma, which finishes the proof.

Theorem 3 Suppose that Assumptions 1, 2, 4 and $A\left[C_{\nu}\right]$ are satisfied. Assume that the function $z \in \mathcal{F}\left(\tilde{E}_{h k}, R\right)$ is a solution to problem (3), (4) satisfying within $E_{h k}^{0}$ the inequalities

$$
\begin{align*}
\left|\phi_{h k}^{(i, j)}-\phi\left(x_{i}, y_{j}\right)\right| & \leq \bar{\gamma}_{0}(h, k) \quad \text { for }\left(x_{i}, y_{j}\right) \in E_{h k}^{0}, \tag{39}\\
\left|\delta_{1} \phi_{h k}^{(i, j)}-\delta_{1} \bar{\phi}^{(i, j)}\right| & \leq \bar{\gamma}_{1}(h, k) \text { for }\left(x_{i}, y_{j}\right),\left(x_{i+1}, y_{j}\right) \in E_{h k}^{0}, \\
\left|\delta_{2} \phi_{h k}^{(i, j)}-\delta_{2} \bar{\phi}^{(i, j)}\right| & \leq \bar{\gamma}_{2}(h, k) \text { for }\left(x_{i}, y_{j}\right),\left(x_{i}, y_{j+1}\right) \in E_{h k}^{0}, \\
\left|\delta_{12} \phi_{h k}^{(i, j)}-\delta_{12} \bar{\phi}^{(i, j)}\right| & \leq \bar{\gamma}_{12}(h, k) \quad \text { for }\left(x_{i}, y_{j}\right),\left(x_{i}, y_{j+1}\right),\left(x_{i+1}, y_{j}\right) \in E_{h k}^{0},
\end{align*}
$$

where $\bar{\gamma}, \bar{\gamma}_{0}, \bar{\gamma}_{1}, \bar{\gamma}_{2} \in \Gamma_{0}$. Then we have

$$
\begin{align*}
\left|v^{(i, j)}-z^{(i, j)}\right| & \leq C_{0}(h, k) \rightarrow 0 \tag{40}\\
\left|D_{x} v\left(x_{i}, y_{j}\right)-\delta_{1} \bar{z}^{(i, j)}\right| & \leq h\left\|D_{x x} v\right\|+C_{1}(h, k) \rightarrow 0, \\
\left|D_{y} v\left(x_{i}, y_{j}\right)-\delta_{2} \bar{z}^{(i, j)}\right| & \leq k\left\|D_{y y} v\right\|+C_{2}(h, k) \rightarrow 0 \\
\left|D_{x y} v\left(x_{i}, y_{j}\right)-\delta_{12} \bar{z}^{(i, j)}\right| & \leq\|(h, k)\| \sum_{\mu, \nu \geq 0 ; \mu+\nu \leq 3}\left\|D_{x}^{\mu} D_{y}^{\nu} v\right\|+C_{12}(h, k) \rightarrow 0 .
\end{align*}
$$

Proof. It follows from Lemma 1 that the function $\gamma(h, k)=\max _{i, j}\left|\xi_{h k}^{(i, j)}[v]\right|$ is of class Γ_{0}. Define $\bar{\gamma}_{\epsilon} \Gamma_{0}$ as the right-hand side of inequality (17). Assertion (40) is obtained by means of Lemma 5 with $\bar{\gamma}, \bar{\gamma}_{0}, \bar{\gamma}_{1}, \bar{\gamma}_{2}, \bar{\gamma}_{12}$ satisfying (35). This completes the proof.
Remark. The last inequality in (35) and (36) seem unnatural and inconvenient, but these constraints are contained by themselves just in the definitions of $\left\|\delta_{1} z\right\|_{0+L}=$ $\left\|\delta_{1} z\right\|+\left\|\delta_{12} z\right\|$ and $\left\|\delta_{2} z\right\|_{L+0}=\left\|\delta_{2} z\right\|+\left\|\delta_{12} z\right\|$. Our error estimates are local, which is due to Assumption 4 and $\mathrm{A}\left[C_{\nu}\right]$. Some parts of our assumptions (for instance on the boundedness of f) are not applied in their explicite forms. They are hidden somehow in the regularity of the solutions to the Darboux problem.

8 Numerical examples

We illustrate the results of our numerical experiments performed by PC IBM 486. Three differential equations whose share solution is

$$
\begin{equation*}
u(t, x)=1+t x^{2}-x t^{3} \tag{41}
\end{equation*}
$$

are considered in $E=[0,0.5] \times[0,0.5]$. We introduce the usual mesh with $h=k=$ 0.005 and show some computed values at the main diagonal of the square E.

Numerical example 1. We compute approximate solutions of the following nonlinear equation

$$
\begin{equation*}
D_{t x} u(t, x)=u(t, x)+\sin \left(D_{t} u(t, x)+D_{x} u(t, x)\right)+f_{1}(t, x), \tag{42}
\end{equation*}
$$

where the function $f_{1}: E \rightarrow R$ is defined as follows

$$
f_{1}(t, x)=-1-3 t^{2}+2 x+t^{3} x-t x^{2}+\sin \left(t^{3}-2 t x+3 t^{2} x-x^{2}\right) .
$$

The following table contains the diagonal values of $U_{\text {enh }}\left(x_{i}, x_{i}\right)$ and $U\left(x_{i}, x_{i}\right)$, the solutions of enhanced and usual difference schemes, and their errors $\operatorname{err}_{\text {enh }}$ and err, respectively.

$$
\begin{array}{ccccc}
x_{i} & U_{\text {enh }}\left(x_{i}, x_{i}\right) & e r r_{\text {enh }} & U\left(x_{i}, x_{i}\right) & e r r \\
& & & & \\
0.05 & 1.00011878 & 0.00000003 & 1.00010687 & -0.00001188 \\
0.10 & 1.00090013 & 0.00000013 & 1.00085493 & -0.00004507 \\
0.15 & 1.00286904 & 0.00000029 & 1.00277278 & -0.00009597 \\
0.20 & 1.00640053 & 0.00000053 & 1.00623895 & -0.00016105 \\
0.25 & 1.01171959 & 0.00000084 & 1.01148191 & -0.00023684 \\
0.30 & 1.01890122 & 0.00000122 & 1.01858020 & -0.00031980 \\
0.35 & 1.02787044 & 0.00000169 & 1.02746249 & -0.00040626 \\
0.40 & 1.03840224 & 0.00000224 & 1.03790770 & -0.00049230 \\
0.45 & 1.05012163 & 0.00000288 & 1.04954522 & -0.00057353 \\
0.50 & 1.06250361 & 0.00000361 & 1.06185512 & -0.00064488
\end{array}
$$

In the usual scheme we take $U[i, j] \approx u\left(t_{i}, x_{j}\right)$ and progressive difference operators instead of $D_{t} u(\ldots)$ and $D_{x} u(\ldots)$. The enhancement requires some modifications, namely: $f_{1}\left(t_{i}, x_{j}\right)$ is replaced by $f_{1}\left(t_{i+1 / 2}, x_{j+1 / 2}\right)$, and

$$
\begin{aligned}
\frac{U[i, j]+U[i+1, j]+U[i, j+1]+v}{4} & \approx u\left(t_{i+1 / 2}, x_{j+1 / 2}\right), \\
\frac{1}{2}\left(\frac{U[i+1, j]-U[i, j]}{h}+\frac{v-U[i, j+1]}{h}\right) & \approx D_{t} u\left(t_{i+1 / 2}, x_{j+1 / 2}\right), \\
\frac{1}{2}\left(\frac{U[i, j+1]-U[i, j]}{h}+\frac{v-U[i+1, j]}{h}\right) & \approx D_{x} u\left(t_{i+1 / 2}, x_{j+1 / 2}\right),
\end{aligned}
$$

where v is an approximate value of $U[i+1, j+1]$ obtained in a certain number of iterations. In fact, this is an explicit scheme which is close to a second-order implicit scheme. The above table shows how much the enhanced scheme improves the approximation.

Numerical example 2. We consider a differential equation with simple delays $t / 2$ and $x / 2$. Of course, it is no need to give initial data in a 'thick' set E_{0}, because these delays act within the set E.

$$
\begin{align*}
& D_{t x} u(t, x)=-u\left(t, \frac{x}{2}\right)+4 u\left(\frac{t}{2}, x\right) \tag{43}\\
& \quad+\frac{21}{8} u(t, x)-7 t D_{t} u\left(\frac{t}{2}, \frac{x}{2}\right)+D_{x} u\left(\frac{t}{2}, \frac{x}{2}\right)+f_{2}(t, x),
\end{align*}
$$

where $f_{2}(t, x)$ is given by the formula

$$
f_{2}(t, x)=-5.625-3 t^{2}+0.125 t^{3}+2 x-0.5 t x-2.625 t x^{2} .
$$

We obtain the following table

x_{i}	$U\left(x_{i}, x_{i}\right)$	err
0.05	1.00010746	-0.00001129
0.10	1.00085979	-0.00004021
0.15	1.00278952	-0.00007923
0.20	1.00627974	-0.00012026
0.25	1.01156452	-0.00015423
0.30	1.01872942	-0.00017058
0.35	1.02771199	-0.00015676
0.40	1.03830232	-0.00009768
0.45	1.05014368	0.00002493
0.50	1.06273311	0.00023311

The above table shows the discrete values and the adequate errors at every tenth diagonal knot of our mesh. Concerning the points between two knots, we derive functions as mean value of these from two or four natural neighbouring knots, which corresponds to applying the linear spline interpolation. In order to get a significant decrease in error, similarly as in the former numerical example, one can use the concept of enhancement.
Numerical example 3. Finally, we consider a kind of the Voterra dependence represented by an integral over the set $[t-1, t] \times[x-1, x]$.

$$
\begin{equation*}
D_{t x} u(t, x)=D_{t} u(t, x)+D_{x} u(t, x)+24 \int_{t-1}^{t} \int_{x-1}^{x} u(s, y) d y d s+f_{3}(t, x) \tag{44}
\end{equation*}
$$

where $f_{3}(t, x)$ is defined by the formula

$$
\begin{aligned}
f_{3}(t, x)= & -17-20 t+15 t^{2}-11 t^{3}-16 x+48 t x-33 t^{2} x+ \\
& 24 t^{3} x+11 x^{2}-24 t x^{2} .
\end{aligned}
$$

In this example, we need some initial data in $E_{0}:=[-1,0.5] \times[-1,0.5] \backslash E$. In fact, our initial data are given by (41). The meaning of the following table is clear.
$x_{i} \quad U\left(x_{i}, x_{i}\right) \quad e r r$

0.05	1.00012740	0.00000865
0.10	1.00107177	0.00017177
0.15	1.00367755	0.00080880
0.20	1.00878061	0.00238061
0.25	1.01719461	0.00547586
0.30	1.02969647	0.01079647
0.35	1.04701205	0.01914330
0.40	1.06980335	0.03140335
0.45	1.09865893	0.04854018
0.50	1.13408995	0.07158995

What is worth mentioning is that the integrals over subsets of E_{0} are accurate, whereas the remaining parts of these integrals are replaced by summation formulas
from $(0,0)$ to (i, j), which reflects a sort of approximation by means of piecewise constant functions. The necessity of dealing with numerous sums results in a noticeable decrease in accuracy and speed of computations. In particular, the above table contains reliable values only in $[0,0.3) \times[0,0.3)$. Presumably, applying other quadratures and averaging operators would lessen the error.

References

[By] L. Byszewski, Existence and uniqueness of solutions of nonlocal problems for hyperbolic equation $u_{x t}=F\left(x, t, u, u_{x}\right)$. Journ. Appl. Math. Stoch. Anal. 3 (1990), 163-168.
[Cz] T. Człapiński, Existence of solutions of the Darboux problem for partial differential-functional equations with infinite delay in a Banach space. Comment. Math. 35 (1995), 111-121.
[KL] Z. Kamont, H. Leszczyński, Numerical solutions to the Darboux problem with the functional dependence. to appear in: Georgian Math. Journal.
[L1] H. Leszczyński, Existence of classical and weak solution the Darboux problem with functional dependence. (submitted for publication).
[L2] H. Leszczyński, Discrete approximations to the Cauchy problem for hyperbolic differential-functional systems in the Schauder canonic form. Comp. Maths Math. Phys., 34, 2 (1994), 151-164. (Zh. Vychisl. Mat. Mat. Fiz., 34, 2, 1994, 185-200).
[L3] H. Leszczyński, General finite difference approximation to the Cauchy problem for non-linear parabolic differential-functional equations. Ann. Polon. Math., 53 (1991), 15-28.
[LLV] G.S. Ladde, V. Lakshmikantham, A.S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman Advanced Publishing Program, Boston London Melbourne 1985.

Univ. of Gdańsk,
Inst. of Math., ul. Wita Stwosza 57, 80-952 Gdańsk, Poland

[^0]: Received by the editors October 1996.
 Communicated by A. Bultheel.
 1991 Mathematics Subject Classification : 35R10, 35A40, 65M12.
 Key words and phrases : Darboux problem, differential-functional equation, finite difference schemes, stability and convergence.

