Unordered Baire-like vector-valued function spaces.

J.C. Ferrando^{*}

Abstract

In this paper we show that if I is an index set and X_i a normed space for each $i \in I$, then the ℓ_p -direct sum $(\bigoplus_{i \in I} X_i)_p, 1 \leq p \leq \infty$, is UBL (unordered Baire-like) if and only if $X_i, i \in I$, is UBL. If X is a normed UBL space and (Ω, Σ, μ) is a finite measure space we also investigate the UBL property of the Lebesgue-Bochner spaces $L_p(\mu, X)$, with $1 \leq p < \infty$.

In what follows (Ω, Σ, μ) will be a finite measure space and X a normed space. As usual, $L_p(\mu, X), 1 \leq p < \infty$, will denote the linear space over the field K of the real or complex numbers of all X-valued μ -measurable p-Bochner integrable (classes of) functions defined on Ω , provided with the norm

$$\|f\| = \left\{ \int_{\Omega} \|f(\omega)\|^p \, d\mu(\omega) \right\}^{1/p}$$

When $A \in \Sigma, \chi_A$ will denote the indicator function of the set A.

On the other hand, if $\{X_i, i \in I\}$ is a family of normed spaces, we denote by $(\bigoplus_{i \in I} X_i)_p$, with $1 \le p < \infty$, the ℓ_p -direct sum of the spaces X_i , that is to say :

$$(\bigoplus_{i\in I} X_i)_p = \{\mathbf{x} = (x_i) \in \prod\{X_j, j\in I\} : (||x_i||) \in \ell_p\}$$

provided with the norm $||(x_i)|| = ||(||x_i||)||_p$. If $p = \infty$, then

$$(\bigoplus_{i\in I} X_i)_{\infty} = \{ \mathbf{x} = (x_i) \in l_{\infty} ((X_i)) : \text{ card } (\text{ supp } \mathbf{x}) \le \aleph_0 \}$$

*This paper has been partially supported by DGICYT grant PB91-0407.

Received by the editors March 1994

Communicated by J. Schmets

Bull. Belg. Math. Soc. 2 (1995), 223-227

AMS Mathematics Subject Classification : 46A08, 46E40.

Keywords : Unordered Baire-like (UBL) space, Lebesgue-Bochner space, ℓ_p -direct sum.

equipped with the norm $||(x_i)|| = \sup\{||x_n||, n \in \mathbb{N}\}.$

A Hausdorff locally convex space E over \mathbb{K} is said to be unordered Baire-like, [6] (also called UBL in [5]) if given a sequence of closed absolutely convex sets of E covering E, there is one of them which is a neigbourhood of the origin. When E is metrizable, E is said to be totally barrelled (also called TB in [5]) if given a sequence of linear subspaces of E covering E there is one which is barrelled. This last definition coincides with the one given in [5] and [8] for the general locally convex case.

It is known that if μ is atomless, $L_p(\mu, X)$ enjoys very good strong barrelledness properties (even if $p = \infty$) ([1] and [2]). If μ has some atom, then X must share the same strong barrelledness property than $L_p(\mu, X)$ do. On the other hand, by a wellknown result of Lurje, $(\bigoplus_{i \in \mathbb{N}} X_i)_p$ is barrelled (and hence, Baire-like) if and only if each X_i is barrelled (see [5], 4.9.17). This result has been extended independently in [3] and [4] by showing that, whenever each X_i is seminormed, $(\bigoplus_{i \in I} X_i)_p$ is barrelled (ultrabarrelled) if and only each X_i is barrelled (ultrabarrelled). For the definitions of Baire-like and ultrabarrelled spaces see [5] (pp. 333 and 366).

In this paper we are going to investigate for a general positive μ the UBL property of the space $L_p(\mu, X), 1 \leq p < \infty$, whenever X is UBL. We will also prove that $(\bigoplus_{i \in I} X_i)_p$, with $1 \leq p \leq \infty$, is UBL if and only if each X_i is UBL.

Proposition 1 If X is an UBL space, then $L_1(\mu, X)$ is UBL.

Proof. Our argument is based upon the proof of the Proposition 2 of [7]. So, let $\{W_n, n \in \mathbb{N}\}$ be a sequence of closed absolutely convex subsets of $L_1(\mu, X)$ covering $L_1(\mu, X)$. It suffices to show that there is an $i \in \mathbb{N}$ such that W_i absorbs the family

$$\{\chi_A x / \{\mu(A)\}, \|x\| = 1, A \in \Sigma, \mu(A) \neq 0\}$$

since, if $\chi_A x / \{\mu(A)\} \in qW_i$ for some $q \in \mathbb{N}$, each $x \in X$ of norm one and each $A \in \Sigma$ with $\mu(A) \neq 0$, given any simple function $s = \sum_{1 \leq j \leq n} y_j \chi_{C_j}$ of $L_1(\mu, X)$, with $C_j \in \Sigma$, $\mu(C_j) \neq 0$, $\|y_j\| \neq 0$ for $1 \leq j \leq n$ and $C_i \cap C_j = \emptyset$ if $i \neq j$, so that $\|s\|_1 \leq 1$, then $\sum_{1 \leq j \leq n} \|y_j\| \mu(C_j) = \|s\|_1 \leq 1$, and since W_i is absolutely convex,

$$\sum_{1 \le j \le n} y_j \chi_{C_j} = \sum_{1 \le j \le n} \|y_j\| \mu(C_j) \chi_{C_j}(y_j/\|y_j\|) / \{\mu(C_j)\} \in qW_i$$

Hence, W_i , being closed, absorbs the closed unit ball of $L_1(\mu, X)$. Let us define the closed absolutely convex subsets of X

 $V_{nm} = \{x \in X : \chi_A x / \{\mu(A)\} \in mW_n \text{ for each } A \in \Sigma \text{ with } \mu(A) \neq 0\}$

for each $n, m \in \mathbb{N}$.

Given $z \in X, z \neq 0$, then $L(z) := \{f(\cdot)z : f \in L_1(\mu)\}$ is a closed subspace of $L_1(\mu, X)$ isomorphic to $L_1(\mu)$ and therefore there are $r, s \in \mathbb{N}$ such that $\chi_A z / \{\mu(A)\} \in sW_r$ for each $A \in \Sigma$ with $\mu(A) \neq 0$. This implies that $z \in V_{rs}$ and, consequently, that $\bigcup \{V_{nm} : n, m \in \mathbb{N}\} = X$. As X is UBL there are $i, j, k \in \mathbb{N}$ so that kV_{ij} contains the unit sphere of X. Hence $\chi_A x / \{\mu(A)\} \in jkW_i$ for each $x \in X$ so that $\|x\| = 1$ and each $A \in \Sigma$ with $\mu(A) \neq 0$. This completes the proof. \Box **Proposition 2** Let X be an UBL space. If $L_p(\mu, X)$, $1 , is a TB space, then <math>L_p(\mu, X)$ is UBL.

Proof. If $\{W_n, n \in \mathbb{N}\}$ is a sequence of closed absolutely convex subsets of $L_p(\mu, X)$ covering $L_p(\mu, X)$, a similar argument to the proof of the previous proposition shows that there exists an index $j \in \mathbb{N}$ such that W_j absorbs the family

$$\{\chi_A x / \{\mu(A)\}^{1/p}, \|x\| = 1, A \in \Sigma, \mu(A) \neq 0\}.$$

This implies that the linear span of W_j contains the subspace of the simple functions. Hence $\operatorname{span}(W_j)$ is a dense subspace of $L_p(\mu, X)$ and thus ([6], Theorem 4.1) there is no loss of generality by assuming that $\operatorname{span}(W_n)$ is dense in $L_p(\mu, X)$ for each $n \in \mathbb{N}$.

Since we have supposed that $L_p(\mu, X)$ is TB, it follows that there exists an $i \in \mathbb{N}$ such that span (W_i) is barrelled. This ensures, W_i being closed in $L_p(\mu, X)$, that span (W_i) is closed. Consequently, one has that span $(W_i) = L_p(\mu, X)$. This implies that W_i is absorbent in $L_p(\mu, X)$. Since W_i was absolutely convex and closed by hypothesis, we have that W_i is a barrel in $L_p(\mu, X)$ and hence a zero-neighbourhood because $L_p(\mu, X)$ is always barrelled ([2]).

Lemma 1 Let $\{X_n, n \in \mathbb{N}\}$ be a sequence of normed spaces and assume that $\{W_n, n \in \mathbb{N}\}$ is a sequence of closed absolutely convex subsets of $(\bigoplus_{n=1}^{\infty} X_n)_p$ covering $(\bigoplus_{n=1}^{\infty} X_n)_p$, $1 \leq p \leq \infty$. Then there is $m \in \mathbb{N}$ such that

$$span(W_m) \supseteq (\bigoplus_{n>m} X_n)_p.$$

Proof. If this is not the case, for each $n \in \mathbb{N}$ there is

$$\mathbf{x}_n \in (\bigoplus_{k>n} X_k)_p \setminus \operatorname{span}(W_n)$$

with $||x_n|| = 1$. Since the sequence (\mathbf{x}_n) is bounded in $(\bigoplus_{n=1}^{\infty} X_n)_p$, then for each $\xi \in \ell_1$ the series $\sum_n \xi_n \mathbf{x}_n$ converges to some $\mathbf{x}(\xi)$ in the completion $(\bigoplus_{n=1}^{\infty} \hat{X}_n)_p$ of $(\bigoplus_{n=1}^{\infty} X_n)_p$. Since $x(\xi)_j = \sum_n \xi_n x_{nj} = \sum_{1 \le n \le j-1} \xi_n x_{nj} \in X_j$, it follows that $\mathbf{x}(\xi) \in (\bigoplus_{n=1}^{\infty} X_n)_p$ and then $D = \{\sum_n \xi_n \mathbf{x}_n, \xi \in \ell_1, ||\xi||_1 \le 1\}$ is a Banach disk in $(\bigoplus_{n=1}^{\infty} X_n)_p$. Consequently, there must be some $m \in \mathbb{N}$ such that W_m absorbs D and hence $\mathbf{x}_m \in \operatorname{span}(W_m)$, a contradiction.

Theorem 1 If X_n is UBL for each $n \in \mathbb{N}$, then $(\bigoplus_{n=1}^{\infty} X_n)_p, 1 \leq p \leq \infty$, is UBL.

Proof. Our argument adapts some methods of [8] to our convenience.

If $(\bigoplus_{n=1}^{\infty} X_n)_p$ is not UBL, there exists a sequence $\{W_n, n \in \mathbb{N}\}$ of closed absolutely convex subsets of $(\bigoplus_{n=1}^{\infty} X_n)_p$ covering $(\bigoplus_{n=1}^{\infty} X_n)_p$ such that no W_n is a neighbourhood of the origin in $(\bigoplus_{n=1}^{\infty} X_n)_p$.

Define $\mathcal{F} = \{F \in \{\operatorname{span}(W_n), n \in \mathbb{N}\} : \exists m \in \mathbb{N} \text{ with } F \supseteq (\bigoplus_{n>m} X_n)_p\}$. If \mathcal{F} does not cover $(\bigoplus_{n=1}^{\infty} X_n)_p$ then $(\bigoplus_{n=1}^{\infty} X_n)_p$ is covered by all those subspaces $\operatorname{span}(W_n)$ that do not belong to \mathcal{F} , as a consequence of the Theorem 4.1 of [6]. But this contradicts the previous lemma. Hence \mathcal{F} covers the whole space.

Let $\mathcal{F}_n := \{F \in \mathcal{F} : F \text{ does not contain } X_n\}$, where we consider X_n as a subspace of $(\bigoplus_{n=1}^{\infty} X_n)_p$. Let us see first that $\mathcal{F} = \bigcup \{\mathcal{F}_n, n \in \mathbb{N}\}$. Indeed, if $G \in \mathcal{F}$, there is a $n(G) \in \mathbb{N}$ with $G \supseteq (\bigoplus_{m > n(G)} X_m)_p$. Hence, there must be $r \leq n(G)$ such that G does not contain X_r , otherwise $G = (\bigoplus_{n=1}^{\infty} X_n)_p$, which is a contradiction because $G = \operatorname{span}(W_p)$ for some p and we would have that W_p is a barrel, hence a zero-neighbourhood since $(\bigoplus_{n=1}^{\infty} X_n)_p$ is barrelled. Thus, $G \in \mathcal{F}_r$.

Let us show that considering X_j as a subspace of $(\bigoplus_{n=1}^{\infty} X_n)_p$ there is $j \in \mathbb{N}$ such that $\cup \{F, F \in \mathcal{F}_j\} \supseteq X_j$. Otherwise for each $j \in \mathbb{N}$ there would be some norm one $x_j \in X_j$ verifying that $x_j \notin \cup \{F, F \in \mathcal{F}_j\}$. Defining $\mathbf{x}_j \in (\bigoplus_{n=1}^{\infty} X_n)_p$ such that $x_{jk} = 0$ if $j \neq k$ while $x_{jj} = x_j$, then (\mathbf{x}_j) is a basic sequence in $(\bigoplus_{n=1}^{\infty} X_n)_p$ equivalent to the unit vector basis of ℓ_p if $p < \infty$ or c_0 if $p = \infty$. Hence, reasoning as in the previous lemma, we have that the closed linear span L of (\mathbf{x}_j) in $(\bigoplus_{n=1}^{\infty} \hat{X}_n)_p$, is contained in $(\bigoplus_{n=1}^{\infty} X_n)_p$. Since \mathcal{F} covers $L \subseteq (\bigoplus_{n=1}^{\infty} X_n)_p$ and L is a Banach space, it follows that there is some $F \in \mathcal{F}$ so that $\mathbf{x}_j \in F$ for each $j \in \mathbb{N}$. But, as we have seen that $\mathcal{F} = \cup \{\mathcal{F}_n, n \in \mathbb{N}\}$, there is a $k \in \mathbb{N}$ such that $F \in \mathcal{F}_k$. Therefore $\mathbf{x}_k \in \cup \{G : G \in \mathcal{F}_k\}$, which is a contradiction.

Finally, choose a positive integer m such that $\cup \{F : F \in \mathcal{F}_m\} \supseteq X_m$. As X_m is UBL, there is $G \in \mathcal{F}_m$ with $G \supseteq X_m$. This is a contradiction, since $G \in \mathcal{F}_m$ if and only if $(G \in \mathcal{F} \text{ and}) G$ does not contain X_m .

Theorem 2 Let I be a non-empty index set and let $\{X_i, i \in I\}$ be a family of normed spaces. Then $(\bigoplus_{i \in I} X_i)_p$, with $1 \le p \le \infty$, is UBL if and only if X_i is UBL for each $i \in I$.

Proof. If I is finite, the conclusion is obvious, and if $I = \mathbb{N}$ the result has been proved in the previous theorem. Thus we may assume that card $I > \aleph_0$. If $(\bigoplus_{i \in I} X_i)_p$ is not UBL there exists a sequence $\{W_n, n \in \mathbb{N}\}$ of closed absolutely convex subsets of $(\bigoplus_{i \in I} X_i)_p$ covering $(\bigoplus_{i \in I} X_i)_p$ such that no W_n is a neighbourhood of the origin in $(\bigoplus_{i \in I} X_i)_p$. Hence there is a sequence (\mathbf{x}_n) in the unit sphere of $(\bigoplus_{i \in I} X_i)_p$ such that $\mathbf{x}_n \notin \operatorname{span}(W_n)$ for each $n \in \mathbb{N}$. As each \mathbf{x}_n is countably supported $J := \bigcup \{ \operatorname{supp} \mathbf{x}_n, n \in \mathbb{N} \}$ is a countable subset of I. But $(\bigoplus_{j \in J} X_j)_p$ is UBL as a consequence of the previous theorem, and hence there is some $m \in \mathbb{N}$ such that $W_m \cap (\bigoplus_{j \in J} X_j)_p$ is a neighbourhood of the origin in $(\bigoplus_{j \in J} X_j)_p$. Therefore $\mathbf{x}_m \in \operatorname{span}(W_m)$, a contradiction. \Box

Open problem : Assuming that μ is atomless and X is a normed space, is $L_p(\mu, X), 1 \le p < \infty$, a TB space?

ACKNOWLEDGMENT. The author is indebted to the referee for his useful comments and suggestions.

References

- Ferrando, J.C., Ferrer, J. and López-Pellicer, M. Strong barrelledness properties in Lebesgue-Bochner spaces. Bull. Belg. Math. Soc. 1 (1994), 73-78.
- [2] Drewnowski, L., Florencio, M. and Paúl, P.J. The space of Pettis integrable functions is barrelled. Proc. Amer. Math. Soc. 114 (1992), 687-694.
- [3] Drewnowski, L., Florencio, M. and Paúl, P.J. Uniform boundedness of operators and barrelledness in spaces with Boolean algebras of projections. Atti Sem. Mat. Fis. Univ. Modena 41 (1993), 317-329.
- [4] Kakol, J. and Roelcke, W. On the barrelledness of ℓ_p -direct sums of seminormed spaces for $1 \le p \le \infty$. Arch. Math. (Basel), **62** (1994), 331-334.
- [5] Pérez Carreras, P. and Bonet, J. Barrelled locally convex spaces. North Holland Math. Studies 131. North Holland, Amsterdam, 1987.
- [6] Todd, A.R. and Saxon, S.A. A property of locally convex Baire spaces. Math. Ann. 206 (1973), 23-34.
- [7] Valdivia, M. A class of locally convex spaces without C-webs. Ann. Inst. Fourier 32 (1982), 261-269.
- [8] Valdivia. M. and Pérez Carreras, P. On totally barrelled spaces. Math. Z. 178 (1981), 263-269.

J.C. FERRANDO E.U. INFORMATICA. DEPARTAMENTO DE MATEMATICA APLICADA. UNIVERSIDAD POLITECNICA. E-46071 VALENCIA. SPAIN.