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Abstract

A symplectic or orthogonal space admitting a hyperbolic basis over a finite
field is tensored with its Galois conjugates to obtain a symplectic or orthogonal
space over a smaller field. A mapping between these spaces is defined which
takes absolute points to absolute points. It is shown that caps go to caps.
Combined with a result of Dye’s one obtains a simple proof of a result due to
Blokhuis and Moorehouse that ovoids do not exist on hyperbolic quadrics in
dimension ten over a field of characteristic two.

Let k = GF (q), q a prime power, and K = GF (qm) for some positive integer
m. Let V =< x1, x2 > ⊕ < x3, x4 > ⊕ . . .⊕ < x2n−1, x2n > be a vector space
over K. Let τ be the automorphism of K given by ατ = αq so that < τ > = T =

Gal(K/k). For each σ ∈ T let V σ be a vector space with basis xσ1 , x
σ
2 , . . . , x

σ
2n. Set

M = V ⊗V τ⊗V τ2⊗ . . .⊗V τm−1
. This is a space of dimension (2n)m overK. Let = =

{1, 2, . . . , 2n}m and for I = (i1, i1, . . . , im) ∈ =, set xI = xi1⊗xτi2⊗xτ
2

i3
⊗ . . .⊗xτm−1

im .
Then B = {xI : I ∈ =}, is a basis for M.

We next define a semilinear action of τ on M as follows: For I = (i1, i1, . . . , im) ∈
=, set Iτ = (im−1, i0, i1, . . . , im−2) and then for a ∈ K, I ∈ {1, 2, . . . , 2n}m define
(axI)

τ = aτxIτ and extend by additivity to all of M . Denote by MT the set of all
vectors of M fixed under this action. This is a vector space over k.

Proposition 1: As a vector space over k, dimkM
T = (2n)m.

Proof: Let Ω1,Ω2, . . . ,Ωt be the orbits of T in B. Then MT is the direct sum of
the fixed points of τ in < Ωi >K for i = 1, 2, . . . , t. Let Ω = Ωi for some i, 1 ≤ i ≤ t
and let x = xI be in Ω, assume that < τ l > is the stablizer of xI in T and set
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L = K<τ l>. If w ∈< Ω >T
K then there is an α ∈ L such that w = αx+ ατxτ + . . .+

ατ
l−1
xτ

l−1
. Since the stablizer of x in T is < τ l > it follows that card(Ω) = m/l. On

the other hand, dimL(K) = l so that dimk(L) = m/l = card(Ω) = dimK(< Ω >K).

We therefore have that dimk(M
T ) = card(B) = dimK(M).�

We now assume that V is equipped with an alternate or symmetric bilinear
form γ such that the set of vectors {x1, x2, . . . , x2n} is a hyperbolic basis for V

with respect to γ. More precisely, we let γ: V × V → K be a bilinear form which
satisfies γ(x2i−1, x2i) = 1 for i = 1, 2, . . . , n and γ(xs, xt) = 0 for all other pairs
xs, xt, with s < t ∈ {1, 2, . . . , 2n}. Note that γ(xi, xi) = 0 for every i. Now for each
σ ∈ T define γσ to be a reflexive bilinear map of the same type as γ such that

γσ(xσi , x
σ
j ) = γ(xi, xj) for all i, j ∈ {1, 2, . . . , 2n}. We may then define a bilinear

form γ̂: M ×M → K as follows: let I = (i1, i2, . . . , im) and J = (j1, j2, . . . , jm) ∈ =,
define γ̂(xI, xJ) =

∏m
l=1 γ

τ l−1
(xτ

l−1

il
, x

τ l−1)
jl

. Under this definition, for each I ∈ = there
is a unique J ∈ = such that γ̂(xI , xJ) 6= 0, namely the J = (j1, j2, . . . , jm) with
jl = il + 1 if il is odd, and jl = il − 1 if il is even. We denote this J by I ′. Note
that γ̂(xI , xI′) = ±1. Extend γ̂ to all of M by bilinearity. It then follows that for a

suitable ordering of the xI , B is a hyperbolic basis of M with respect to γ̂.

Now suppose that γ is an alternate form so that γ(u, v) = −γ(v, u) for every
u, v ∈ V. Then if m is even the form γ̂ is symmetric, while if m is odd, then γ̂

is alternate. In the former case, we can define a quadratic form Q̂ on M so that
Q̂(xI) = 0, γ̂(xI, xJ) = Q̂(xI + xJ ) − Q̂(xI) − Q̂(xJ). When γ is symmetric, γ̂ is
again symmetric and if for each σ ∈ T, Qσ is the quadratic form from V σ to K
such that Qσ(

∑2n
i=1 αix

σ
i ) =

∑n
j=1 α2j−1α2j so that Qσ(xσi ) = 0, and γσ(xi, xj) =

Qσ(xi + xj) −Qσ(xi) −Qσ(xj), then in a similar fashion we can define a quadratic
form Q̂ : M → K.

Lemma: I. Let u, v ∈ MT , then γ̂(u, v) ∈ k. II. Assume one of the following:
(a) γ is symmetric and V is equipped with a quadratic form; or (b) γ is alternate
and m is even. Let Q̂ : M → K be the quadratic form defined as above. Then for
any v ∈M, Q̂(v) ∈ k.

Proof: I. MT is the direct sum of the spaces < Ω >T
K taken over the orbits Ω

of T in B. For an orbit Ω of T in B let Ω′ = {xI′|xI ∈ Ω}. Now for any orbit ∆ of
T in B other than Ω,Ω′ the spaces < ∆ >K and < Ω,Ω′ >K are orthogonal with

respect to γ̂. By the additivity of γ̂ it suffices to consider the case that u ∈ < Ω >T
K ,

v ∈ < Ω′ >T
K . Let x = xI be in Ω and assume that the stablizer of xI is < τ l >

and set L = K<τ l> the fixed field of τ l in K. Then also < τ l > is the stabilizer
of x′ = xI′ in T. Note that γ̂(xI, xI′) = γ̂(xIτs , x(I′)τ

s ), for 0 ≤ s ≤ l − 1. Now a

typical element of < Ω >T
K is u = αx+ατxτ + . . .+ατ

l−1
xτ

l−1
where α is an element

of L and similarly, if v is an element of < Ω′ >T
K then there is a β ∈ L such that

w′ = βx′+βτ(x′) + . . .+βτ
l−1

(x′)τ
l−1
. Then γ̂(u, v) = αβ+ατβτ + . . .+ατ

l−1
βτ

l−1
=

TrL/k(αβ) which is an element of k.

II. From the above it suffices to assume that v ∈< Ω >T
K + < Ω′ >T

K and show

that Q̂(v) ∈ k. There are two cases to consider: (i) Ω 6= Ω′; and (ii) Ω = Ω′.

In the case of (i) if v = w +w′ with w ∈< Ω >T
K and w′ ∈< Ω′ >,

K then Q̂(v) =
Q̂(w+w′) = γ̂(w,w′) ∈ k by I. Thus, we may assume (ii). Then for each x ∈ Ω also
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x′ ∈ Ω and therefore l is even. Let l0 = l/2. Then x′ = xτ
l0 . Now let w ∈< Ω >T

K .
As remarked in I there is an α ∈ L such that w = αx+ ατ + . . .+ ατ

l−1
xτ

l−1
. Then

Q̂(w) = αατ
l0 + ατατ

l0+1
+ . . .+ατ

l0−1
ατ

2l0−1
. But this is clearly fixed by τ , whence

is an element of k.�
In light of the lemma we can assume that the bilinear form γT = γ̂|MT×MT and

the quadratic form QT = Q̂|MT are defined over k. Now for a vector v =
∑2n
i=1 αixi ∈

V, and σ ∈ T define vσ =
∑2n
i=1 α

σ
i x

σ
i an element of V σ. This is a semilinear map

from V to V σ. For v ∈ V set vT = v⊗ vτ ⊗ . . .⊗ vτm−1
. This is a vector in MT . Our

main results now follow:

Proposition 2: Let the hypothesis be as in the second part of the previous
lemma. Then QT (vT ) = NK/k(Q(v)).

Proof: Let v =
∑2n
i=1 αixi so that vT =

(
2n∑
i=1

αixi)⊗ (
2n∑
i=1

ατi x
τ
i )⊗ . . .⊗ (

2n∑
i=1

ατ
m−1

i xτ
m−1

i )

=
∑

αi1α
τ
i2
. . . ατ

m−1

im

where the sum is taken over all I = (i1, i2, . . . , im) ∈ =. It then follows that

QT (vT ) =
∑

αi1αj1α
τ
i2
ατj2 . . . α

τm−1

im ατ
m1

jm

where J = (j1, j2, . . . , jm) = I ′ and the sum is taken over the pairs {I, I ′} from =.
This is equal to ∑

(αi1αj1)(αi2αj2)τ . . . (αimαjm)τ
m−1

=
m∏
l=0

(α1α2 + α3α4 . . .+ α2n−1α2n)τ
l

= NK/k(Q(v)).�

In out next proposition we establish a similar formula for γτ (vT , wT ).

Proposition 3: For v, w ∈ V , γT (vT , wT ) = NK/k(γ(v, w)).

Proof: Let v =
∑2n
i=1 αixi and w =

∑2n
i=1 βixi. Then

vT = (
2n∑
i=1

αixi)⊗ (
2n∑
i=1

ατi x
τ
i )⊗ . . .⊗ (

2n∑
i=1

ατ
m−1

i xτ
m−1

i )

and

wT = (
2n∑
i=1

βixi)⊗ (
2n∑
i=1

βτi x
τ
i )⊗ . . .⊗ (

2n∑
i=1

βτ
m−1

i xτ
m−1

i ).

Then γT (vT , wT ) =
∑

(αi1βj1)(αi2βj2)
τ . . . (αimβjm)τ

m−1
where, as in the previous

proposition J = (j1, j1, . . . , jm) = I ′ and the sum is taken over all pairs {I, I ′}. This
is equal to

m−1∏
l=0

(α1β1 + α2β2 + . . .+ α2nβ2n)τ
l−1
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which is, indeed, equal to NK/k(γ(v, w)) as claimed. �
Corollary: If v, w ∈ V and γ(v, w) 6= 0, then γT (vT , wT ) 6= 0.

Definition: Let V be equipped with an alternate form γ. A set of points O of

PG(V ) (one spaces of V) is a cap if for all distinct U,W ∈ O, γ(U,W ) 6= 0, that is,
U,W are non-orthogonal. If V is an orthogonal space with a quadratic form Q and
associated symmetric form γ then a cap is a set O of singular points (one spaces
U of V such that Q(U) = 0) which are pairwise non-orthogonal with respect to γ.

The bound on the cardinality of a cap in a hyperbolic orthogonal space V (i.e. an
orthogonal space which has a hyperbolic basis) is qn−1 + 1 (cf [K,T]). A cap in a
hyperbolic orthogonal space which realizes this bound is called an ovoid. When
n = 3 (dimension of V = 6), via the Klein correspondence, an ovoid is nothing

more than an affine translation plane (see [MS]) of dimensional at most two over
its kernal. Ovoids are much rarer when n = 4 but a number of families have been
constructed (see [CKW, K, M1, M2]). It is conjectured that ovoids do not exist for

n ≥ 5. This has been proved in the case the field K has characteristic 2, 3, or 5
[BM]. From what we have shown, together with a result from [D] we can obtain a
simple proof of the non-existence of ovoids on hyperbolic quadrics in PG(2n−1, 2m)
for n ≥ 5.

Theorem[BM]: Let n ≥ 5, q = 2. Then (V,Q) does not contain an ovoid.

Proof: It suffices to prove that (V,Q) does not contain an ovoid when n = 5
(cf [T]). Let C be an ovoid in V. Let D = {< vT > | < v > ∈ C}. Note D is
well-defined, for if < v > ∈ C and α ∈ K then (αv)T = NGF (2m)/GF (2)(α)vT = vT .
By Proposition 2, D consists of singular points, and by Proposition 3, D is a cap of

MT . By Theorem 1 (ii) of [D], card(D) ≤ dimGF (2)(M
T ) + 1 = (10)m + 1, since MT

is a hyperbolic space. On the other hand, card(D) = card(C) = (2m)4 +1 = 16m+1
which is greater than (10)m + 1, a contradiction. �

We can also make use of the results in [D] to prove an ovoid O in a hyperbolic
space V of eight dimensions over GF (2m) must span the entire space:

Theorem[BM,T]: Let (V,Q) be an orthogonal space with hyperbolic basis x1, . . . ,
x8 defined over the fieldK = GF (2m). Let O be an ovoid of (V,Q), then< O >K= V.

Proof: Let W =< O >K . The cap OT = {< vT > | < v > ∈ O} in MT has

cardinality (2m)3 + 1 = 8m + 1 = dimGF (2)(M
T ). Since (MT , QT ) is a hyperbolic

space over GF (2) it follows from Theorem 1 (iv) [D] that < OT >GF (2) spans MT

and therefore < OT >GF (2m) spans M. However, if W were a proper subspace of
V then < OT >K would be contained in the subspace W ⊗W τ ⊗τ2 ⊗ . . .⊗W τm−1

which is a proper subspace of M.�
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