A Note on Tensor Products of Polar Spaces Over Finite Fields.

Bruce N. Cooperstein

Abstract

A symplectic or orthogonal space admitting a hyperbolic basis over a finite field is tensored with its Galois conjugates to obtain a symplectic or orthogonal space over a smaller field. A mapping between these spaces is defined which takes absolute points to absolute points. It is shown that caps go to caps. Combined with a result of Dye's one obtains a simple proof of a result due to Blokhuis and Moorehouse that ovoids do not exist on hyperbolic quadrics in dimension ten over a field of characteristic two.

Let $k=G F(q), q$ a prime power, and $K=G F\left(q^{m}\right)$ for some positive integer m. Let $V=<x_{1}, x_{2}>\oplus<x_{3}, x_{4}>\oplus \ldots \oplus<x_{2 n-1}, x_{2 n}>$ be a vector space over K. Let τ be the automorphism of K given by $\alpha^{\tau}=\alpha^{q}$ so that $<\tau>=T=$ $\operatorname{Gal}(K / k)$. For each $\sigma \in T$ let V^{σ} be a vector space with basis $x_{1}^{\sigma}, x_{2}^{\sigma}, \ldots, x_{2 n}^{\sigma}$. Set $M=V \otimes V^{\tau} \otimes V^{\tau^{2}} \otimes \ldots \otimes V^{\tau^{m-1}}$. This is a space of dimension $(2 n)^{m}$ over K. Let $\Im=$ $\{1,2, \ldots, 2 n\}^{m}$ and for $I=\left(i_{1}, i_{1}, \ldots, i_{m}\right) \in \Im$, set $x_{I}=x_{i_{1}} \otimes x_{i_{2}}^{\tau} \otimes x_{i_{3}}^{\tau^{2}} \otimes \ldots \otimes x_{i_{m}}^{\tau^{m-1}}$. Then $B=\left\{x_{I}: I \in \Im\right\}$, is a basis for M.

We next define a semilinear action of τ on M as follows: For $I=\left(i_{1}, i_{1}, \ldots, i_{m}\right) \in$ \Im, set $I^{\tau}=\left(i_{m-1}, i_{0}, i_{1}, \ldots, i_{m-2}\right)$ and then for $a \in K, I \in\{1,2, \ldots, 2 n\}^{m}$ define $\left(a x_{I}\right)^{\tau}=a^{\tau} x_{I^{\tau}}$ and extend by additivity to all of M. Denote by M^{T} the set of all vectors of M fixed under this action. This is a vector space over k.

Proposition 1: As a vector space over $k, \operatorname{dim}_{k} M^{T}=(2 n)^{m}$.
Proof: Let $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{t}$ be the orbits of T in B. Then M^{T} is the direct sum of the fixed points of τ in $<\Omega_{i}>_{K}$ for $i=1,2, \ldots, t$. Let $\Omega=\Omega_{i}$ for some $i, 1 \leq i \leq t$ and let $x=x_{I}$ be in Ω, assume that $<\tau^{l}>$ is the stablizer of x_{I} in T and set

[^0]Keywords : Orthogonal space, hyperbolic basis, tensor product, caps, ovoids.
Bull. Belg. Math. Soc. 2 (1995), 253-257
$L=K^{<\tau^{l}>}$. If $w \in<\Omega>_{K}^{T}$ then there is an $\alpha \in L$ such that $w=\alpha x+\alpha^{\tau} x^{\tau}+\ldots+$ $\alpha^{\tau^{l-1}} x^{\tau^{l-1}}$. Since the stablizer of x in T is $<\tau^{l}>$ it follows that $\operatorname{card}(\Omega)=m / l$. On the other hand, $\operatorname{dim}_{L}(K)=l$ so that $\operatorname{dim}_{k}(L)=m / l=\operatorname{card}(\Omega)=\operatorname{dim}_{K}\left(<\Omega>_{K}\right)$. We therefore have that $\operatorname{dim}_{k}\left(M^{T}\right)=\operatorname{card}(B)=\operatorname{dim}_{K}(M) . \square$

We now assume that V is equipped with an alternate or symmetric bilinear form γ such that the set of vectors $\left\{x_{1}, x_{2}, \ldots, x_{2 n}\right\}$ is a hyperbolic basis for V with respect to γ. More precisely, we let $\gamma: V \times V \rightarrow K$ be a bilinear form which satisfies $\gamma\left(x_{2 i-1}, x_{2 i}\right)=1$ for $i=1,2, \ldots, n$ and $\gamma\left(x_{s}, x_{t}\right)=0$ for all other pairs x_{s}, x_{t}, with $s<t \in\{1,2, \ldots, 2 n\}$. Note that $\gamma\left(x_{i}, x_{i}\right)=0$ for every i. Now for each $\sigma \in T$ define γ^{σ} to be a reflexive bilinear map of the same type as γ such that $\gamma^{\sigma}\left(x_{i}^{\sigma}, x_{j}^{\sigma}\right)=\gamma\left(x_{i}, x_{j}\right)$ for all $i, j \in\{1,2, \ldots, 2 n\}$. We may then define a bilinear form $\widehat{\gamma}: M \times M \rightarrow K$ as follows: let $I=\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ and $J=\left(j_{1}, j_{2}, \ldots, j_{m}\right) \in \Im$, define $\widehat{\gamma}\left(x_{I}, x_{J}\right)=\prod_{l=1}^{m} \gamma^{\tau^{l-1}}\left(x_{i_{l}}^{\tau^{l-1}}, x_{j_{l}}^{\tau^{l-1}}\right)$. Under this definition, for each $I \in \Im$ there is a unique $J \in \Im$ such that $\widehat{\gamma}\left(x_{I}, x_{J}\right) \neq 0$, namely the $J=\left(j_{1}, j_{2}, \ldots, j_{m}\right)$ with $j_{l}=i_{l}+1$ if i_{l} is odd, and $j_{l}=i_{l}-1$ if i_{l} is even. We denote this J by I^{\prime}. Note that $\widehat{\gamma}\left(x_{I}, x_{I^{\prime}}\right)= \pm 1$. Extend $\hat{\gamma}$ to all of M by bilinearity. It then follows that for a suitable ordering of the x_{I}, B is a hyperbolic basis of M with respect to $\widehat{\gamma}$.

Now suppose that γ is an alternate form so that $\gamma(u, v)=-\gamma(v, u)$ for every $u, v \in V$. Then if m is even the form $\hat{\gamma}$ is symmetric, while if m is odd, then $\hat{\gamma}$ is alternate. In the former case, we can define a quadratic form \widehat{Q} on M so that $\hat{Q}\left(x_{I}\right)=0, \widehat{\gamma}\left(x_{I}, x_{J}\right)=\hat{Q}\left(x_{I}+x_{J}\right)-\hat{Q}\left(x_{I}\right)-\hat{Q}\left(x_{J}\right)$. When γ is symmetric, $\hat{\gamma}$ is again symmetric and if for each $\sigma \in T, Q^{\sigma}$ is the quadratic form from V^{σ} to K such that $Q^{\sigma}\left(\sum_{i=1}^{2 n} \alpha_{i} x_{i}^{\sigma}\right)=\sum_{j=1}^{n} \alpha_{2 j-1} \alpha_{2 j}$ so that $Q^{\sigma}\left(x_{i}^{\sigma}\right)=0$, and $\gamma^{\sigma}\left(x_{i}, x_{j}\right)=$ $Q^{\sigma}\left(x_{i}+x_{j}\right)-Q^{\sigma}\left(x_{i}\right)-Q^{\sigma}\left(x_{j}\right)$, then in a similar fashion we can define a quadratic form $\widehat{Q}: M \rightarrow K$.

Lemma: I. Let $u, v \in M^{T}$, then $\widehat{\gamma}(u, v) \in k$. II. Assume one of the following: (a) γ is symmetric and V is equipped with a quadratic form; or (b) γ is alternate and m is even. Let $\widehat{Q}: M \rightarrow K$ be the quadratic form defined as above. Then for any $v \in M, \widehat{Q}(v) \in k$.

Proof: I. M^{T} is the direct sum of the spaces $<\Omega>_{K}^{T}$ taken over the orbits Ω of T in B. For an orbit Ω of T in B let $\Omega^{\prime}=\left\{x_{I^{\prime}} \mid x_{I} \in \Omega\right\}$. Now for any orbit Δ of T in B other than Ω, Ω^{\prime} the spaces $<\Delta>_{K}$ and $<\Omega, \Omega^{\prime}>_{K}$ are orthogonal with respect to $\hat{\gamma}$. By the additivity of $\hat{\gamma}$ it suffices to consider the case that $u \in<\Omega>_{K}^{T}$, $v \in<\Omega^{\prime}>_{K}^{T}$. Let $x=x_{I}$ be in Ω and assume that the stablizer of x_{I} is $<\tau^{l}>$ and set $L=K^{<\tau^{l}>}$ the fixed field of τ^{l} in K. Then also $<\tau^{l}>$ is the stabilizer of $x^{\prime}=x_{I^{\prime}}$ in T. Note that $\widehat{\gamma}\left(x_{I}, x_{I^{\prime}}\right)=\widehat{\gamma}\left(x_{I^{s}}, x_{\left(I^{\prime}\right)^{\tau s}}\right)$, for $0 \leq s \leq l-1$. Now a typical element of $<\Omega>_{K}^{T}$ is $u=\alpha x+\alpha^{\tau} x^{\tau}+\ldots+\alpha^{\tau^{l-1}} x^{\tau^{l-1}}$ where α is an element of L and similarly, if v is an element of $<\Omega^{\prime}>_{K}^{T}$ then there is a $\beta \in L$ such that $w^{\prime}=\beta x^{\prime}+\beta^{\tau}\left(x^{\prime}\right)+\ldots+\beta^{\tau^{l-1}}\left(x^{\prime}\right)^{\tau^{l-1}}$. Then $\widehat{\gamma}(u, v)=\alpha \beta+\alpha^{\tau} \beta^{\tau}+\ldots+\alpha^{\tau^{l-1}} \beta^{\tau^{l-1}}=$ $\operatorname{Tr}_{L / k}(\alpha \beta)$ which is an element of k.
II. From the above it suffices to assume that $v \in<\Omega\rangle_{K}^{T}+\left\langle\Omega^{\prime}>_{K}^{T}\right.$ and show that $\widehat{Q}(v) \in k$. There are two cases to consider: (i) $\Omega \neq \Omega^{\prime}$; and (ii) $\Omega=\Omega^{\prime}$.

In the case of (i) if $v=w+w^{\prime}$ with $w \in<\Omega>_{K}^{T}$ and $w^{\prime} \in<\Omega^{\prime}>_{K}^{\prime}$ then $\widehat{Q}(v)=$ $\widehat{Q}\left(w+w^{\prime}\right)=\widehat{\gamma}\left(w, w^{\prime}\right) \in k$ by I. Thus, we may assume (ii). Then for each $x \in \Omega$ also
$x^{\prime} \in \Omega$ and therefore l is even. Let $l_{0}=l / 2$. Then $x^{\prime}=x^{\tau_{0}}$. Now let $w \in<\Omega>_{K}^{T}$. As remarked in I there is an $\alpha \in L$ such that $w=\alpha x+\alpha^{\tau}+\ldots+\alpha^{\tau^{l-1}} x^{\tau^{l-1}}$. Then $\widehat{Q}(w)=\alpha \alpha^{\tau_{0}}+\alpha^{\tau} \alpha^{\tau_{0}+1}+\ldots+\alpha^{\tau_{0}^{l_{0}-1}} \alpha^{\tau^{2 l_{0}-1}}$. But this is clearly fixed by τ, whence is an element of k.

In light of the lemma we can assume that the bilinear form $\gamma^{T}=\widehat{\gamma} \mid M^{T} \times M^{T}$ and the quadratic form $Q^{T}=\widehat{Q} \mid M^{T}$ are defined over k. Now for a vector $v=\sum_{i=1}^{2 n} \alpha_{i} x_{i} \in$ V, and $\sigma \in T$ define $v^{\sigma}=\sum_{i=1}^{2 n} \alpha_{i}^{\sigma} x_{i}^{\sigma}$ an element of V^{σ}. This is a semilinear map from V to V^{σ}. For $v \in V$ set $v^{T}=v \otimes v^{\tau} \otimes \ldots \otimes v^{\tau^{m-1}}$. This is a vector in M^{T}. Our main results now follow:

Proposition 2: Let the hypothesis be as in the second part of the previous lemma. Then $Q^{T}\left(v^{T}\right)=N_{K / k}(Q(v))$.

Proof: Let $v=\sum_{i=1}^{2 n} \alpha_{i} x_{i}$ so that $v^{T}=$

$$
\begin{gathered}
\left(\sum_{i=1}^{2 n} \alpha_{i} x_{i}\right) \otimes\left(\sum_{i=1}^{2 n} \alpha_{i}^{\tau} x_{i}^{\tau}\right) \otimes \ldots \otimes\left(\sum_{i=1}^{2 n} \alpha_{i}^{\tau^{m-1}} x_{i}^{\tau^{m-1}}\right) \\
=\sum \alpha_{i_{1}} \alpha_{i_{2}}^{\tau} \ldots \alpha_{i_{m}}^{\tau^{m-1}}
\end{gathered}
$$

where the sum is taken over all $I=\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in \Im$. It then follows that

$$
Q^{T}\left(v^{T}\right)=\sum \alpha_{i_{1}} \alpha_{j_{1}} \alpha_{i_{2}}^{\tau} \alpha_{j_{2}}^{\tau} \ldots \alpha_{i_{m}}^{\tau^{m-1}} \alpha_{j_{m}}^{\tau^{m_{1}}}
$$

where $J=\left(j_{1}, j_{2}, \ldots, j_{m}\right)=I^{\prime}$ and the sum is taken over the pairs $\left\{I, I^{\prime}\right\}$ from \Im. This is equal to

$$
\sum\left(\alpha_{i_{1}} \alpha_{j_{1}}\right)\left(\alpha_{i_{2}} \alpha_{j_{2}}\right)^{\tau} \ldots\left(\alpha_{i_{m}} \alpha_{j_{m}}\right)^{\tau^{m-1}}
$$

$=$

$$
\prod_{l=0}^{m}\left(\alpha_{1} \alpha_{2}+\alpha_{3} \alpha_{4} \ldots+\alpha_{2 n-1} \alpha_{2 n}\right)^{\tau^{l}}=N_{K / k}(Q(v))
$$

In out next proposition we establish a similar formula for $\gamma^{\tau}\left(v^{T}, w^{T}\right)$.
Proposition 3: For $v, w \in V, \gamma^{T}\left(v^{T}, w^{T}\right)=N_{K / k}(\gamma(v, w))$.
Proof: Let $v=\sum_{i=1}^{2 n} \alpha_{i} x_{i}$ and $w=\sum_{i=1}^{2 n} \beta_{i} x_{i}$. Then

$$
v^{T}=\left(\sum_{i=1}^{2 n} \alpha_{i} x_{i}\right) \otimes\left(\sum_{i=1}^{2 n} \alpha_{i}^{\tau} x_{i}^{\tau}\right) \otimes \ldots \otimes\left(\sum_{i=1}^{2 n} \alpha_{i}^{\tau^{m-1}} x_{i}^{\tau^{m-1}}\right)
$$

and

$$
w^{T}=\left(\sum_{i=1}^{2 n} \beta_{i} x_{i}\right) \otimes\left(\sum_{i=1}^{2 n} \beta_{i}^{\tau} x_{i}^{\tau}\right) \otimes \ldots \otimes\left(\sum_{i=1}^{2 n} \beta_{i}^{\tau^{m-1}} x_{i}^{\tau^{m-1}}\right)
$$

Then $\gamma^{T}\left(v^{T}, w^{T}\right)=\sum\left(\alpha_{i_{1}} \beta_{j_{1}}\right)\left(\alpha_{i_{2}} \beta_{j_{2}}\right)^{\tau} \ldots\left(\alpha_{i_{m}} \beta_{j_{m}}\right)^{\tau^{m-1}}$ where, as in the previous proposition $J=\left(j_{1}, j_{1}, \ldots, j_{m}\right)=I^{\prime}$ and the sum is taken over all pairs $\left\{I, I^{\prime}\right\}$. This is equal to

$$
\prod_{l=0}^{m-1}\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\ldots+\alpha_{2 n} \beta_{2 n}\right)^{\tau^{l-1}}
$$

which is, indeed, equal to $N_{K / k}(\gamma(v, w))$ as claimed.
Corollary: If $v, w \in V$ and $\gamma(v, w) \neq 0$, then $\gamma^{T}\left(v^{T}, w^{T}\right) \neq 0$.
Definition: Let V be equipped with an alternate form γ. A set of points O of $P G(V)$ (one spaces of V) is a cap if for all distinct $U, W \in O, \gamma(U, W) \neq 0$, that is, U, W are non-orthogonal. If V is an orthogonal space with a quadratic form Q and associated symmetric form γ then a cap is a set O of singular points (one spaces U of V such that $Q(U)=0$) which are pairwise non-orthogonal with respect to γ. The bound on the cardinality of a cap in a hyperbolic orthogonal space V (i.e. an orthogonal space which has a hyperbolic basis) is $q^{n-1}+1$ (cf $\left.[\mathrm{K}, \mathrm{T}]\right)$. A cap in a hyperbolic orthogonal space which realizes this bound is called an ovoid. When $n=3$ (dimension of $V=6$), via the Klein correspondence, an ovoid is nothing more than an affine translation plane (see [MS]) of dimensional at most two over its kernal. Ovoids are much rarer when $n=4$ but a number of families have been constructed (see [CKW, K, M1, M2]). It is conjectured that ovoids do not exist for $n \geq 5$. This has been proved in the case the field K has characteristic 2 , 3 , or 5 [BM]. From what we have shown, together with a result from [D] we can obtain a simple proof of the non-existence of ovoids on hyperbolic quadrics in $P G\left(2 n-1,2^{m}\right)$ for $n \geq 5$.

Theorem[BM]: Let $n \geq 5, q=2$. Then (V, Q) does not contain an ovoid.
Proof: It suffices to prove that (V, Q) does not contain an ovoid when $n=5$ (cf $[\mathrm{T}]$). Let C be an ovoid in V. Let $D=\left\{\left\langle v^{T}\right\rangle|<v\rangle \in C\right\}$. Note D is well-defined, for if $<v>\in C$ and $\alpha \in K$ then $(\alpha v)^{T}=N_{G F\left(2^{m}\right) / G F(2)}(\alpha) v^{T}=v^{T}$. By Proposition 2, D consists of singular points, and by Proposition 3, D is a cap of M^{T}. By Theorem 1 (ii) of [D], $\operatorname{card}(D) \leq \operatorname{dim}_{G F(2)}\left(M^{T}\right)+1=(10)^{m}+1$, since M^{T} is a hyperbolic space. On the other hand, $\operatorname{card}(D)=\operatorname{card}(C)=\left(2^{m}\right)^{4}+1=16^{m}+1$ which is greater than $(10)^{m}+1$, a contradiction.

We can also make use of the results in $[\mathrm{D}]$ to prove an ovoid O in a hyperbolic space V of eight dimensions over $G F\left(2^{m}\right)$ must span the entire space:

Theorem[BM,T]: Let (V, Q) be an orthogonal space with hyperbolic basis x_{1}, \ldots, x_{8} defined over the field $K=G F\left(2^{m}\right)$. Let O be an ovoid of (V, Q), then $<O>_{K}=V$.

Proof: Let $W=<O>_{K}$. The cap $O^{T}=\left\{\left\langle v^{T}\right\rangle|<v\rangle \in O\right\}$ in M^{T} has cardinality $\left(2^{m}\right)^{3}+1=8^{m}+1=\operatorname{dim}_{G F(2)}\left(M^{T}\right)$. Since $\left(M^{T}, Q^{T}\right)$ is a hyperbolic space over $G F(2)$ it follows from Theorem 1 (iv) [D] that $<O^{T}>_{G F(2)}$ spans M^{T} and therefore $<O^{T}>_{G F\left(2^{m}\right)}$ spans M. However, if W were a proper subspace of V then $<O^{T}>_{K}$ would be contained in the subspace $W \otimes W^{\tau} \otimes \tau^{\tau^{2}} \otimes \ldots \otimes W^{\tau^{m-1}}$ which is a proper subspace of M. \square

References

[BM] A. Blokhuis and G. E. Moorhouse Some p-ranks Related to Orthogonal Spaces, preprint
[CKW] J.H. Conway, P.B. Kleidman, and R.A. Wilson New familes of ovoids in O_{8}^{+} Geometriae Dedicata, 26, 1988 ,157-170
[D] R. H. Dye Maximal Sets of Non-Polar Points Of Quadrics and Symplectic Polarities over $G F(2)$, Geometriae Dedicata, 44, 1992, 281-293
[K] W. M. Kantor Ovoids and translation planes, Can. Journal of Mathematics, 34, 1982,1195-1207
[MS] G. Mason and E. E. Shult The Klein Correspondence and The Ubiquity of Certain Translation Planes, Geometriae Dedicata, 21, 1986, 29-50
[M1] G. E. Moorhouse Root Lattice Constructions of Ovoids, preprint, to appear in Proceedings of Second International Conference, Deinze
[M2] G. E. Moorhouse Ovoids From the E8 Root Lattice, preprint, to appear in Geometriae Dedicata
[T] J. A. Thas Ovoids and spreads of finite classical polar spaces, Geometriae Dedicata, 10, 1981, 135-144

University of California, Santa Cruz
Dept. of Mathematics, University of California, Santa Cruz, CA 95064
email : Coopcats.ucsc.edu

[^0]: Received by the editors May 1994
 Communicated by J. Thas

