Measurability of linear operators in the Skorokhod topology

Wiebe R. Pestman

Abstract

It is proved that bounded linear operators on Banach spaces of "cadlag" functions are measurable with respect to the Borel σ -algebra associated with the Skorokhod topology.

1 Introduction and notation.

Throughout this paper \mathbb{C}^n is understood to be equipped with an inner product $\langle \cdot, \cdot \rangle$, defined by

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y}_i$$

for all $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ in \mathbb{C}^n . We shall write $|x| = \sqrt{\langle x, x \rangle}$ for all $x \in \mathbb{C}^n$.

A function $f: [0,1] \to \mathbb{C}^n$ is said to be a *cadlag function* ("continu à droite, limite à gauche") if for all $t \in [0,1]$ one has:

$$\lim_{s \downarrow t} f(s) = f(t+) = f(t) \quad \text{and} \quad \lim_{s \uparrow t} f(s) = f(t-) \quad \text{exists}$$

As can be proved in an elementary way, for every cadlag function $\ f$ $\$ and every $\varepsilon>0$ the set

$$\{t \in [0,1] : |f(t) - f(t-)| \ge \varepsilon\}$$

Received by the editors September 1994

Communicated by M. Hallin

AMS Mathematics Subject Classification : 28A20, 28A05, 46B26.

Bull. Belg. Math. Soc. 2 (1995), 381-388

Keywords: linear operator, measurability, Skorokhod topology.

is finite. It follows from this that a cadlag function can be uniformly approximated by step functions on [0, 1]. Consequently, every cadlag function is a bounded Borel function. The linear space of all cadlag functions assuming values in \mathbb{C}^n will be denoted by $\mathfrak{D}(\mathbb{C}^n)$ or, if there can be no confusion, simply by \mathfrak{D} .

Now \mathfrak{D} is equipped with the supremum norm $\|\bullet\|$:

$$||f|| = \sup\{|f(t)| : t \in [0,1]\}$$

In this way \mathfrak{D} becomes a non-separable Banach space, we shall denote it by \mathfrak{D}_B . In [8] and [9] Skorokhod introduced on \mathfrak{D} a weaker topology which turns it into a Polish space. We shall refer to this topology as the Skorokhod topology. The space \mathfrak{D} , equipped with this topology, will be denoted by \mathfrak{D}_S .

It can be proved (see Billingsley [1]) that the identity map $I : \mathfrak{D}_S \to \mathfrak{D}_B$ is continuous in every f which is continuous on [0, 1]. In particular I is continuous in the origin.

The map I is of course not continuous everywhere on \mathfrak{D}_S . It thus appears that the topology on \mathfrak{D}_S is not translation invariant; consequently \mathfrak{D}_S is not a topological vector space.

Although the Skorokhod topology is not compatible with the linear structure on \mathfrak{D} , the corresponding Borel σ -algebra is. In fact we shall see (theorem 3) that it presents the "cylindrical" σ -algebra on the Banach space \mathfrak{D}_B .

In the sequel the only thing that we shall need in connection to the Skorokhod topology is that for all $t \in [0, 1]$ the map

$$f \to f(t)$$

is a Borel function on \mathfrak{D}_S (see Billingsley [1]). It follows from this that for all $t \in [0, 1]$ the map

$$f \to f(t-) = \lim_{n \to \infty} f(t-\frac{1}{n})$$
,

being the pointwise limit of a sequence of Borel functions, is also a Borel function on \mathfrak{D}_S .

2 The dual space of the Banach space \mathfrak{D}_B

In this section we are going to study the structure of continuous linear forms on $\mathfrak{D}_B(\mathbb{C}^n)$, that is, we are going to describe the dual space \mathfrak{D}_B^* of \mathfrak{D}_B (see also Corson [2]).

For any index set I and any $\varphi: I \to \mathbb{C}^n$ we define:

$$\sum_{a \in I} |\varphi(a)| = \sup\{ \sum_{a \in F} |\varphi(a)| : F \text{ a finite subset of } I \}$$

If $\sum_{a \in I} |\varphi(a)| < +\infty$, then the limit

$$\lim_{F} \sum_{a \in F} \varphi(a) = \sum_{a \in I} \varphi(a)$$

exists in \mathbb{C}^n , where the filtration on the collection of finite sets F is understood to be defined by inclusion.

The set of all $\varphi : I \to \mathbb{C}^n$ such that $\sum_{a \in I} |\varphi(a)| < +\infty$ will be denoted by $\ell^1(I, \mathbb{C}^n)$.

If m_1, \ldots, m_n are complex Borel measures on [0, 1] then we shall write:

$$\mathbf{m} = (m_1, \ldots, m_n)$$

For all **m** and all $\varphi \in \ell^1([0,1], \mathbb{C}^n)$ we define a map $[\mathbf{m}, \varphi] : \mathfrak{D} \to \mathbb{C}$ by:

$$[\mathbf{m},\varphi](f) = \sum_{i=1}^{n} \int f_i \, d\,\overline{m}_i + \sum_{a \in [0,1]} \langle f(a) - f(a-),\varphi(a) \rangle \,,$$

where $f = (f_1, \ldots, f_n) \in \mathfrak{D}(\mathbb{C}^n)$.

The following theorem is stated in the notations introduced above:

Theorem 1. (i) For all $\mathbf{m} = (m_1, \ldots, m_n)$ and $\varphi \in \ell^1([0, 1], \mathbb{C}^n)$ the map $[\mathbf{m}, \varphi] : \mathfrak{D}_B(\mathbb{C}^n) \to \mathbb{C}$ is a continuous linear form.

(ii) For every continuous linear form l on the Banach space $\mathfrak{D}_B(\mathbb{C}^n)$ there exists a unique $\mathbf{m} = (m_1, \ldots, m_n)$ and a unique $\varphi \in \ell^1([0, 1], \mathbb{C}^n)$ such that $l = [\mathbf{m}, \varphi]$.

Proof. The proof of (i) is left to the reader.

We prove statement (ii) in the case where n = 1. The general case can easily be deduced from this, for $\mathfrak{D}_B(\mathbb{C}^n)$ is in an obvious way the direct sum of copies of $\mathfrak{D}_B(\mathbb{C})$.

Let l be an arbitrary continuous linear form on $\mathfrak{D}_B = \mathfrak{D}_B(\mathbb{C})$. By Riesz's representation theorem the restriction of l to the subspace C([0,1]) of continuous functions on [0,1] defines a complex Borel measure on [0,1]. This measure will be denoted by m.

The continuous linear form \tilde{l} on \mathfrak{D}_B is defined by

$$\tilde{l}(f) = l(f) - \int f \, dm$$
 for all $f \in \mathfrak{D}$

Now one has $\tilde{l}(f) = 0$ for every $f \in C([0, 1])$.

For every finite set $F \subset [0,1]$ we define the linear subspace \mathfrak{M}_F by:

$$\mathfrak{M}_F = \{ f \in \mathfrak{D} : f(a) - f(a-) = 0 \quad \text{if } a \notin F \}$$

In other words, \mathfrak{M}_F comprises those $f \in \mathfrak{D}$ which have a possible jump in the points of F only.

For every $a \in (0,1]$ and sufficiently small $\delta > 0$ we define the function $\mathbf{1}_a^{\delta}$ by:

$$\begin{aligned} \mathbf{1}_{a}^{\delta}(t) &= \frac{1}{\delta}(t - a + \delta) & \text{if } t \in (a - \delta, a) \\ &= 0 & \text{elsewhere on } [0, 1] \end{aligned}$$

If $f \in \mathfrak{M}_F$, then for sufficiently small $\delta > 0$ the function

$$f + \sum_{a \in F} \{f(a) - f(a-)\} \mathbf{1}_a^{\delta}$$

is an element of C([0,1]). Therefore:

$$\widetilde{l}\left(f + \sum_{a \in F} \{f(a) - f(a-)\} \mathbf{1}_a^{\delta}\right) = 0$$

Consequently we have for all $f \in \mathfrak{M}_F$

$$\widetilde{l}(f) = -\sum_{a \in F} \{f(a) - f(a-)\} \ \widetilde{l}(\mathbf{1}_a^{\delta})$$

Keeping *a* fixed, the difference of two functions of type $\mathbf{1}_{a}^{\delta}$ is in C[0,1]. We see in this way that the expression $\tilde{l}(\mathbf{1}_{a}^{\delta})$ does not depend on δ . For every $a \in [0,1]$, define $\varphi(a) = -\tilde{l}(\mathbf{1}_{a}^{\delta})$. We then have:

$$\widetilde{l}(f) = \sum_{a \in F} \varphi(a) \{ f(a) - f(a-) \}$$
 for all $f \in \mathfrak{M}_F$

Our next goal is to prove that $\varphi \in \ell^1([0,1],\mathbb{C})$. For every finite $F \subset [0,1]$ we define the "complex saw tooth function" f_F in the following way:

- $f_F(a) = \frac{\overline{\varphi(a)}}{|\varphi(a)|}$ if $a \in F$ and $\varphi(a) \neq 0$
- $f_F(a) = 1$ if $a \in F$ and $\varphi(a) = 0$
- f_F is a linear function on each connected component of F^c , such that for all $a \in F$ one has $f_F(a+) = f_F(a)$ and $f_F(a-) = 0$

Now $||f_F|| \leq 1$ for all F. Therefore we have:

$$\sup_{F} \sum_{a \in F} |\varphi(a)| = \sup_{F} |\tilde{l}(f_F)| < +\infty$$

It follows from this that $\varphi \in \ell^1([0,1],\mathbb{C})$, so the map

$$f \to \sum_{a \in [0,1]} \{f(a) - f(a-)\} \varphi(a)$$

is continuous on \mathfrak{D}_B . For all $f \in \bigcup_F \mathfrak{M}_F$ we have

$$\tilde{l}(f) = \sum_{a \in [0,1]} \{ f(a) - f(a-) \} \varphi(a)$$
(*)

The linear space $\bigcup \mathfrak{M}_F$ being dense in \mathfrak{D}_B , this implies that (*) holds for all $f \in \mathfrak{D}_B$. In this way we see, by definition of \tilde{l} , that $l = [\overline{m}, \overline{\varphi}]$.

Unicity of m and φ can be proved easily; this is left to the reader.

Next, let Ω be an arbitrary set, \mathcal{F} a σ -algebra of subsets of Ω and M a topological space. A map $X : \Omega \to M$ is said to be \mathcal{F} -measurable (or simply measurable if no confusion can arise) if $X^{-1}(A) \in \mathcal{F}$ for all Borel sets A in M. If M is a Banach space then a map $X : \Omega \to M$ is said to be *scalarly measurable* if for every continuous linear form l on M the composition $l \circ X : \Omega \to \mathbb{C}$ is measurable. A well-known theorem in functional analysis (due to B.J. Pettis [6]) states that in case of a *separable* Banach space, measurability is equivalent to scalar measurability. If M is non-separable then this statement is in general not true. In fact, it is easy to construct a counterexample in case $M = \mathfrak{D}_B(\mathbb{C})$:

Example. Let $\Omega = [0, 1]$ and let \mathcal{F} be the σ -algebra consisting of all Borel sets in [0, 1]. Define $X : \Omega \to \mathfrak{D}_B(\mathbb{C})$ by:

$$X(s) = \mathbf{1}_{[0,s)} \qquad \text{for all } s \in [0,1]$$

For any continuous linear form $l = [m, \varphi]$ we have:

$$l(X(s)) = m\{[0,s)\} + \varphi(s)$$
 for all $s \in [0,1]$

The condition that $\sum_{a} |\varphi(a)| < +\infty$ implies that the set of points s for which $\varphi(s) \neq 0$ is at most countably infinite. Keeping this in mind, measurability of the map $s \to l(X(s))$ can be proved by easy verification. It thus appears that X is scalarly measurable.

Next we are going to prove that $X : \Omega \to \mathfrak{D}_B$ is not measurable. Let $A \subset [0, 1]$ be a set which is not Borel. Define

$$\mathfrak{A} = \{\mathbf{1}_{[0,s)} : s \in A\} \subset \mathfrak{D}_B$$

Denote the convex hull of \mathfrak{A} by \mathfrak{C} . It is not hard to prove that for all $t \notin A$

$$\|\mathbf{1}_{[0,t)} - f\| \ge \frac{1}{2}$$

for every $f \in \mathfrak{C}$, and consequently also for every f in the closure $\overline{\mathfrak{C}}$ of \mathfrak{C} in \mathfrak{D}_B . In this way it turns out that $X^{-1}(\overline{\mathfrak{C}}) = A$. This shows that X is neither measurable in the norm, nor in the weak topology associated with the Banach space \mathfrak{D}_B . (To the author it is not known whether the Borel σ -algebras corresponding to the norm and the weak topology on \mathfrak{D}_B really differ (see also Edgar [3]). Talagrand proved in [10] and [11] the existence of Banach spaces where both σ -algebras are different).

3 Measurability in the Skorokhod topology.

As announced earlier, the linear space \mathfrak{D} equipped with the Skorokhod topology will be denoted by \mathfrak{D}_S . A map $X : \mathfrak{D}_S \to M$, where M is a topological space, is said to be measurable if it is measurable with respect to the Borel σ -algebra of \mathfrak{D}_S .

Theorem 2. Let l be a continuous linear form on the Banach space $\mathfrak{D}_B(\mathbb{C}^n)$. Then $l:\mathfrak{D}_S(\mathbb{C}^n)\to\mathbb{C}$ is measurable. **Proof.** The proof is split up into three steps.

If $f = (f_1, \ldots, f_n) \in \mathfrak{D}(\mathbb{C}^n)$ and $\mathbf{m} = (m_1, \ldots, m_n)$ where m_1, \ldots, m_n are complex Borel measures on [0, 1], then we shall write

$$\int \langle f, d\mathbf{m} \rangle = \sum_{j=1}^{n} \int f_j \ d\,\overline{m}_j$$

step 1: If δ_a is the Dirac measure in the point a and if $c = (c_1, \ldots, c_n) \in \mathbb{C}^n$, then we denote

$$\mathbf{m} = c\delta_a = (c_1\delta_a, \dots, c_n\delta_a)$$

It is known that the map $f \to f(a)$ is measurable on \mathfrak{D}_S (see Billingsley [1]), so it follows that, in case $\mathbf{m} = c\delta_a$, the map

$$f \to \int \langle f, d\mathbf{m} \rangle = \langle f(a), c \rangle$$

is also measurable on \mathfrak{D}_S .

step 2: Next we are going to prove that for arbitrary complex measures m_1, \ldots, m_n on [0, 1] the map

$$f \to \int \langle f, d\mathbf{m} \rangle$$

is measurable on \mathfrak{D}_S .

For every $k \in \mathbb{N}$ we define the 2^k intervals I_i^k by

$$I_i^k = [(i-1)/2^k, i/2^k)$$
 $i = 1, 2, \dots, 2^k$

Moreover, for every $f \in \mathfrak{D}$ a sequence $f_k \in \mathfrak{D}$ is defined by:

$$f_k = \left(\sum_{i=1}^{2^k} f(i/2^k) \mathbf{1}_{I_i^k}\right) + f(1) \ \mathbf{1}_{\{1\}}$$

Now if $k \to \infty$ one has (because f(t+) = f(t)) that $f_k(t) \to f(t)$ for every $t \in [0, 1]$.

For all Borel sets $A \subset [0, 1]$ we write

$$\mathbf{m}(A) = (m_1(A), \dots, m_n(A))$$

and we define

$$\mathbf{m}_{k} = \left(\sum_{i=1}^{2^{k}} \mathbf{m}(I_{i}^{k}) \ \delta_{i/2^{k}}\right) + \mathbf{m}(\{1\})\delta_{1}$$

Then

$$\int \langle f, d\mathbf{m}_k \rangle = \sum_{i=1}^{2^k} \langle f(i/2^k), \mathbf{m}(I_i^k) \rangle + \langle f(1), \mathbf{m}\{1\} \rangle = \int \langle f_k, d\mathbf{m} \rangle$$

So by Lebesgue's bounded convergence theorem, we have for all $f \in \mathfrak{D}$

$$\int \langle f, d\mathbf{m} \rangle = \lim_{k \to \infty} \int \langle f, d\mathbf{m}_k \rangle$$

By step 1 the maps

$$f \to \int \langle f, d\mathbf{m}_k \rangle$$

are measurable on \mathfrak{D}_S . It follows from this that the map

$$f \to \int \langle f, d\mathbf{m} \rangle \; ,$$

being the pointwise limit of a sequence of measurable maps, is measurable on \mathfrak{D}_S . step 3: If $\varphi \in \ell^1([0,1], \mathbb{C}^n)$ then the map

$$f \to \sum_{a \in [0,1]} \langle f(a) - f(a-), \varphi(a) \rangle$$

is measurable on \mathfrak{D}_S .

To prove this, we observe that the set $\{a \mid \varphi(a) \neq 0\}$ is at most countably infinite. Measurability is now easily verified, for the maps

$$f \to f(a)$$
 and $f \to f(a-)$

are measurable on \mathfrak{D}_S .

Finally, by step 2, step 3, and theorem 1 we conclude that every continuous linear form on \mathfrak{D}_B is measurable on \mathfrak{D}_S . This proves the theorem.

The following theorem gives a characterization of the Borel σ -algebra of \mathfrak{D}_S .

Theorem 3. The Borel σ -algebra of \mathfrak{D}_S is generated by the maps $l: \mathfrak{D}_S \to \mathbb{C}$, where $l \in \mathfrak{D}_B^*$.

Proof. This is a direct consequence of theorem 2 and the fact that the maps of type $f \to f(a)$ generate the Borel σ -algebra of \mathfrak{D}_S (see Billingsley [1] or apply Fernique's theorem, see Schwartz [7]).

The theorem above enables us to prove:

Theorem 4. If $T : \mathfrak{D}_B(\mathbb{C}^m) \to \mathfrak{D}_B(\mathbb{C}^n)$ is a bounded linear operator then $T : \mathfrak{D}_S(\mathbb{C}^m) \to \mathfrak{D}_S(\mathbb{C}^n)$ is measurable.

Proof. To prove that $T : \mathfrak{D}_S(\mathbb{C}^m) \to \mathfrak{D}_S(\mathbb{C}^n)$ is measurable it is, by theorem 3, sufficient to prove that for all $l \in \mathfrak{D}_B^*(\mathbb{C}^n)$ the composition $l \circ T : \mathfrak{D}_S(\mathbb{C}^m) \to \mathbb{C}$ is measurable. This is trivial, because $l \circ T \in \mathfrak{D}_B^*(\mathbb{C}^m)$.

Closing remarks

In stochastic analysis one is sometimes encountered with variables assuming values in \mathfrak{D}_S . By theorem 3, measurability of such variables is equivalent to scalar measurability with respect to the Banach space \mathfrak{D}_B . There is no loss of measurability if bounded linear transformations are applied (see for example J. Kormos e.a. [4] or T. van der Meer [5]).

References

- P. Billingsley, Convergence of probability measures (John Wiley & Sons, New York, 1968).
- [2] H.H. Corson, The weak topology on a Banach space, T.A.M.S., vol 101 (1961), p.1-15.
- [3] G.A. Edgar, Measurability in a Banach space, Ind. Univ. Math. Journ., vol 26 (1977), p.663-667.
- [4] J. Kormos, T. van der Meer, G. Pap, M. van Zuijlen, Asymptotic inference of nearly non-stationary complex-valued AR(1) processes, Report 9351, University of Nijmegen, the Netherlands.
- [5] T. van der Meer, Applications of operators in nearly unstable models, thesis University of Nijmegen, the Netherlands (1995).
- [6] B.J. Pettis, On integration in vector spaces, T.A.M.S., vol. 44 (1938), p.277-304.
- [7] L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures (Oxford University Press, London, 1973).
- [8] A.V. Skorokhod, Dokl. Akad. Nauk SSSR, 104 (1955) p.364-367.
- [9] A.V. Skorokhod, Dokl. Akad. Nauk SSSR, 106 (1956) p.781-784.
- [10] M. Talagrand, Comparaison des Boreliens pour les topologies fortes et faibles, Ind. Univ. Math. Journ., vol. 21 (1978), p.1001-1004.
- [11] M. Talagrand, Pettis integral and measure theory, Memoirs of the A.M.S., vol. 51, nr. 307 (1984).

Wiebe R. Pestman Department of Mathematics, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands.