The classification of subplane covered nets

Norman L. Johnson

Abstract

In this article, the subplane covered nets are completely classified as pseudo regulus nets.

1 Introduction.

In the sixties, T.G. Ostrom([10],[11]) conceived the notion of a derivable affine plane. These are affine planes of order q^{2} which admit a set B of affine Baer subplanes which have the same set D of infinite points and which have the property that for every pair of distinct affine points whose line join belongs to a parallel class of D then there is a Baer subplane of B which contains these two points. Ostrom showed that an affine plane may be constructed by removing the lines whose parallel classes are in D and replacing these by the set B of Baer subplanes. The constructed plane is called the derived plane.

More generally, it is a natural question to ask of the nature of the net which contains the Baer subplanes of a derivable affine plane, and to ask if a net with such properties may always be extended to an affine plane. Futhermore, it is possible to consider infinite derivable affine planes and infinite derivable nets.

Most early attempts to determine the structure of a derivable affine plane were made by trying to show that, for every affine plane, there is a coordinate structure Q which is a right two dimensional vector space over a field F isomorphic to $G F(q)$ while the set D becomes coordinatized by $G F(q) \cup(\infty)(P G(1, q))$ (see the definition of pseudo - regulus net). These studies contrast with the ideas of Cofman [3]

[^0]who associates an affine space with any derivable net minus a given parallel class. Recently, using Cofman's basic ideas, I was able to completely determine the structure of a derivable net (see [6], [7] and for a more complete history of the problems involved with derivation, the reader is referred to [8]).

Theorem 1.1 (Johnson [6]).
(1) Let $R=(P, L, C, B, I)$ be a derivable net. Then there exists a 3dimensional projective space $\sum \cong P G(3, K)$ where K is a skewfield such that the points in P of R are the lines of \sum which are skew to a fixed line N, the lines in L of R are the points of $\sum-N$, the parallel classes in C of R are the planes of \sum which contain N and the subplanes in B of R are the planes of \sum which do not contain N.
(2) Conversely, if $\sum_{1} \cong P G\left(3, K_{1}\right)$ is a 3 -dimensional projective space over the skewfield K_{1} and N_{1} is any fixed line, define points P_{1}, lines L_{1}, parallel classes C_{1}, subplanes B_{1} to agree with the correspondence above with respect to \sum_{1} and the fixed line N_{1} where incidence I_{1} is relative incidence in \sum_{1}. Then $R_{1}=\left(P_{1}, L_{1}, C_{1}, B_{1}, I_{1}\right)$ is a derivable net.

To generalize these concepts further, the term "Baer subplane" may be replaced by the term "subplane". That is, a net is said to be a subplane covered net if and only if for each pair of distinct points which are collinear, there is a subplane which contains the two points and whose infinite points are the infinite points of the net.

When R.H. Bruck [2] proved his extension and uniqueness theorems on finite nets, the emphasis was on ideas of R.C. Bose on graph nets and more generally on partial geometries(see [1] e.g.). More recently, Thas and De Clerck [12] studied partial geometries which satisy the axiom of Pasch and completely determined such structures. For example, the result for finite nets is:

Theorem 1.2 (Thas and De Clerck [12])
Let S be a dual net of order $s+2$ and degree $t+1(t+1>s)$. If S satisfies the axion of Pasch, then S is isomorphic to $H_{q}^{n}\left(q-1=s, t+1=q^{n-1}\right)$.

Here H_{q}^{n} is the set of points of the projective space $P G(n, q)$ which are not contained in a fixed subspace $P G(n-2, q)(n \geq 3)$, and lines of $P G(n, q)$ which do not have a point in common with $P G(n-2, q)$.

Very recently, De Clerck and the author combined certain of these ideas and showed that finite subplane covered nets are regulus nets:

Theorem 1.3 (De Clerck and Johnson [4]).
Let R be a finite subplane covered net. Then there is a finite projective space $\sum \cong P G(2 n-1, q)$ such that the lines of the net are translates of a ($n-1$)-regulus where the net is of order q^{n} and degree $q+1$; a finite subplane covered net is a regulus net.

The remaining questions now involve arbitrary subplane covered nets. Since the work of Cofman and subsequent work on derivable nets by the author does not
use finiteness, but the work of Thas and De Clerck and De Clerck and Johnson on partial and semi-partial geometries does use finiteness, is it possible to determine the structure of arbitrary subplane covered nets using similar combinations of methods?

Note that a $(n-1)$-regulus in $P G(2 n-1, q)$ may be realized as a net of order q^{n} and degree $q+1$ which may be coordinatized by a field isomorphic to $G F(q)$. In the general case, given a projective space $\sum \cong P G(V, K)$ where V is a (right) vector space over a skew field K, a pseudo-regulus net is a net which may be coordinatized by K in a manner which will be made precise later.

Is every subplane covered net a pseudo-regulus net?

In [9], K.S. Lin and the author showed that every net whose dual may be embedded in a projective space is a pseudo-regulus net. More precisely, it is also shown that given any projective space \sum of dimension ≥ 2 and any codimension 2 subspace N, the structure of "points", and "lines" as the lines of \sum skew to N and points of $\sum-N$ respectively forms a pseudo-regulus net.

In this article, we are able to completely determine the structure of any subplane covered net. The arguments used involve certain ideas of Cofman and of Thas and De Clerck but do not use finiteness. Recall a Baer subplane in an arbitrary net is a subplane such that every point lies on a line of the net and every line contains a point of the subplane(in the projective setting). The main obstacle in considering the problem in the infinite case involves finding a suitable replacement for the point/line properties of a Baer subplane. This obstacle may be overcome once it is realized that within any subplane covered net, there is always a derivable subnet within which the subplanes are $\operatorname{Baer}($ see section 2).

Our main result classifies all subplane covered nets in terms of a projective space as in Thm.(1.1) but see Thm.(3.11) for the complete statement. A corollary to this result is the generalization of the result of De Clerck and Johnson:

Theorem 1.4 If N is a subplane covered net then N is a pseudo-regulus net.

Note that a finite pseudo-regulus net is a regulus net, a derivable net is a subplane covered net, and a net whose dual satisfies the axiom of Pasch is a finite subplane covered net, so that the previously known results may be obtained as corollaries to the above theorem.

2 Derivable subnets.

In this section, it is shown that every subplane covered net contains a derivable subnet such that the subplanes contained in the subnet are Baer when restricted to this net. Most of the ideas necessary for the proofs were obtained by trying to generalize the techniques of Cofman [3], and consequently of Johnson [6], and of Thas and De Clerck [12] to the infinite case and the diligent reader can see the influence that Thas and De Clerck has had on the present work. However, since Thas and De Clerck study partial geometries satisfying the axiom of Pasch, and the duals of finite nets are the partial geometries in question, the reader who would like
to read both papers must dualize our statements to find finite analogues in Thas and De Clerck. In particular, two key results might be mentioned here.

First the proof of Thas and De Clerck that dual nets satisfying the axiom of Pasch are regular uses finiteness in an essential way. The regularity condition when properly interpreted in the language of nets says that once two subplanes share two lines of a given parallel class then they share all of their lines on this parallel class. In the arbitrary case, we use a similar argument but one which does not use finiteness to prove this result(see Thm.(2.2).

Second, recall that a derivable net is a subplane covered net which is covered by Baer subplanes. Thas and De Clerck define certain substructures which when dualized become subnets of order q^{2} and degree $q+1$ which are covered by subplanes of order q. Clearly, by counting, it is seen that the subplanes are Baer in the substructure and the substructure is a derivable net. In the arbitrary order case, it is still possible to prove that there are analogous structures which we show are derivable subnets wherein the subplanes are Baer (see Thm.(2.5)).

ASSUMPTIONS: Let $R=(P, L, B, C, I)$ be a subplane covered net where the sets P, L, B, C, I denotes the sets of points, lines, subplanes, parallel classes, and incidence respectively. Note it is assumed implicitly that there is more than one subplane for otherwise any affine plane would be a subplane covered net. Furthermore, occasionally we shall refer to the set of parallel classes C as the set of infinite points of the net. If P is an affine point and α is a parallel class, $P \alpha$ shall denote the unique line of α which is incident with P. Also, note that given a pair of distinct points P, and Q which are collinear in N then there is a subplane $\pi_{P, Q}$ which contains P and Q and which has C as its set of infinite points.

Proposition 2.1 The subplane $\pi_{P, Q}$ is the unique subplane of B which contains P and Q.

Proof: Let R be any point of the subplane which is not on the line PQ. Then RP and RQ are lines of distinct parallel classes say α and β respectively. Then $R P=P \alpha$ and $R Q=Q \beta$ and $R=P \alpha \cap Q \beta$. Hence, any point of $\pi_{P, Q}$ which is not on the line PQ may be obtained as the intersection of the lines in $\{P \delta \mid \delta \in C\}$ and in $\{Q \rho \mid \rho \in C\}$.

Similarly, any point of PQ may be obtained as the intersection of lines $R \alpha$ and $P \beta$ for a particular point R (of intersection as above) for certain α, β in C.

Theorem 2.2 (The Share Two Theorem)

If π_{1} and π_{2} are subplanes of B that share two lines of a parallel class α in C then the subplanes share all of their lines on α.

Proof:

Existence:

First we show that the subplanes have common lines other than the given two. Let x and y be common lines to π_{1} and π_{2} in the parallel class α. Let z_{1} and z_{2} be lines of parallel classes β and δ respectively where α, β, δ are mutually distinct and lines of π_{1}, π_{2} respectively. Let L_{1}, M_{1} be $z_{1} \cap x, z_{1} \cap y$ respectively so that
$\pi_{1}=\pi_{L_{1}, M_{1}}$. Similarly, let L_{2}, M_{2} be $z_{2} \cap x, z_{2} \cap y$ respectively so that $\pi_{2}=\pi_{L_{2}, M_{2}}$. Note that $\left\{L_{1}, M_{1}\right\}$ and $\left\{L_{2}, M_{2}\right\}$ must be disjoint in order that the subplanes π_{1} and π_{2} be distinct. Let $W=z_{1} \cap z_{2}$. Note that if T is a point of a subplane π_{0} then any line $T \delta$ for $\delta \in C$ is a line of π_{0}; the lines thru T are lines of π_{0}. So, it follows that W is a point of the subplanes $\pi_{L_{1}, L_{2}}$ and $\pi_{M_{1}, M_{2}}$ as, for example, z_{1} and z_{2} are lines thru L_{1} and L_{2} and thus lines of the subplane $\pi_{L_{1}, L_{2}}$ (such subplanes exist since L_{1}, L_{2} are collinear with x) and as such, the intersection point W is a point of the subplane. Note that $W \alpha$ must be distinct from $L_{1} \alpha=x$ and from $M_{1} \alpha=y$ since π_{1} and π_{2} are distinct.

Choose any point U on $W \alpha$ distinct from W and in $\pi_{L_{1}, L_{2}}$. Hence, U and L_{1} and U and L_{2} are collinear. Choose any line r_{1} not equal to y thru M_{1} and intersect $W \alpha$ in R_{1}. Since $W \alpha$ and r_{1} then become lines of $\pi_{M_{1}, M_{2}}$, it follows that R_{1} and M_{1} and R_{1} and M_{2} are collinear. Hence, $r_{1}=R_{1} M_{1}$ and there is a line $R_{1} M_{2}$.

Thus, we have the lines $U L_{1}, U L_{2}, R_{1} M_{1}$, and $R_{1} M_{2}$.
Note that at this point, it is not clear that the intersections are affine; various of the lines could belong to the same parallel class. Extend the notation so that two parallel lines "intersect" in the infinite point β if and only if they belong to the parallel class β.

Form $U L_{1} \cap R_{1} M_{1}=S$ and $U L_{2} \cap R_{1} M_{2}=T$. We may choose $r_{1}=R_{1} M_{1}$ to be not parallel to $U L_{1}$ but it is still possible that $R_{1} M_{2}$ is parallel to $U L_{2}$.

Let $U L_{1}=L_{1} \beta_{1}$ and $U L_{2}=L_{2} \beta_{2}$ where β_{1} and $\beta_{2} \epsilon C$. A different choice of r_{1} produces a different intersection point R_{1} on $W a$ and all of these intersection points are collinear with M_{2} so the lines formed belong to different parallel classes. Hence, there is at most one line r_{1} which will produce an intersection point R_{1} so that $R_{1} M_{2}$ is parallel to $U L_{2}$.

Hence, choose r_{1} different from y, different from z_{1}, not on $\beta_{1}(i . e$. not parallel to $U L_{1}$) and distinct from a line(at most one) which produces intersection point R_{1} such that $R_{1} \beta_{2}=R_{1} M_{2}$. Thus, assume that the degree is ≥ 5. Then the intersection points S and T where $S=U L_{1} \cap R_{1} M_{1}$ and $T=U L_{2} \cap R_{1} M_{2}$ are both affine. Note that U and R_{1} are collinear (there are both on $W \alpha$) and U and R_{1} are distinct for otherwise, $R_{1} M_{1}=U M_{1}$ and z_{1} would be lines of $\pi_{L_{1}, L_{2}}$ which intersect in M_{1} so that M_{1}, L_{1} and L_{2} are points of the same subplane which cannot occur if π_{1} and π_{2} are distinct subplanes. So, there is a subplane $\pi_{U, R_{1}}$. All of the indicated lines are lines thru either U or R_{1} so that the intersection points S and T are in $\pi_{U, R_{1}}$. Furthermore, the point S is in $\pi_{L_{1}, M_{1}}=\pi_{1}$ as it is the intersection of two lines of this subplane, and similarly T is a point of $\pi_{L_{2}, M_{2}}=\pi_{2}$. Hence, ST is a line which must be common to both subplanes. However, if the subplanes are distinct then $S T=S \alpha=T \alpha$ since otherwise, ST intersects x and y in distinct affine points which, by Prop.(2.1), forces the two subplanes to be identical.

Thus, $S T=S \alpha=T \alpha$ is a line of α which is common to both subplanes. If $S T=x$ then $S=L_{1}$ and $r_{1}=z_{1}$. Similarly, $S T=y$ forces $S=M_{1}$ and $T=M_{2}$ so that $r_{1}=y$. Hence, we have shown that with the exception of at most four lines thru M_{1}, any such line produces a line of α common to both subplanes. Moreover, two distinct lines r_{1} and r_{2} thru M_{1} produce distinct points R_{1} and R_{2} on $W \alpha$ which produce distinct intersection points $U L_{1} \cap R_{1} M_{1}=S$ and $U L_{1} \cap R_{2} M_{1}=S_{2}$.

If $S \alpha=S_{2} \alpha$ then $S S_{2}=S \alpha=S_{2} \alpha=U L_{1}$ which is a contradiction since $U L_{1}$ cannot be in the parallel class α as U is a point of $W \alpha \neq L_{1} \alpha$. Hence, each such line r_{1} produces a distinct common line of π_{1} and π_{2}. Hence, there are at least ((degree $N)-4)+2$ common lines all of which must be lines of the parallel class α (note, we are not claiming that degree N is finite as in the infinite case, degree N is an infinite cardinal number). If the degree of the net is 3 then two distinct subplanes can share at most two affine lines on α. So, we have the existence of more than 2 common lines provided the degree ≥ 5.

Completeness:

We first assume that the degree of the net is at least 5 .

Now assume that π_{1} and π_{2} do not share all of their lines on α but share at least two. And, we assume that the degree $i s>4$. Let y_{1} be a line of α of π_{2} which is not a line of π_{1}. Let $z_{1} \cap y_{1}=N_{1}$ and $z_{2} \cap y_{1}=N_{2}$. Form the subplane $\pi_{L_{1}, N_{1}}=\pi_{3}$ (note that L_{1} and N_{1} are distinct points of z_{1}). Furthermore, $\pi_{2}=\pi_{L_{2}, M_{2}}=\pi_{L_{2}, N_{2}}$ and note that W is a point of $\pi_{N_{1}, N_{2}}$ as well as a point of $\pi_{L_{1}, L_{2}}$ and $\pi_{M_{1}, M_{2}}$.

Let v be a common line of π_{1} and π_{2} on α and distinct from x or y. Let T be a point (affine) of $v \cap \pi_{2}$ which is not on z_{2}. Since T is a point of π_{2}, T and N_{2} are collinear. Form $T N_{2}$. Recall that $W \alpha$ is a line of $\pi_{N_{1}, N_{2}}$ as is $T N_{2}$ so the intersection $W \alpha \cap T N_{2}=R_{2}$ is a point of $\pi_{N_{1}, N_{2}}$ and is affine since otherwise $T N_{2}$ would be in the parallel class α and T would be on y_{1} which cannot be since y_{1} is not a line of π_{1}.

Since T and L_{2} are distinct points of π_{2}, form $T L_{2} \cap W \alpha=U_{1}$ so that U_{1} is an affine point (similarly $T L_{2}$ is not parallel to $W \alpha$ for otherwise, T and L_{2} would be on x and $T \alpha=v$ would then be x). Thus, U_{1} is a point of $\pi_{L_{1}, L_{2}}$ and thus U_{1} and L_{1} are collinear.

Form $R_{2} N_{1}$ (possible since the joining points are in the same subplane).
Now $U_{1} L_{2} \cap R_{2} N_{2}=T\left(R_{1}=T N_{2} \cap W \alpha\right.$ and $T L_{2} \cap W \alpha=U_{1}$ so that $U_{1} L_{2}=T L_{2}$ and $R_{2} N_{2}=T N_{2}$)and is, of course, in π_{2}. Similarly, $U_{1} L_{1} \cap R_{2} N_{1}=S_{1}$ is in $\pi_{L_{1}, N_{1}}=\pi_{3}$. Note that R_{2} and U_{1} are both on $W \alpha$ and if distinct determine a unique subplane $\pi_{U_{1}, R_{2}}$. Similar to the above argument, if $R_{2}=U_{1}$ then $R_{2} N_{1}$ and z_{1} are common lines of $\pi_{L_{1}, L_{2}}$ so that L_{1}, L_{2}, and N_{1} are in the same subplane. But, $\pi_{L_{1}, N_{1}}=\pi_{3}$ and $\pi_{L_{2}, M_{2}}=\pi_{2}$ so that π_{3} and π_{2} share a common point(namely L_{2}) and two common lines x and y_{1} which forces these two subplanes to be equal. But, in this case, π_{3} contains L_{1} but π_{2} cannot.

Thus, S_{1} and T are points which are common to $\pi_{U_{1}, R_{2}}$. However, we don't know yet know that S_{1} is an affine point. We know from above that there are at least $(($ degree $N)-4)+2$ lines on α which are common to π_{1} and π_{2}. If the degree $N-4>1$, let v_{1} be a line on α common to π_{1} and π_{2} and distinct from x, y, or v. Form $T N_{2} \cap v_{1}=T_{1}$. Then T_{1} is a point of π_{2} distinct from T or N_{2}. Form $T_{1} L_{2} \cap W \alpha=U_{2}$ and note that $T_{1} N_{2} \cap W \alpha=T N_{2} \cap W \alpha=R_{2}$ and since U_{2} is a point of $\pi_{W, L_{2}}=\pi_{L_{1}, L_{2}}$, then we may also form the intersection $S_{2}=U_{2} L_{1} \cap R_{2} N_{1}$ and since $U_{1} L_{1}$ and $U_{2} L_{1}$ intersect in L_{1} then both cannot be parallel to $R_{2} N_{1}$. Note $U_{2} \neq U_{1}$ since otherwise T would be on z_{2}.

Now both S_{1} and S_{2} are points of $\pi_{L_{1}, N_{1}}=\pi_{3}$ and T, S_{1} are points of $\pi_{U_{1}, R_{2}}$ and T_{1} and S_{2} are points of $\pi_{U_{2}, R_{2}}$ (note that U_{2} is distinct from R_{2} for otherwise,
$T_{1} N_{2}=R_{2} N_{2}=U_{2} N_{2}$ and $T_{1} L_{2}=U_{2} L_{2}$ which would force U_{2} to be a point of $\pi_{L_{2}, N_{2}}=\pi_{2}$ which would then in turn force $W \alpha=U_{2} \alpha$ to be a line of π_{2} which cannot occur if π_{2} and $\pi_{1}\left(\pi_{3}\right)$ are distinct). Without loss of generality, we may assume that S_{1} is an affine point (note that both points S_{1} and S_{2} are points of $R_{2} N_{1}$ so are either equal or one is affine and it is direct that they cannot be equal). Since S_{1} and T are collinear it follows that $S_{1} T$ is a line common to π_{3} and to π_{2} but since π_{2} and π_{3} share x and y_{1}, it then follows that $S_{1} T=S_{1} \alpha=T \alpha=v$. Hence, π_{3} and π_{1} share a point L_{1} and two common lines x and v which implies that π_{1} and π_{3} are identical which cannot be the case as y_{1} is a line of π_{3} but not π_{1}. Hence, we have a contradiction and the proof to our lemma provided the degree of the net is at least 6 .

We now assume that the degree of the net is exactly 4 . Note that we are not necessarily assuming that the net is finite for we could have a net covered by infinitely many subplanes of order 3 .

With the set up as above, there are exactly four affine lines thru M_{1}, namely y, z_{1} and say r_{1} and r_{2}. Let $R_{1}=r_{1} \cap W \alpha$ and $R_{2}=r_{2} \cap W \alpha$. There are three affine points of $\pi_{L_{1}, L_{2}}$ on $W \alpha$, namely W and say U_{1}, U_{2}. Note that neither R_{1} nor R_{2} can be in $\pi_{L_{1}, L_{2}}$ since if so, for example if R_{1} is a point of $\pi_{L_{1}, L_{2}}$ then r_{1} and z_{1} are lines of this subplane which forces $r_{1} \cap z_{1}=M_{1}$ to be a point of $\pi_{L_{1}, L_{2}}$ which cannot occur as we have seen previously.

Now consider $U_{1} L_{1}$ and $U_{2} L_{1}$. At least one of these two lines is not parallel to $R_{1} M_{1}$ and at least one is not parallel to $R_{2} M_{1}$. Without loss of generality, assume that $U_{1} L_{1}$ is not parallel to $R_{1} M_{1}$. Now form $R_{1} M_{2}$ and $U_{1} L_{2}$. If these latter two lines are not parallel, then we may find a common line on α of π_{1} and π_{2} distinct from x and y by the above argument. Hence, assume that $R_{1} M_{2}$ is parallel to $U_{1} L_{2}$.

If $U_{1} L_{1}$ is also not parallel to $R_{2} M_{1}$ then forming $U_{1} L_{2}$ and $R_{2} M_{2}$ and noting that $R_{1} M_{2}$ is parallel to $U_{1} L_{2}$ shows that $U_{1} L_{2}$ cannot be parallel to $R_{2} M_{2}$. So, we obtain a common line of π_{1} and $\pi_{2} v$ on α distinct from x and y. Hence, it must be that $U_{2} L_{1}$ is not parallel to $R_{2} M_{1}$. Forming $U_{2} L_{2}$ and $R_{2} M_{2}$, we must have these two lines parallel or we are finished.

Summarizing, we are forced into the following situation:
$U_{1} L_{2}$ is parallel to $R_{1} M_{2}$, (so is not parallel to $R_{2} M_{2}$)
$U_{2} L_{2}$ is parallel to $R_{2} M_{2}$ (so is not parallel to $R_{1} M_{2}$), and
$U_{1} L_{1}$ is parallel to $R_{2} M_{1}$ (since $U_{1} L_{2}$ is not parallel to $R_{2} M_{2}$),
$U_{2} L_{1}$ is parallel to $R_{1} M_{1}$ (since $U_{2} L_{2}$ is not parallel to $R_{1} M_{2}$).
We have exactly four parallel classes say $\alpha, \beta, \delta, \gamma$.
$U_{1} L_{2}$ is parallel to $R_{1} M_{2}$ so these lines lie say in $\beta($ as they can't lie in α).
$U_{2} L_{2}$ is parallel to $R_{2} M_{2}$ but $U_{2} L_{2}$ cannot lie in α or β so these lines lie say in δ.
$U_{1} L_{1}$ is parallel to $R_{2} M_{1}$ but $U_{1} L_{2}$ cannot lie in β as $U_{1} L_{2}$ does and $R_{2} M_{1}$ cannot lie in δ as $R_{2} M_{2}$ does so that these two lines lie in γ.
$U_{2} L_{1}$ is parallel to $R_{1} M_{1}$ but $U_{2} L_{1}$ cannot lie in δ or γ as $U_{2} L_{2}$ lies in δ and $U_{1} L_{2}$ lies in γ and since $R_{1} M_{1}$ cannot lie in β since $R_{1} M_{2}$ does, $U_{2} L_{1}$ and $R_{1} M_{1}$ are forced to lie in α which is a contradiction.

Now assume the degree is 5 . By the existence argument, π_{1} and π_{2} share lines x, y and say v on α. Let v_{1} be the fourth line of π_{2} on α. Form the subplane
π_{3} which contains L_{1} and v_{1} (that is, $\pi_{3}=\pi_{L_{1}, z_{1} \cap v_{1}}$). Then π_{3} shares x, v_{1} with π_{2} and by the existence result, shares either y or v also. In either case, π_{3} and π_{1} share L_{1} and two distinct lines on α. Hence, $\pi_{1}=\pi_{3}$. This shows that π_{2} and π_{1} share all four of their lines on α.

The reader might note that the argument for degree 5 originates in Thas and De Clerck who utilize this more generally in the finite case.

Hence, we have the proof to the Share Two Theorem.

THE STRUCTURES S_{L}^{N}

Let L and N be any two affine points of the net which are not collinear. Let x be any line incident with N. Form the intersection $L \beta \cap x$ if x does not lie in $\beta \in C$ and determine the subplane $\pi_{L, L \beta \cap x}$. This subplane contains all of the points $L \delta \cap x$ so that by Prop.(2.1) any such intersection point together with L uniquely determines the subplane. We shall use the notation $\pi_{L, x}$ for this subplane.

We define the structure S_{L}^{N} as $\cup_{N} \pi_{L, x}$ where x varies over the set of lines incident with N. Note that the lines of S_{L}^{N} are the lines of a subplane $\pi_{L, x}$ whereas the points of S_{L}^{N} are defined as intersections of nonparallel lines of the subplanes $\pi_{L, x}$ for various lines x.

Note also it is possible that there are other subplanes within S_{L}^{N} which are not of the type $\pi_{L, x}$. In the following lemmas, we shall describe the properties of the structures S_{L}^{N}.

Lemma 2.3 (i) Let P be an affine point of S_{L}^{N}. Then every line of the net incident with P is a line of S_{L}^{N}.
(ii) Let Q be any affine point of S_{L}^{N} which is not collinear to L.

Then $\cup_{Q} \pi_{L, y}=S_{L}^{Q}=S_{L}^{N}$.
Proof: Note that (ii) implies (i) since if y is a line incident with P and P is incident with L then y is a line of any subplane $\pi_{L, x}$ for any line x incident with N and if P is not incident with L then y in $\pi_{L, y}$ and $S_{L}^{P}=S_{L}^{N}$ implies that y is in S_{L}^{N}.

Hence, it remains to prove (ii).
First assume that N and Q are collinear but N and Q are both noncollinear with L.

Since Q arises as an intersection of two lines of S_{L}^{N} there is a line z incident with Q such that z is in $\pi_{L, x}$ for some line x incident with N.

Case 1. z is parallel to x.
Consider x is in the parallel class α and form $L \alpha$. Then z, x and $L \alpha$ are all lines of the subplane $\pi_{L, x}$ and since Q and N are collinear, we may assume that z and x are distinct. $L \alpha$ is distinct from z and from x as otherwise L would be collinear to Q or N.

Since Q and N are collinear, we may form the subplane $\pi_{Q, N}$ and note that this subplane has x and z as lines. Thus, $\pi_{Q, N}$ shares x and z with $\pi_{L, x}$ and by Thm.(2.2) must share all lines with $\pi_{L, x}$ on α. Thus, $L \alpha$ is a line of $\pi_{Q, N}$. Now take any line x_{1} incident with N and not in α and intersect $L \alpha$ say in P. Since L and N are not collinear then P is distinct from L. Hence, P is a point of $\pi_{Q, N}$. So, P and Q are
collinear so form $P Q=z_{1}$. Now form the subplanes $\pi_{L, z_{1}}$ and $\pi_{L, x_{1}}$ and note that both subplanes contain L and P since $L \alpha \cap x_{1}=P=L \alpha \cap z_{1}$ so that by Prop.(2.1), we must have $\pi_{L, z_{1}}=\pi_{L, x_{1}}$.

Hence, for each line x_{1} incident with N, there is a line z_{1} incident with Q such that $\pi_{L, x_{1}}=\pi_{L, z_{1}}$. Note that $\pi_{L, x}=\pi_{L, z}$.

Suppose that $z_{1}=z_{2}$ and $\pi_{L, z_{1}}=\pi_{L, x_{1}}$ and $\pi_{L, z_{2}}=\pi_{L, x_{2}}$ where z_{1} is a line incident with Q and x_{1} and x_{2} are lines incident with N. Then this forces x_{1} and x_{2} to be lines of the same subplane so that $x_{1} \cap x_{2}=N$ (assuming x_{1} and x_{2} distinct) which is a contradiction as this would imply N and L are collinear.

Hence, in the case where z and x are parallel, we obtain $\left(\cup_{N} \pi_{L, x}\right) \subseteq\left(\cup_{Q} \pi_{L, y}\right)$.
Conversely, the previous argument may be seen to be symmetric. Let z_{1} be any line distinct from z and incident with Q and form $z_{1} \cap L \alpha=K$ so that K is a point of $\pi_{Q, N}$ as z_{1} incident with Q forces z_{1} to be a line of $\pi_{Q, N}(\operatorname{see}(2.1))$. Hence, K and N are collinear so form $K N=x_{1}$. Form the subplanes $\pi_{L, z_{1}}$ and $\pi_{L, x_{1}}$ and note that both contain K and L so are equal. This proves that $\left(\cup_{Q} \pi_{L, y}\right) \subseteq\left(\cup_{N} \pi_{L, x}\right)$ so that $S_{L}^{Q}=S_{L}^{N}$ in the case that z and x are parallel and Q and N are collinear.

Now assume that Q and N are not collinear. Consider any line w incident with N and any line u incident with Q and if w and u are not parallel form the intersections $w \cap u$.

Let w lie in the parallel class β and let u and v be lines incident with Q and in parallel classes distinct from β. As the degree of the net is at least 3 , we may select lines as above. Form $\pi_{w \cap u, w \cap v}$. Assume both intersection points $w \cap u$ and $w \cap u$ are collinear with L. Then we have Q and L points of the same subplane which implies that Q and L are collinear(as $Q=u \cap v$ and u and v are lines of $\pi_{w \cap u, w \cap v}$).

Now Q occurs as the intersection of two lines u, v of S_{L}^{N}. Take a line u incident with N and not parallel to u or u. Without loss of generality $E=u \cap v$ is not parallel to L. Hence, it follows that there is a point E of S_{L}^{N} which is collinear to both Q and N but which is not collinear to L. Case 2 below considers the case where the points Q and N are collinear but the lines z and x are not collinear in a general or generic sense. Hence, $S_{L}^{N}=S_{L}^{E}=S_{L}^{Q}$.

Case 2. z is not parallel to x.
Initially, assume that Q is collinear to N.
Let z_{1} be any line incident with Q and distinct from z. Consider $z \cap x=P$. Since z and x are lines of $\pi_{L, x}$ by assumption, we have that P and L are collinear. Assuming that z_{1} is not parallel to PL, let $T=z_{1} \cap P L$ and note that T is distinct from L as Q and L are not collinear and z_{1} is a line incident with Q. Form the subplane $\pi_{P, Q}$ and note that $N=N Q \cap(x=P N)$ and $T=P L \cap\left(z_{1}=T Q\right)$ so that both N and T are points of the subplane $\pi_{P, Q}$. Hence, N and T are collinear so form $N T=x_{1}$. Note that the subplanes $\pi_{L, z_{1}}$ and $\pi_{L, x_{1}}$ both contain the points T and L so are identical by Prop.(2.1).

Now suppose z_{1} is parallel to PL. Note that z_{1}, z, and PL are lines of $\pi_{Q, N}(P$ is a point of the subplane and PL is a line incident with P). Assume that z_{1} and PL belong to the parallel class δ so that $N \delta$ is also a line of $\pi_{Q, N}$ and Form $\pi_{L, N \delta}$ and note that this subplane shares two lines PL and $N \delta$ on δ with $\pi_{Q, N}$ so by Thm.(2.2) the two subplanes shares all of their lines on δ. Hence, z_{1} is a line of $\pi_{L, N \delta}$ so that
$\pi_{L, z_{1}}=\pi_{L, N ~} \delta$.
Hence, for each line z_{1} incident with Q there is a line x_{1} incident with N such that $\pi_{L, z_{1}}=\pi_{L, x_{1}}$.

Conversely, let x_{1} be a line incident with N and not parallel to PL. Let
$T=x_{1} \cap P L$. Form $\pi_{N, P}$ and notice that PL and x_{1} are lines of this subplane as are z and QN. Recall $Q=z \cap Q N$, so that Q is in $\pi_{P, N}$. Note also that $T=x_{1} \cap P L$ so that T and Q are collinear. Hence, let $T Q=z_{1}$ and observe that $\pi_{L, x_{1}}$ and $\pi_{L, z_{1}}$ both contain the points T and L so are identical.

If x_{1} is parallel to PL and both lines are in the parallel class δ, note that x_{1} and PL are both in $\pi_{Q, N}\left(x_{1}\right.$ is incident with N, P is a point of $\pi_{Q, N}$ and PL is a line incident with P). Form $\pi_{L, Q \delta}$ and note that PL and $Q \delta$ are also lines of $\pi_{Q, N}$ so that, by Thm.(2.2), x_{1} is also a line of $\pi_{L, Q \delta}$ so that it follows that $\pi_{L, x_{1}}=\pi_{L, Q \delta}$.

Hence, the previous arguments show that $\cup_{Q} \pi_{L, y}=S_{L}^{Q}=\cup_{N} \pi_{L, x}=S_{L}^{N}$ provided Q and N are collinear but Q and N are both noncollinear with L in the case where z and x are not parallel.

If Q and N are not collinear there is a point E of S_{L}^{N} which is not collinear to L but is collinear to Q and to N. Hence, $S_{L}^{N}=S_{L}^{E}=S_{L}^{Q}$. This completes the proof of Lem.(2.3) in both cases z parallel to x and z not parallel to x.

In the following, let $S_{L}=S_{L}^{N}=S_{L}^{Q}$ for all points Q of S_{L}^{N} which are noncollinear with L (note that N is a point of $\left.S_{L}^{N}\right)$.

Lemma 2.4 Let A, B be points of S_{L} where \mathbf{A} is not collinear to B and B is not collinear to L. Then $\cup_{B} \pi_{A, z}=S_{A}^{B}=S_{L}$.

Proof: First assume that A and L are collinear and form $\pi_{A, L}$. Since A is in S_{L}, every line incident with A is a line of S_{L} and as such is in some subplane $\pi_{L, x}$ where x is a line incident with N. It then follows that $\pi_{A, L}$ is one of the basic subplanes $\pi_{L, x}$. Let B be any point of S_{L} which is not collinear to L. This subplane is equal to a subplane $\pi_{L, w}$ where w is a line of S_{L} incident with B by the previous lemma. Hence, $\pi_{A, L}=\pi_{A, w}$ for some line w incident with B. Any line z thru B is a line of S_{L} by the previous lemma. Any line thru L is a line of $\pi_{A, L}$. Form $\pi_{L, z}$: The initial points are determined by taking lines thru L and intersecting these with z to form points on z. If P is such a point then $P \delta$ for all $\delta \epsilon C$ is a line of the subplane. Since all lines thru L are lines of $\pi_{A, L}=\pi_{A, w}$ and all lines thru B are lines of $\cup_{B} \pi_{A, y}$, it follows that all these initial intersection points are also points of $\cup_{B} \pi_{A, y}$. Since the remaining points of $\pi_{L, z}$ are generated by these initial intersection points, it follows that the points of each of the subplanes $\pi_{L, x}$ for x incident with B are points of $\cup_{B} \pi_{A, y}$. By applying the lemma (2.3)(i) to $\cup_{B} \pi_{A, y}$, it follows that on any point Q of $\cup_{B} \pi_{A, y}$, all lines on Q are also lines of $\cup_{B} \pi_{A, y}$. Moreover, since the lines of the subplanes $\pi_{L, x}$ for x incident with B may be obtained by taking the points P and forming $P \alpha$ for all $\alpha \in C$, since P is also a point of $\cup_{B} \pi_{A, y}$ then such lines also become lines of $\cup_{B} \pi_{A, y}$.

Hence, all lines of the subplanes $\pi_{L, x}$ for all lines x incident with B are also lines of $\cup_{B} \pi_{A, y}$ so that all subsequent points of S_{L} are also points of $\cup_{B} \pi_{A, y}$. Thus, $S_{L} \subset \cup_{B} \pi_{A, y}$. Since A and B are points of S_{L}, all lines incident with A and
all lines incident with B are lines of S_{L} by Lem.(2.3)(i) and hence all subsequent points and lines generated within $\cup_{B} \pi_{A, y}$ are likewise in S_{L} (the previous argument is symmetric) so that $\cup_{B} \pi_{A, y} \subset S_{L}$.

Hence, we have shown that if A and B are points of S_{L} which are not collinear, A and L are collinear but B and L are not collinear then $\cup_{B} \pi_{A, y}=S_{L}$.

Now assume that there is a point C in S_{L} such that A is collinear with C, C is collinear with L and A, C, L are each not collinear with B. Then
$\cup_{B} \pi_{C, w}=\cup_{B} \pi_{L, x}=S_{L}$ and since A is then $i n \cup_{B} \pi_{C, w}$, it follows from the above argument that $\cup_{B} \pi_{A, y}=\cup_{B} \pi_{C, w}=S_{L}$.

If A and L are not collinear take any two lines u and v thru A. These lines u and v are lines of S_{L} by Lem.(2.3). Take any line w thru L which is not parallel to either u or v.

Suppose both intersection points $u \cap w$ and $v \cap w$ are collinear with B. Then since A is collinear with both intersection points(A is $u \cap v$), it follows that A and B are points of the subplane $\pi_{u \cap w, v \cap w}$ which forces A and B to be collinear.

Since u, v and w are lines of S_{L}, the intersection points are also in S_{L} and one of these, say C, is not collinear with B but is collinear to both A and L.

Hence, it follows that $\cup_{B} \pi_{A, y}=\cup_{B} \pi_{L, x}=S_{L}$.
Theorem 2.5 The structures S_{L} are derivable subnets; the structures S_{L} are subnets with parallel class C and the subplanes contained within the structures are Baer subplanes of S_{L}.

Proof: We define a subnet as a triple of subsets of points, lines, and parallel classes. The lines of the subnet will be the the lines of the subplanes $\pi_{L, x}$ for x incident with N where L and N are not collinear. The points of the subnet shall be the intersections of lines of the subplanes indicated. The set of lines of each parallel class $\alpha \in C$ is the union of the sets of lines belonging to the subplanes $\pi_{L, x}$ which lie in α.

Note that each line on each point of S_{L} is a line of S_{L} by Lem.(2.3) so that each point P is on exactly one line of each parallel class. Hence, it easily follows that we have a subnet. It remains to show that given any pair of distinct collinear points P and Q of S_{L} then the subplane $\pi_{P, Q}$ is a subplane of S_{L} and to show that the subplane is Baer within S_{L}.

Each line incident with P or Q is a line of S_{L} by Lem.(2.3). The points of $\pi_{P, Q}$ are obtained via intersections of $P \alpha$ and $Q \beta$ for all $\alpha, \beta \in C$ so that all points are then back in S_{L} as are all subsequent lines by appplications of Lem.(2.3)(i). This shows that $\pi_{P, Q}$ is a subplane of S_{L}.

Take any subplane π_{1} of the net which is within S_{L} and let A be any point of S_{L}. To show that π_{1} is Baer within S_{L}, we must show that every line of the net contains a point of the projective extension of π_{1}, and that every point of the net is incident with a line of π_{1}. The first condition is trivial since each line projectively contains an infinite point(point of C) of π_{1}. To show the second condition, we first show that π_{1} is of the form $\pi_{Q, x}$ where x is a line incident with a point B which is not collinear to Q and Q and B are points of S_{L}. Let $\pi_{1}=\pi_{P, Q}$ where P and Q are any two distinct affine points of the subplane and note that P and Q must be
in S_{L}. Take any line u of π_{1} incident with P and not PQ. u must be a line of S_{L}. If u contains a point B in S_{L} which is not in π_{1}, then B cannot be collinear with Q for otherwise B would lie on two lines of π_{1} and hence be a point of π_{1}. But u is in some subplane $\pi_{L, x}$ where x is a line incident with N and as such u contains at least two affine points of $\pi_{L, x}$ in S_{L}. If both of these points are in $\pi_{P, Q}$ then $\pi_{P, Q}=\pi_{L, x}$ by Prop.(2.1). If one of these points say B on u in $\pi_{L, x}$ is not in $\pi_{P, Q}$ then B and Q are not collinear and $\pi_{P, Q}=\pi_{Q, u}$. Now to show that there is a line of $\pi_{Q, u}$ incident with A. If A and Q are collinear, clearly AQ is a line of $\pi_{Q, u}$ incident with A.

First assume that $\pi_{Q, u}$ is a subplane of the type $\pi_{L, x_{1}}$ for some line x_{1} incident with N. We may assume that A and L are not collinear. Then, $\cup_{A} \pi_{L, z}=\cup_{N} \pi_{L, x}$ and furthermore, there is a 1-1 and onto correspondence $x \rightarrow z$ of lines x incident with N and lines z incident with A such that $\pi_{L, x}=\pi_{L, z}$. Hence, there exists a line z_{1} thru A such that $\pi_{L, x_{1}}$ contains this line; π_{1} contains a line incident with A.

Now assume that $\pi_{Q, u}$ is not a subplane of the type $\pi_{L, x}$ but note that u is a line of $\pi_{L, x_{o}}$ for some line x_{o} incident with N. We want to show that A is in $\cup_{C} \pi_{Q, w}$ where C is a point of S_{L} on u. We know that A is in S_{L} and $\cup_{C} \pi_{Q, w} \subset S_{L}$.

On any line t thru Q of $\pi_{P, Q}=\pi_{1}$ assume two points of t in $\pi_{P, Q}$ are incident with L. Then L must be in $\pi_{P, Q}$. Hence, if $\pi_{P, Q}$ is not of the form $\pi_{L, x}$ for some line x then at most one point of t in $\pi_{P, Q}$ is incident with L. If degree >3, we may assume without loss of generality that neither P or Q are incident with L. Furthermore, we may assume that A and Q are not collinear for otherwise we are finished.

Let B be a point of $\pi_{L, x_{o}}$ on u which is not in $\pi_{Q, u}$. Form the subplane $\pi_{B, P}$ (note $u=B P)$ and note that this subplane must be distinct from either $\pi_{Q, u}$ or $\pi_{L, x_{o}}$ since if $\pi_{B, P}$ is $\pi_{L, x_{o}}$ then P and L are collinear. We have established that $\pi_{B, P}$ is a subplane of S_{L}. Assume that the degree $i s>3$. Hence, any point C on u of $\pi_{B, P}$ distinct from B or P is not in either plane $\pi_{Q, u}$ or $\pi_{L, x_{o}}$ (if c is in $\pi_{Q, u}$ then $\left.\pi_{B, P}=\pi_{C, P}=\pi_{Q, u}\right)$. Then C is not collinear to L or Q so that $\cup_{C} \pi_{Q, w}=$ $\cup_{C} \pi_{L, y}=S_{L}$ (note if C is collinear to L then $\pi_{L, x_{o}}=\pi_{L, u}$ implies c in $\pi_{L, x_{o}}$ so that $\pi_{B, P}=\pi_{B, C}=\pi_{L, x_{o}}$, a contradiction). Hence, A must be $i n \cup_{C} \pi_{Q, w}$ so that we may apply the previous results to show that $\cup_{A} \pi_{Q, y}=\cup_{C} \pi_{Q, w}$. Moreover, there is a 1-1 and onto correspondence $w \rightarrow y$ of lines w incident with C and lines y incident with A such that the $\pi_{Q, w}=\pi_{Q, y}$. This implies that for the line u there is a line z incident with A such that $\pi_{Q, u}=\pi_{Q, z}$ so that the subplane $\pi_{1}=\pi_{Q, u}$ contains a line incident with A.

Thus, it remains to show that when the degree is exactly 3, the subplanes contained in S_{L} are Baer.

Note that, in this case, we are not necessarily assuming that the net is finite. However, there are exactly three lines of S_{L} incident with N and on each line there is a unique point incident with L so there are exactly $4 \cdot 3$ lines of S_{L} and it follows that on each line there are exactly 4 points of S_{L}. That is, S_{L} is a subnet of degree $1+2=3$ and order 2^{2}. Since the subplanes contained in S_{L} now have order 2 , it follows that such subplanes are Baer within S_{L}. This completes the proof of the theorem.

Corollary 2.6 Consider any of the subnets S_{L} of points, lines, subplanes, parallel classes, and incidence.

Then there is a 3 -dimensional projective space \sum and a line N of \sum such that the lines of \sum skew to N are the points of S_{L}, the points of $\sum-N$ are the lines of S_{L}, the planes of \sum which intersect N in a point are the subplanes of S_{L} and the planes of \sum which contain N are the parallel classes of S_{L}.

Proof: The main result of Johnson [6] applies to the subnets S_{L}.

3 The associated projective space.

The previous corollary in section 2 shows that there is a 3 -dimensional projective space associated with any subnet S_{L}. We shall use this to show that associated with any subplane covered net is a projective space Π with a fixed codimension 2 subspace N such that the points, lines, subplanes, parallel classes of the net are(correspond to) the lines skew to N of Π, the points of $\Pi-N$, the planes of Π which intersect N in a point, and the hyperplanes of Π which contain N respectively.

3.1 The parallel classes are affine spaces

First we consider making the parallel classes into affine spaces.
Let α be any parallel class. Define the structure A_{α} as follows:
The points of A_{α} are the lines of the net on α. The lines of A_{α} are the sets of lines of subplanes $\pi_{P, Q}$ which lie on α. The planes of A_{α} are defined via the sets S_{L} (derivable subnets) and are denoted by $S_{L, \alpha}$. The points of $S_{L, \alpha}$ are the lines on α of the set of subplanes of S_{L}. A line of $S_{L, \alpha}$ is, of course, the lines on α of a subplane of S_{L}.

We shall define two lines of A_{α} to be parallel if and only if the two lines correspond to subplanes which belong to some S_{L} and their lines on α are disjoint or equal.

Note that it is clear that the relation of being parallel is symmetric and reflexive.
The previous result that there are derivable subnets is vital for the results in this section. Furthermore, as the structures A_{α} are interconnected to the net, we shall require net properties to show that the A_{α} are affine spaces.

We define two lines a and $b(a \| b)$ of the structures A_{α}, A_{β} for $\alpha \neq \beta \in C$ to be parallel if and only if these sets are the sets of lines on α, β respectively of a subplane π_{o}.

Again, it is clear that this relation is symmetric.
Lemma 3.1 Given any subplane π_{o} and any line u of the net which is not a line of π_{o}, there is a unique derivable subnet $<\pi_{o}, u>$ containing π_{o} and u.

Proof: Take any line v in π_{o} which is not parallel to u. Let $N=u \cap v$ and let L be a point of π_{o} which is not collinear with N. Note that N cannot be a point of π_{o}

Form $\cup_{N} \pi_{L, x}=S_{L}^{N}$ and note that this derivable subnet contains π_{o} (simply take x to be v) and u (take x to be u). Note that any derivable net containing π_{o} and u must contain the intersection point N as a point and hence, must contain the set of lines incident with N. Thus, any such derivable net contains S_{L}^{N}.

Lemma 3.2 Any two distinct subplanes π_{o} and π_{1} which share a parallel class of lines are in some unique derivable subnet $\left\langle\pi_{o}, \pi_{1}\right\rangle$.

Proof: Let u be any line of π_{1} which is not a line of π_{o}. Form the derivable subnet $\left\langle\pi_{o}, u\right\rangle$. Assume that the indicated subplanes share all of their lines on the parallel class $\alpha \in C$. Since $\left\langle\pi_{o}, u\right\rangle i$ s derivable net containing u, there is a subplane π_{1}^{*} of this derivable subnet which contains u and which shares the lines of π_{o} on α by Johnson [6]. Since π_{1} and π_{1}^{*} share u and share all of their lines on the parallel class on α, it must be that π_{1} and π_{1}^{*} are identical.

Lemma 3.3 Let a, b, c be lines of various of the structures A_{δ} for $\delta \in C$. If $a|\mid b$ and $b \| c$ then $a \| c$.

Proof: We consider the following cases:
Case (1): the lines a, b, c belong to the structures $A_{\alpha}, A_{\beta}, A_{\gamma}$ respectively where α, β, γ are mutually distinct.

In this case, there are subplanes π_{o} and π_{1} such that a and b are the sets of lines of π_{o} on α and β respectively and b and c are the sets of lines of π_{1} on β and γ respectively.

Form the derivable subnet $<\pi_{o}, \pi_{1}>$ by lemma (3.2) and note that a, b, and c are lines of this subnet. Then, within this derivable subnet, there is a subplane π_{2} such that a and c are the sets of lines of π_{2} on α and γ respectively (again see Johnson [6]). Hence, a $\| c$.

Case (2): a and b belong to A_{α} but c belongs to A_{γ} for $\alpha \neq \gamma$.
By assumption, there is a derivable subnet $\left.<\pi_{o}, \pi_{1}\right\rangle$ such that a and b are the sets of lines on α of π_{o}, and π_{1} respectively. Within this derivable subnet, there is a subplane which contains a and say d not on α or β (a set of lines of this subplane which does not belong to either parallel class) and a subplane which contains b and d (since a and b are sets of lines of a parallel class of subplanes of the derivable net). That is, a $\| d$ and $b \| d$.

Hence, $c\|b\| d$ and all three lines are in distinct substructures A_{ρ} for various values $\rho \in C$, it follows from case (1) that $c \| d$. Hence, $c\|d\|$ a so that another application of case (1) shows that $c \|$ a.

Case (3): a and c are in A_{α} and b is in A_{β} for $\alpha \neq \beta$.
Let π_{o} be a subplane whose sets of lines on α and β are c and b respectively and let π_{1} be a subplane whose sets of lines on α and β are a and b respectively. Form the derivable subnet $\left\langle\pi_{o}, \pi_{1}\right\rangle$. Then a, b and c are lines of a derivable subnet and a $\|b\| c$ so that a automatically becomes parallel to c.

Case (4): a, b, and c are in A_{α}.
Since a is parallel to b, there is a derivable subnet $\left.<\pi_{o}, \pi_{1}\right\rangle$ such that the lines on α of π_{o} and π_{1} are a and b respectively. Similarly, there is a derivable subnet
$<\pi_{2}, \pi_{3}>$ such that the lines of π_{2} and π_{3} are b and c respectively. Take any set of lines d of π_{1} on a parallel class β distinct from α. Then a $\|b\| d$ implies a $\| d$ from case (2) and $d\|b\| c$ implies $d \| c(i . e . c| | b \| d)$ again from case (2). Then a $\|d\| c$ implies that a $\| c$ from case (3).

Theorem 3.4 A_{α} is an affine space for each parallel class $\alpha \in C$.

Proof: First take two distinct points a and b of A_{α}. Recall that a and b are lines on α. Take any line u of the net which is not in α. Then the intersections of u with a and b produce a subplane π_{o} such that any other subplane which shares a and b with π_{o} must share all of the lines on α with π_{o} (see Thm.(2.2)). That is, given two distinct points of A_{α}, there is a unique line joining them.

Note that the planes of A_{a} are affine planes since we may use the results of Johnson [6] as these planes are induced off of derivable subnets.

Now take three distinct points of A_{α}, a, b, c not all collinear. Then there is a unique plane $<a, b, c>$ containing these points.

Pf: Let u be any line of the net which is not in α. Form the intersection of u with a and b and the corresponding subplane π_{o}. By assumption, a, b, c are not collinear so c is not a line of π_{o}. Form the intersection of u with b and c and construct the corresponding subplane π_{1}. Let $P=u \cap b$ so that P is a common point of π_{o} and π_{1}. Take any line x of π_{o} which is not on P and take any line z on π_{1} which is not on P and not parallel to x. Let $N=x \cap z$. If P and N are collinear then PN intersects x in N so that N is a point of π_{o} and similarly also a point of π_{1} which forces π_{o} to be π_{1}. Hence, P and N are not collinear. Form $\cup_{N} \pi_{P, w}$ which contains $\pi_{1}=\pi_{P, z}$ and $\pi_{o}=\pi_{P, x}$. Hence, there is a derivable subnet containing π_{o} and π_{1} so that there is a plane of A_{α} containing a, b, c. Let D be any derivable net containing a, b and c. Then the set of lines of the derivable net on a form a plane of A_{a} containing a, b, c by Johnson [6]. Since any plane is generated by any of its triangles, it follows that that the plane is unique.

Now assume that there are two derivable subnets that share the lines a, b.
If two planes of A_{α} share two distinct points a and b then they share all points on the line ab .

Pf: The two planes are defined by two derivable nets D_{1} and D_{2}. Within D_{1}, there is a subplane π_{o} which contains the lines a and b. Any other subplane which contains the lines a and b contains as lines all of the lines of π_{o} on α by Thm.(2.2). Hence, any subplane on D_{2} which contains a and b must contains the lines of π_{o} on α and thus each plane of A_{α} containing a and b contains all of the points on the line ab.

Lem.(3.3) shows that parallelism is an equivalence relation.
It now follows that the structures A_{α} are affine spaces.
This completes the proof of Thm.(3.4).
NOTATION AND ASSUMPTIONS:
By the results of Johnson [6], [7], we may assume that the net is not a derivable net. Since derivable nets induce planes in A_{α}, it follows that we may assume that the structures A_{a} are affine spaces of dimension ≥ 3.

Let D and R be derivable subnets which share three lines of the same parallel class $\alpha \in C$ not all in the same subplane. Then the derivable subnets share all of their lines on α and we denote this by $D_{\alpha}=R_{\alpha}$.

The reader will need to distinguish between lines of the net or subnet and lines of the affine spaces A_{α} or D_{α} since a line of a derivable subnet D_{α} is the set of net lines on α of a subplane of D.

We consider the projective extensions of the affine spaces A_{a}. Let N_{a} denote the hyperplane of A_{a} at infinity obtained by defining infinite points to be parallel classes of lines of A_{a} and infinite lines to be parallel classes of planes of A_{a}. We want to show that $N_{a}=N_{\beta}$ for all $\alpha, \beta \in C$. What this basically implies is that there is a projective space Π such that the parallel classes when properly extended become hyperplanes in Π that contain a common codimension two subspace. In order to do this, we need to define what it means for two planes of different affine spaces A_{α} and A_{β} to be parallel for possibly different parallel classes α and β. The following is similar to arguments of Thas and De Clerck in the finite case except that we make more use of the structure of derivable nets.

Let $\Pi_{\alpha}, \Pi_{\beta}$ be planes of A_{α} and A_{β} respectively. We shall say that Π_{α} is parallel to Π_{β}, written $\Pi_{\alpha} \| \Pi_{\beta}$ if and only if each line of Π_{α} is parallel to some line of Π_{β}.

Before proving that the relation defined in the above definition is an equivalence relation, we provide some lemmas on derivable subnets.

Lemma 3.5 Let D be a derivable subnet and α a parallel class of the net. Let x be a line which is not in α. There there is a unique derivable subnet generated by x and D_{α} which we denote by $\left\langle x, D_{\alpha}\right\rangle$.

Proof: Take any three lines u, v, w of D on α not all in the same parallel class of lines of a subplane of D. Form the intersections $u \cap x=P, v \cap x=Q$, and $w \cap x=R$ and form the subplanes $\pi_{P, Q}$ and $\pi_{Q, R}$. There is a unique derivable net R containing these subplanes by Lem.(3.1) and the proof to Thm.(3.4) and clearly $R_{\alpha}=D_{\alpha} . R$ contains x so that $R=<x, D_{\alpha}>$.

We known that planes of A_{α} must fall into parallel classes since A_{α} is an affine space. What we don't know if how the derivable subnets that define these planes are related. The next two lemmas study this problem.

Lemma 3.6 Let D be a derivable subnet so that D_{α} is a plane of A_{α}. Let x be a line of α which is not in D_{α}. Then the unique plane of A_{α} incident with x and parallel to D_{α} may be constructed as follows: Take any line z of D not in α.

Then there exists a unique derivable net R containing x and z with the property that R_{α} is parallel to D_{α}.

Any other derivable net B so constructed from any derivable net T where $T_{\alpha}=D_{\alpha}$ and containing x has the property that $B_{\alpha}=R_{\alpha}$.

Proof: Let a be a line of D_{α} in A_{α}. Let z be a line of D in β distinct from α. Then z intersects a in a uniquely defined subplane π_{o} which does not contain x.

Then there is a unique derivable net containing π_{o} and $x,<x, \pi_{o}>$ by Lem.(3.1). Note that since $<x, \pi_{o}>_{\alpha}$ is an affine plane in A_{α}, it follows that there is a unique line $L_{a, x}$ of $\left\langle x, \pi_{o}>_{\alpha}\right.$ parallel to a thru x. Recall that this line on A_{α} is the set of lines on α of some subplane. In $\left\langle x, \pi_{o}\right\rangle$, there is a unique subplane π_{1} which has $L_{a, x}$ as its lines on α and which contains z. Let $L_{a, z}$ denote the line of A_{β} which is the set of lines of π_{1} on β. Note that a $\left\|L_{a, x}\right\| L_{a, z}$ so that a $\| L_{a, z}$ by Lem.(3.3).

So, there is a unique subplane π_{2} containing a and $L_{a, z}$ as its sets of lines on α and β respectively and since π_{2} contains a and z, it follows that $\pi_{2}=\pi_{0}$. Hence, $\cup\left\{L_{a, z} \mid\right.$ a is a line of $\left.D_{\alpha}\right\}=D_{\beta}$.

Note that $<x, D_{\beta}>$ is a derivable net by Lem.(3.1) and there is a unique subplane containing $L_{a, z}$ and x and this is a subplane π_{1} containing $L_{a, z}$ and $L_{a, x}$ so that $\pi_{1} \epsilon<x, D_{\beta}>$.

Hence, $\cup\left\{L_{a, x} \mid\right.$ a is a line of $\left.D_{\alpha}\right\}=<x, D_{\beta}>_{\alpha}$.
Hence, we have produced a derivable net R containing x such that every line of D_{α} is parallel to some line of R_{α}. Let a and b be any two lines of D_{α} then since A_{α} is an affine space, the plane generated by a and x is unique and hence the line parallel to a thru a is unique. A similar statement is valid for b and x. Hence, let B be any derivable net which contains x and contains the lines on x parallel to a and b. Then B_{α} is uniquely determined.

It follows that R_{α} and D_{α} are mutually parallel(since they are planes of an affine space and one is parallel to the other). Furthermore, since each line of R_{α} is parallel to a line thru x and parallelism on lines of the affine spaces $A_{\gamma}^{\prime} s$ is an equivalence relation, it follows that each line of R_{α} is parallel to a line on z of D_{β} and conversely each line of D_{β} is parallel to a line of R_{α} containing x. Hence, it follows that R_{α} and D_{β} are parallel planes.

Lemma 3.7 Parallelism on planes of the affine spaces $A_{\gamma}^{\prime} s$ is an equivalence relation.

Proof: Note that if $D_{\alpha} \| R_{\beta}$ where D and R are derivable nets and α and β are distinct then if z is any line of R_{β} then there is a derivable net $<z, D_{\alpha}>$. Take any line a of D_{α} and note there is a unique subplane π_{o} of $\left.<z, D_{a}\right\rangle$ containing z and with a as its set of lines on a. Since R_{β} is an affine plane, every line of R_{β} is parallel to a line which contains z. Hence, since a is parallel to some line of R_{β}, it follows that a is parallel to a line b which contains z and this line b must be exactly the set of lines of π_{o} on β. It follows that $<z, D_{\alpha}>_{\beta}=R_{\beta}$. It follows that any line of R_{β} is parallel to some line of D_{α}.

To prove transitivity, simply note that if three planes $D_{\alpha}\left\|R_{\beta}\right\| B_{\gamma}$ where D, R, B are derivable subnets then every line a of D_{α} is parallel to some line b of R_{β} and every such line b is parallel to some line c of B_{γ} and since parallelism on lines is an equivalence relation, it follows that a is parallel to c and hence, every line of D_{α} is parallel to some line of B_{γ} and hence $D_{\alpha} \| B_{\gamma}$.

This proves the lemma.
Proposition 3.8 If D and R are derivable nets and for some parallel class $\alpha, D_{\alpha} \| R_{\alpha}$ then for all parallel classes $\beta, D_{\beta} \| R_{\beta}$.

Proof: Clearly for any derivable net B and any parallel classes γ and ρ, it follows that $B_{\gamma} \| B_{\rho}$. Hence, $D_{\alpha}\left\|R_{\alpha}\right\| R_{\beta}$ implies that $D_{\alpha} \| R_{\beta}$ and $D_{\beta}\left\|D_{\alpha}\right\| R_{\beta}$ implies that $D_{\beta} \| R_{\beta}$.

Lemma 3.9 Let A_{α} be any affine space for $\alpha \epsilon C$ and let N^{α} denote the hyperplane at infinity of the projective extension A_{α}^{+}of A_{α}. Then $N^{\alpha}=N^{\beta}=N$ for all $\alpha, \beta \in C$.

Proof: In order to construct N^{α}, we define the points of N^{α} to be the equivalence classes of lines of A_{α} and the lines of N^{α} as the equivalence classes of the planes of A_{α}. Recall that any plane of A_{α} is defined by a derivable net D as D_{α} and any line of A_{α} by a subplane. Since a parallel class of lines of A_{α} has a representative in any A_{β} and any parallel class of planes of A_{α} has a representative in any A_{β} it follows that $N^{\alpha}=N^{\beta}=N$.

Theorem 3.10 Let $R=(P, L, B, C, I)$ be any subplane covered net. Then there is a projective space \sum defined as follows:

Call the lines of a given parallel class of a subplane "class lines" and call the lines of a given parallel class of a derivable subnet "class subplanes". Note that there are equivalence relations on both the set of class lines and on the set of class subplanes. Call the equivalence classes of the class lines "infinite points" and the equivalence classes of the class subplanes "infinite lines". Also, note that the infinite points and infinite lines form a projective subspace N.

The points of \sum are the lines L of the net and the infinite points defined above.

The lines of \sum are the sets of lines on an affine point(identified with the set P), the class lines extended by the infinite point containing the class line, and the lines of the projective space N.

The planes of \sum are
(1) subplanes of B extended by the infinite point on the equivalent class lines of each particular subplane where the points and lines of the subplane are now considered as above(actually the dual of the subplane extended),
(2) the affine planes whose points are the lines of a net parallel class and lines the class lines of a derivable subnet of the net parallel class extended by the infinite points and infinite line, and
(3) the projective planes of the projective space N.

The hyperplanes of \sum that contain N are the parallel classes C extended by the infinite points and infinite lines of N.

Note that N becomes a codimension two subspace of \sum.
Proof: To complete the proof, we need only show that any three distinct points A, B, C not all collinear generate a unique projective subplane.

If the points are all infinite points then since N is a projective subspace, the result is clear.

Assume that A, B and C are all lines of the net.
If all are points of the same A_{α} then since A_{α} is an affine space, the points will generate an affine plane which then uniquely extends to a projective plane in $A_{\alpha} \cup N$.

If A and B are in A_{α} and C is in A_{β} where α and β are distinct then by taking intersection points of the lines, there is a unique subplane of the net containing A, B and C. By extending the subplane with the infinite point corresponding to the class points, it follows that there is a unique projective plane interpreted in the notation in the statement of the theorem generated by these points A, B and C.

Similarly if A, B and C are all in mutually distinct affine spaces $A_{\alpha}, A_{\beta}, A_{\gamma}$, there is a unique subplane of the net containing A, B and C and the previous argument applies.

Suppose that A and B are infinite points and C is a line of the net. Let C be in the parallel class α. Since A is an infinite point, there is a unique representative class line $A_{1} C_{1}$ which contains C (as a line of the net). Similarly, there is a unique representative class line $B_{1} C_{1}$ in α of B which contains C. Note that $A_{1} C_{1}$ and $B_{1} C_{1}$ extended are lines of the structure \sum. Now the two class lines contain C and thus there is a derivable subnet D which contains these two class lines and any other derivable subnet containing these class lines agrees on the parallel class α with D. The set D_{α} is a plane of A_{α} which when extended becomes the unique projective subplane generated by A, B, and C.

Assume that A and B are lines of the net and C is an infinite point.
If A and B are in the same parallel class α, consider the set of subplanes which contain A and B. Recall that the line of $A_{\alpha}, A B$ is uniquely determined as the set of lines of any subplane containing A and B. Now if A, B and C are not collinear then C is not an equivalence class of any subplane that contains A and B. Hence, there is a representative class line on α which contains A but not B. Take any line x not in α and intersect the lines of the class point and B. Then there is a unique derivable net D containing x and these intersection points. Furthermore, any other derivable net containing the class line and B shares the lines on α with D. Hence, there is a unique affine plane D_{α} of A_{α} which when extended is the unique projective plane generated by A, B, and C.

Finally, assume that A and B are lines in different parallel classes of the net and C is an infinite point. Let $P=A \cap B$. The set of lines of the net incident with P is a line of the structure which does not intersect the projective subspace N so that A, B and C are intrinsically noncollinear in this case. Take a representative class line on the parallel class a of the net containing A. Form the intersection points of this class line (which is a set of lines of a subplane) with B and note that there is a unique subplane of the net generated. This subplane contains A, B and when extended by C is the unique projective plane containing A, B and C when interpreted in the notation of the theorem.

This completes the proof of theorem (3.10).

4 Pseudo regulus nets.

Let R be an ordinary $(n-1)$ - regulus in $P G(2 n-1, q)=\sum$. This is a set of $q+1$ ($n-1$)-dimensional projective subplanes of \sum which is covered by a set of transversal lines; if a line intersects at least three members of the $(n-1)$-regulus then the line intersects all members of the regulus.

Let $V_{2 n}$ denote the corresponding vector subspace over $G F(q)$ such that \sum is the lattice of subspaces of $V_{2 n}$. Then

Proposition 4.1 (Johnson [7]). In $V_{2 n}$, every $(n-1)$-regulus R has the following canonical form:

Let $V_{2 n}=W \oplus W$ for some n-dimensional vector subspace W over $G F(q)$.
Then R may be represented by $x=0, y=\delta x$ for all $\delta \in G F(q)$ where
$x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ are vectors in W with respect to some basis for W for x_{i}, y_{i} for $i=1,2$, . ., n are in $G F(q)$ and
$\delta x=\left(\delta x_{1}, \delta x_{2}, . . ., \delta x_{n}\right)$.
We call the corresponding net a ($n-1$)-regulus net or simply a regulus net when there is no ambiguity.

Now we define a similar quasi-geometric structure which we only consider in its vector form.

Let W be a left vector space over a skewfield K. Let $Z(K)$ denote the center of K.

Let $V=W \oplus W$. Let R be the net defined by the following $Z(K)$ subspaces $x=0, y=\delta x$ where $\delta \epsilon K$ and if $x=\left(x_{i}\right)$ for $i \epsilon \lambda$ as a tuple with respect to some K-basis for W and $y=\left(y_{i}\right)$ for $x_{i}, y_{i} \epsilon K$ for $i \epsilon \lambda$. Then we call any net which can be represented as in the form of R a pseudo regulus net.

Note that any regulus net is a pseudo regulus net and any finite pseudo regulus net is a regulus net. Also note that if K is a field then it is possible to define regulus nets over K (see. e.g. Johnson and Lin [9]). Also note that a pseudo regulus net is a subplane covered net by [9].

We note that the nets of section 3 in Thm(3.10) are pseudo regulus nets:
Theorem 4.2 (Johnson and Lin [9]). Let \sum be any projective space of dimension at least three. Let N be any codimension two subspace. Define the structure $R=(P, L, B, C, I)$ of the sets of points P, lines L, subplanes B, parallel classes C and incidence I to be the lines of \sum skew to N, points of $\sum-N$, planes of \sum which intersect N in a unique point, hyperplanes of \sum which contain N, incidence is the incidence inherited from \sum.

Then R is a pseudo regulus net.
Hence, since any subplane covered net is isomorphic to the structure \sum, we have the following characterization of subplane covered nets.

Theorem 4.3 Any subplane covered net is a pseudo regulus net.

Note as a finite pseudo regulus net is a regulus net that we obtain the results of De Clerck and Johnson as a corollary to Thm.(4.3).

Corollary 4.4 (De Clerck and Johnson [4]).
Any finite subplane covered net is a regulus net.
There are many translation planes whose spreads may be represented as the union of regulus nets with various intersection properties. For example, a translation plane whose spread is in $\operatorname{PG}(3, \mathrm{q})$ and which is the union of q reguli that share a line corresponds to a flock of a quadratic cone. If the spread is the union of $q+1$ reguli that share two lines, there is a corresponding flock of a hyperbolic quadric. Furthermore, there are many planes whose spread contains q-1 mutually disjoint reguli. Moreover, there are planes of order q^{n} with n not 2 with similar properties. Thus, we see that there are many open problems concerning the connections with translation planes whose spreads contain various configurations of reguli and projective spaces. We shall mention specifically only the problems associated with flocks of quadratic cones in $\mathrm{PG}(3, q)$.

Problem: Let F be a flock of a quadratic cone in $\mathrm{PG}(3, \mathrm{q})$ and let π_{F} denote the associated translation plane of order q^{2} which can be represented as a set of q regulus nets that share a common line(component). There are q projective spaces each isomorphic to $\mathrm{PG}(3, \mathrm{q})$ associated with the q regulus nets. Each regulus net produces a projective space Σ and a fixed line N on the space such that the points of the net are the lines of $\Sigma-N$. Since the points of each net are the points of the translation plane, we have q different projective spaces Σ and q lines N_{i} such that the sets of lines of $\Sigma_{i}-N_{i}$ are identified.

The problem would be to find a combinatorial characterization of a flock of a quadratic cone in terms of these projective spaces.

References

[1] R.C. Bose. Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math. 13 (1963), 389-419.
[2] R.H. Bruck. Finite nets II: uniqueness and embedding, Pacific J. Math. 13 (1963), 421-457.
[3] J. Cofman. Baer subplanes and Baer collineations of derivable projective planes. Abh. Math. Sem. Hamburg 44 (1975), 187-192.
[4] F. De Clerck and N.L. Johnson. Subplane covered nets and semipartial geometries. Discrete Math. 106/107(1992), 127-134.
[5] F. De Clerck and J.A. Thas. Partial geometries in finite projective spaces. Arch. Math. 30 (5) (1978), 537-540.
[6] N.L. Johnson. Derivable nets and 3-dimensional projective spaces. Abh. Math. Sem. Hamburg, 58(1988), 245-253.
[7] N.L. Johnson. Derivable nets and 3-dimensional projective spaces. II. The structure. Archiv d. Math., vol. 55 (1990), 84-104.
[8] N.L. Johnson. Derivation. Research and Lecture Notes in Mathematics, Combinatorics '88, vol. 2, 97-113.
[9] N.L. Johnson and $K-S$. Lin. Embedding dual nets in affine and projective spaces. Rend. d. Mat., vol 14, (1994),483-502.
[10] T.G. Ostrom. Translation planes and configurations in Desarguesian planes. Arch. Math. 11 (1960), 457-464.
[11] T.G. Ostrom. Semi-translation planes. Trans. Amer. Math. Soc. 111 (1964), 1-18.
[12] J.A. Thas and F. De Clerck. Partial geometries satisfying the axiom of Pasch. Simon Stevin 51 (1977), 123-137.

Norman L. Johnson
Mathematics Dept
University of Iowa
Iowa City, Iowa, 52242
e-mail: njohnson@math.uiowa.edu

[^0]: Received by the editors January 1994
 Communicated by J. Doyen
 AMS Mathematics Subject Classification :51 B10, 51 B15, 51 A 35.

