Grassmannian structures on manifolds

P.F. Dhooghe

Abstract

Grassmannian structures on manifolds are introduced as subbundles of the second order framebundle. The structure group is the isotropy group of a Grassmannian. It is shown that such a structure is the prolongation of a subbundle of the first order framebundle. A canonical normal connection is constructed from a Cartan connection on the bundle and a Grassmannian curvature tensor for the structure is derived.

1 Introduction

The theory of Cartan connections has lead S. Kobayashi and T. Nagano, in 1963, to present a rigourous construction of projective connections [3]. Their construction, relating the work of Eisenhart, Veblen, Thomas a.o. to the work of E. Cartan, has a universal character which we intend to use in the construction of Grassmannianlike structures on manifolds. The principal aim is to generalise Grassmannians in a similar way. By doing so we very closely follow their construction of a Cartan connection on a principal bundle subjected to curvature conditions and the derivation of a normal connection on the manifold.

The action of the projective group $P l\left(n_{o}\right)$ on a Grassmannian $G\left(l_{o}, n_{o}\right)$ of $l_{o^{-}}$ planes in $\mathbb{R}^{n_{o}}$ is induced from the natural action of $G l\left(n_{o}\right)$ on $\mathbb{R}^{n_{o}}$. Let H be the isotropy group of this action at a fixed point e of $G\left(l_{o}, n_{o}\right)$. The generalisation will consist in the construction of a bundle P with structure group H and base manifold

[^0]M of dimension $m_{o}=l_{o} k_{o}$ with $k_{o}=n_{o}-l_{o}$. The bundle P will be equipped with a Cartan connection with values in the Lie algebra of the projective group, which makes the bundle P completely parallelisable. We will show that such a connection exists and is unique if certain curvature conditions are imposed. The Cartan connection identifies the tangent space $T_{x}(M)$ for each $x \in M$ with the vectorspace $L\left(\mathbb{R}^{l_{o}}, \mathbb{R}^{k_{o}}\right)$. Identifying $L\left(\mathbb{R}^{l_{o}}, \mathbb{R}^{k_{o}}\right)$ with $V=\mathbb{R}^{m_{o}}$, the group H acts on V to the first order as $G_{o}=G l\left(l_{o}\right) \times{ }^{\tau} G l\left(k_{o}\right)^{-1} / \exp t I_{n_{o}}$ properly embedded in $G l\left(m_{o}\right)$. Let $\tilde{\boldsymbol{g}}^{0}$ denote the Lie algebra of this group, which is seen as a subspace of $V \otimes V^{*}$. We prove that if $k_{o} \geq 2$ and $l_{o} \geq 2$, the Lie algebra \mathbf{h} of H, as subspace of $V \otimes V^{*}$, is the first prolongation of the Lie algebra $\tilde{\boldsymbol{g}}^{0}$. Moreover the second prolongation equals zero.

The action of H on V allows to define a homomorphism of P into the second order framebundle $F^{2}(M)$. The image, $\operatorname{Gr}\left(k_{o}, l_{o}\right)(M)$, is called a Grassmannian structure on M. From the previous algebraic considerations it follows that a Grassmannian structure on a manifold is equivalent with a reduction of the framebundle $F^{1}(M)$ to a subbundle $B^{\left(k_{o}, l_{o}\right)}(M)$ with the structure group G_{o}. A Grassmannian connection from this point of view, is an equivalence class of symmetric affine connections, all of which are adapted to a subbundle of $F^{1}(M)$ with structure group G_{o}. The action of G_{o} in each fibre is defined by a local section $\sigma: x \in M \rightarrow F^{1}(M)(x)$ together with an identification of $T_{x}(M)$ with $M\left(k_{o}, l_{o}\right)$. This result explains in terms of G-structures the well known fact that the structure group of the tangent bundle on a Grassmannian, $G\left(l_{o}, n_{o}\right)$, reduces to $G l\left(k_{o}\right) \times G l\left(l_{o}\right)$ [6]. The consequences for the geometry and tensoralgebra are partly examined in the last paragraph, but will be studied in a future publication.

We remark that as a consequence of the algebraic structure the above defined structure is called Grassmannian if $k_{o} \geq 2$ and $l_{o} \geq 2$. Otherwise the structure is a projective structure. Hence the manifolds have dimension $m_{o}=k_{o} l_{o}$, with $k_{o}, l_{o} \geq 2$.

Let $\left(\bar{x}^{\alpha}\right), \alpha=1, \cdots, m_{o}$ be coordinates on $\mathbb{R}^{m_{o}}$, and $\left(e_{a}^{i}\right), a=1, \cdots, k_{o} ; i=$ $1, \cdots, l_{o}$, the natural basis on $M\left(k_{o}, l_{o}\right) .\left(x_{i}^{a}\right)$ are the corresponding coordinates on $M\left(k_{o}, l_{o}\right)$. We will identify both spaces by $\alpha=(a-1) l_{o}+i$. Let $\sigma: \mathcal{U} \subset M \rightarrow F^{1}(M)$ be a local section and $\bar{\sigma}$ be the associated map identifying the tangent space $T_{x}(M)$ $(x \in \mathcal{U})$ with $M\left(k_{o}, l_{o}\right)$. An adapted local frame with respect to some coordinates $\left(\mathcal{U},\left(x^{\alpha}\right)\right)$ is given as $\bar{\sigma}^{-1}(x)\left(e_{a}^{i}\right)=E_{a}^{i \alpha} \frac{\partial}{\partial x^{\alpha}}(x)$. If ∇ and $\tilde{\nabla}$ are two adapted symmetric linear connections on $B^{\left(k_{o}, l_{o}\right)}(M)$, then there exists a map $\mu: \mathcal{U} \rightarrow M\left(l_{o}, k_{o}\right)$ such that for $X, Y \in \mathcal{X}(M)$:

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\bar{\sigma}^{-1}[(\mu \cdot \bar{\sigma}(X)) \cdot \bar{\sigma}(Y)+(\mu \cdot \bar{\sigma}(Y)) \cdot \bar{\sigma}(X)] .
$$

Because $\mu \in M\left(l_{o}, k_{o}\right)$ and $\bar{\sigma}(X)(x) \in M\left(k_{o}, l_{o}\right)$, for $X \in \mathcal{X}(\mathcal{U})$, the term $(\mu \cdot \bar{\sigma}(X)(x))$, as composition of matices, is an element of $M\left(l_{o}, l_{o}\right)$ which acts on $\bar{\sigma}(Y)(x)$ giving thus an element of $M\left(k_{o}, l_{o}\right)$.

Analogous to the projective case we will construct a canonical normal Grassmannian connection and calculate the expression of the coefficients with respect to an adapted frame. The curvature of the Grassmannian structure is given by the forms $\Omega_{j}^{i}, \Omega_{b}^{a}, \Omega_{a}^{i}$, with respect to a Lie algebra decomposition of \mathbf{h}. We prove that if $l_{o} \geq 3$ or $k_{o} \geq 3$ the vanishing of Ω_{j}^{i} or Ω_{b}^{a} is necessary and sufficient for the
local flatness of the bundle P. The two curvature forms Ω_{j}^{i} and Ω_{b}^{a} are basic forms on the quotient $\pi_{1}^{2}: G r\left(k_{o}, l_{o}\right)(M) \subset F^{2}(M) \rightarrow F^{1}(M)$ and hence determine the Grassmannian curvature tensor, whose local components are given by

$$
K_{\beta \gamma \sigma}^{\alpha}=K_{j \gamma \sigma}^{i} F_{i \beta}^{a} E_{a}^{j \alpha}+K_{a \gamma \sigma}^{b} F_{i \beta}^{a} E_{b}^{i \alpha}
$$

with $\Omega_{j}^{i}=K_{j \alpha \beta}^{i} d x^{\alpha} \otimes d x^{\beta}$ and $\Omega_{b \alpha \beta}^{a} d x^{\alpha} \otimes d x^{\beta} . E_{b}^{j \alpha}$ is an adapted frame and $F_{i \beta}^{a}$ the corresponding coframe. It follows that the vanishing of the Grassmannian curvature tensor is a necessary and sufficient condition for the local flatness of the Grassmannian structure for any $l_{o} \geq 2$ and $k_{o} \geq 2$.

We assume all manifolds to be connected, paracompact and of class C^{∞}. All maps are of class C^{∞} as well. $G l\left(n_{o}\right)$ denotes the general linear group on $\mathbb{R}^{n_{o}}$ and $g l\left(n_{o}\right)$ its Lie algebra. We will use the summation convention over repeated indices. The indices take values as follows : $\alpha, \beta, \cdots=1, \cdots, m_{o}=k_{o} l_{o} ; a, b, c \cdots=$ $1, \cdots, k_{o} ; i, j, k, \cdots=1, \cdots, l_{o}$. Cross references are indicated by $[()$.$] while refer-$ ences to the bibliography by [.].

2 Grassmannians

A. Projective Group Actions

Let $G\left(l_{o}, n_{o}\right)$ be the Grassmannian of the l_{o}-dimensional subspaces in $\mathbb{R}^{n_{o}}$. Dim $G\left(l_{o}, n_{o}\right)=l_{o} k_{o}, n_{o}=l_{o}+k_{o}$. Let S be a k_{o}-dimensional subspace of $\mathbb{R}^{n_{o}}$. An associated big cell $\mathcal{U}(S)$ to S in $G\left(l_{o}, n_{o}\right)$ is determined by all transversal subspaces to S of dimension l_{o} in $\mathbb{R}^{n_{o}}$. One observes that

$$
G\left(l_{o}, n_{o}\right)=\cup_{I} \mathcal{U}\left(S_{I}\right)
$$

where I is any subset of length k_{o} of $\left\{1,2, \cdots, n_{o}\right\}$ and S_{I} the subspace of dimension k_{o} spanned by the coordinates $\left(x^{I}\right)$ in $\mathbb{R}^{n_{o}}$.

Let $\left(x^{1} \cdots, x^{l_{o}}, x^{l_{o}+1}, \cdots, x^{n_{o}}\right)$ be the natural coordinates on $\mathbb{R}^{n_{o}}$. For simplicity we will choose a rearrangement of the coordinates such that S is given by the condition $x^{1}=x^{2}=\cdots=x^{l_{o}}=0$.

Let $M\left(n_{o}, l_{o}\right)$ be the space of $\left(n_{o} \times l_{o}\right)$ matrices (n_{o} rows and l_{o} columns). Any element may be considered as l_{o} linearly independent vectors in $\mathbb{R}^{n_{o}}$. Hence each $y \in M\left(n_{o}, l_{o}\right)$ determines an l_{o}-plane in $\mathbb{R}^{n_{o}}$. We get a natural projection

$$
\begin{equation*}
\pi: M\left(n_{o}, l_{o}\right) \rightarrow \mathcal{U}(S) \tag{1}
\end{equation*}
$$

which is a principal fibration over $\mathcal{U}(S)$ with structure group $G l\left(l_{o}\right)$. Representing the coordinate system on $M\left(n_{o}, l_{o}\right)$ by a matrix Z, the $\operatorname{big} \operatorname{cell} \mathcal{U}(S)$ is coordinatised as follows. If $Z \in M\left(n_{o}, l_{o}\right)$, we will write

$$
Z=\binom{Z_{0}}{Z_{1}}
$$

with Z_{0} an $l_{o} \times l_{o}$ matrix and Z_{1} an $k_{o} \times l_{o}$ matrix, $n_{o}=k_{o}+l_{o}$.

The coordinates are obtained by

$$
\tilde{Z}=Z_{1} \cdot Z_{0}^{-1}
$$

where we assumed Z_{0} to be of maximal rank.
In terms of its elements we get

$$
Z=\binom{z_{j}^{i}}{z_{j}^{a}}
$$

$i, j=1, \cdots, l_{o}$ and $a=1, \cdots, k_{o}$, to which we refer as the homogeneous coordinates. Denoting by w_{j}^{i} the inverse of z_{j}^{i}, we obtain

$$
\tilde{Z}=\left(x_{i}^{a}\right)=\left(z_{j}^{a} w_{i}^{j}\right)
$$

which are the local coordinates on the cell. In the sequel we will identify the cel with $M\left(k_{o}, l_{o}\right)$.

The action of the group $G l\left(n_{o}\right)$ on $\mathbb{R}^{n_{o}}$ induces a transitive action of $\operatorname{Pl}\left(n_{o}\right)$ on $G\left(l_{o}, n_{o}\right)$. On a big cell the action of $P l\left(n_{o}\right)$ is induced from the action of $G l\left(n_{o}\right)$ on Z on the left. Let β be in $G l\left(n_{o}\right)$. In matrix representation we write β as :

$$
\beta=\left(\begin{array}{ll}
\beta_{00} & \beta_{01} \tag{2}\\
\beta_{10} & \beta_{11}
\end{array}\right)
$$

with $\beta_{00} \in M\left(l_{o}, l_{o}\right), \beta_{11} \in M\left(k_{o}, k_{o}\right), \beta_{10} \in M\left(k_{o}, l_{o}\right), \beta_{01} \in M\left(l_{o}, k_{o}\right)$.
The local action of an open neighbourhood of the identity in the subset of $\operatorname{Gl}\left(n_{o}\right)$ defined by $\operatorname{det} \beta_{00} \neq 0$ on $M\left(k_{o}, l_{o}\right)$ is given in fractional form by

$$
\begin{equation*}
\phi_{\beta}: x \mapsto\left(\beta_{10}+\beta_{11} x\right)\left(\beta_{00}+\beta_{01} x\right)^{-1} \tag{3}
\end{equation*}
$$

for $\beta \in G l\left(n_{o}\right)$ as in $[(2)]$ and $x \in M\left(k_{o}, l_{o}\right)$.
Because the elements of the center of $G l\left(n_{o}\right)$ are in the kernel of ϕ_{β} this action induces an action of an open neighbourhood of the identity in $\operatorname{Pl}\left(n_{o}\right)$.
In terms of the coordinates and using the notation

$$
\beta_{00}=\left(\beta_{j}^{i}\right), \beta_{01}=\left(\beta_{a}^{i}\right), \beta_{10}=\left(\beta_{i}^{a}\right), \beta_{11}=\left(\beta_{b}^{a}\right) \text { and } \beta_{00}^{-1}=\left(\gamma_{j}^{i}\right),
$$

we find the Taylor expression

$$
\begin{align*}
\bar{x}_{l}^{a}= & \beta_{k}^{a} \gamma_{l}^{k}+\left(\beta_{b}^{a}-\beta_{k}^{a} \gamma_{j}^{k} \beta_{b}^{j}\right) x_{m}^{b} \gamma_{l}^{m} \\
& -\beta_{c}^{a} x_{k}^{c} \gamma_{m}^{k} \beta_{b}^{m} x_{n}^{b} \gamma_{l}^{n}+\beta_{k}^{a} \gamma_{m}^{k} \beta_{c}^{m} x_{j}^{c} \gamma_{n}^{j} \beta_{e}^{n} x_{r}^{e} \gamma_{l}^{r}+\cdots \tag{4}
\end{align*}
$$

Consequences :

(a) The orbit of the origin of the coordinates in $M\left(k_{o}, l_{o}\right)$, is locally given by $(0) \mapsto$ $\beta_{10} \beta_{00}^{-1}$.
(b) The isotropy group H at $0 \in M\left(l_{o}, k_{o}\right)$ is the group

$$
H:\left\{\beta=\left(\begin{array}{cc}
\beta_{00} & \beta_{01} \tag{5}\\
0 & \beta_{11}
\end{array}\right) / \exp t \cdot \mathrm{I}_{n_{o}}\right\}
$$

with $\beta_{00} \in G l\left(l_{o}\right)$ and $\beta_{11} \in G l\left(k_{o}\right)$. The subgroup H in Taylor form is given by

$$
\begin{equation*}
\bar{x}_{j}^{a}=\beta_{b}^{a} \gamma_{j}^{m} x_{m}^{b}-\frac{1}{2}\left[\beta_{b}^{a} \gamma_{k}^{i} \beta_{c}^{k} \gamma_{j}^{l}+\beta_{c}^{a} \gamma_{k}^{l} \beta_{b}^{k} \gamma_{j}^{i}\right] x_{i}^{b} x_{l}^{c}+\cdots \tag{6}
\end{equation*}
$$

B. The Maurer Cartan Equations

Let $\left(u_{a}^{i}, u_{j}^{i}, u_{b}^{a}, u_{i}^{a}\right)$, with $i, j=1, \cdots, l_{o}, a, b=1, \cdots, k_{o}$, be local coordinates at the identity on $G l\left(n_{o}\right)$ according to the decomposition $[(2)]$ and $\left(\bar{\omega}_{a}^{i}, \bar{\omega}_{j}^{i}, \bar{\omega}_{b}^{a}, \bar{\omega}_{i}^{a}\right)$ the left invariant forms coïnciding with $\left(d u_{a}^{i}, d u_{j}^{i}, d u_{b}^{a}, d u_{i}^{a}\right)$ at the identity. The Maurer Cartan equations are

$$
\begin{aligned}
& \text { (1) } d \bar{\omega}_{j}^{a}=-\bar{\omega}_{k}^{a} \wedge \bar{\omega}_{j}^{k}-\bar{\omega}_{b}^{a} \wedge \bar{\omega}_{j}^{b} \\
& \text { (2) } d \bar{\omega}_{j}^{i}=-\bar{\omega}_{k}^{i} \wedge \bar{\omega}_{j}^{k}-\bar{\omega}_{b}^{i} \wedge \bar{\omega}_{j}^{b} \\
& \text { (3) } d \bar{\omega}_{b}^{a}=-\bar{\omega}_{k}^{a} \wedge \bar{\omega}_{b}^{k}-\bar{\omega}_{c}^{a} \wedge \bar{\omega}_{b}^{c} \\
& \text { (4) } d \bar{\omega}_{a}^{i}=-\bar{\omega}_{k}^{i} \wedge \bar{\omega}_{a}^{k}-\bar{\omega}_{b}^{i} \wedge \bar{\omega}_{a}^{b} .
\end{aligned}
$$

Let $\bar{\omega}_{1}=\bar{\omega}_{i}^{i}$ and $\bar{\omega}_{2}=\bar{\omega}_{a}^{a}$. We define

$$
\begin{equation*}
\omega_{j}^{i}=\bar{\omega}_{j}^{i}-\frac{1}{l_{o}} \delta_{j}^{i} \bar{\omega}_{1}, \omega_{b}^{a}=\bar{\omega}_{b}^{a}-\frac{1}{k_{o}} \delta_{b}^{a} \bar{\omega}_{2}, \omega_{*}=\frac{1}{l_{o}} \bar{\omega}_{1}-\frac{1}{k_{o}} \bar{\omega}_{2} . \tag{7}
\end{equation*}
$$

Passing to the quotient $G l\left(n_{o}\right) / \exp t . \mathrm{I}_{n_{o}}$ we find the Maurer Cartan equations on $P l\left(n_{o}\right)$.

Proposition 2.1 The Maurer Cartan equations on $\operatorname{Pl}\left(n_{o}\right)$ are

$$
\begin{align*}
& \text { (1) } d \omega_{j}^{a}=-\omega_{k}^{a} \wedge \omega_{j}^{k}-\omega_{b}^{a} \wedge \omega_{j}^{b}-\omega_{i}^{a} \wedge \omega_{*} \\
& \text { (2) } d \omega_{j}^{i}=-\omega_{k}^{i} \wedge \omega_{j}^{k}-\omega_{b}^{i} \wedge \omega_{j}^{b}+\frac{1}{l} \delta_{j}^{i} \omega_{c}^{k} \wedge \omega_{k}^{c} \\
& \text { (3) } d \omega_{b}^{a}=-\omega_{k}^{a} \wedge \omega_{b}^{k}-\omega_{c}^{a} \wedge \omega_{b}^{c}+\frac{1}{k} \delta_{b}^{a} \omega_{k}^{c} \wedge \omega_{c}^{k} \tag{8}\\
& \text { (4) } d \omega_{a}^{i}=-\omega_{k}^{i} \wedge \omega_{a}^{k}-\omega_{b}^{i} \wedge \omega_{a}^{b}+\omega_{a}^{i} \wedge \omega_{*} \\
& \text { (5) } d \omega_{*}=\frac{k_{o}+l_{o}}{k_{o} l_{o}} \omega_{i}^{a} \wedge \omega_{a}^{i} .
\end{align*}
$$

Remark that $\omega_{i}^{i}=\omega_{a}^{a}=0$.
The Lie algebra of $P l\left(n_{o}\right), \boldsymbol{g}$, in this representation is found by taking the tangent space at the identity, W, to the submanifold in $G l\left(n_{o}\right)$ defined by $\left(\operatorname{det} \beta_{00}\right)^{k}\left(\operatorname{det} \beta_{11}\right)^{l}$ $=1$. The quotient of the algebra of left invariant vectorfields, originated from W, by the vectorfield $\exp t . \mathrm{I}_{n_{o}}$ determines the Lie algebra structure. The vectorspace for this Lie algebra is formed by the direct sum

$$
\begin{equation*}
\boldsymbol{g}=\boldsymbol{g}^{-1} \oplus \boldsymbol{g}^{0} \oplus \boldsymbol{g}^{1} \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
\boldsymbol{g}^{-1} & =L\left(\mathbb{R}^{l_{o}}, \mathbb{R}^{k_{o}}\right) \\
\boldsymbol{g}^{0} & =\left\{(u, v) \in g l\left(l_{o}\right) \oplus g l\left(k_{o}\right) ; k . \mathbf{T} r(u)+l . \mathbf{T} r(v)=0\right\} \\
\boldsymbol{g}^{1} & =L\left(\mathbb{R}^{k_{o}}, \mathbb{R}^{l_{o}}\right) \tag{10}
\end{align*}
$$

Let $x \in \boldsymbol{g}^{-1},{ }^{*} y \in \boldsymbol{g}^{1}$ and $(u, v) \in \boldsymbol{g}^{0}$, the induced brackets on this vector space are

$$
\begin{align*}
& {[u, x]=x \cdot u ; } {[v, x]=v \cdot x ;\left[u,{ }^{*} y\right]=u \cdot{ }^{*} y ; } \\
& {\left[v,{ }^{*} y\right]={ }^{*} y \cdot v ;\left[x_{1}, x_{2}\right]=0 ;\left[{ }^{*} y_{1},{ }^{*} y_{2}\right]=0 } \\
& {\left[u_{1}+v_{1}, u_{2}+v_{2}\right]=} {\left[u_{1}, u_{2}\right]+\left[v_{1}, v_{2}\right] ; } \tag{11}\\
& {\left[x,{ }^{*} y\right]=x^{*} y-{ }^{*} y \cdot x-\left(l_{o}-k_{o}\right) \frac{\mathbf{T} r\left(x \cdot{ }^{*} y\right)}{2 k_{o} l_{o}} \cdot \mathbf{I d}_{n_{o}} . }
\end{align*}
$$

$\mathbf{I d}_{n_{o}}$ denotes the identity on $\mathbb{R}^{l_{o}} \oplus \mathbb{R}^{k_{o}}$.

C. Representations and prolongation

We will use the following identifications:

$$
\begin{array}{cccc}
M\left(k_{o}, l_{o}\right) & \stackrel{\kappa}{\varsigma} \mathbb{R}^{k_{o} \times l_{o}} & \xlongequal[\varsigma]{\varsigma} \mathbb{R}^{m_{o}} \\
x_{i}^{a} & \stackrel{\kappa}{=} & x^{a i} & \xlongequal{\varsigma} \tag{12}\\
x^{\alpha}
\end{array}
$$

where $\mathbb{R}^{k_{o} \times l_{o}}$ stands for $\underbrace{\mathbb{R}^{l_{o}} \times \cdots \times \mathbb{R}^{l_{o}}}_{k_{o} \text { times }} ; \alpha=(a-1) l_{o}+i, m_{o}=k_{o} l_{o} ; \alpha=1, \cdots, m_{o}$; $a=1, \cdots, k_{o}$ and $i=1, \cdots, l_{o}$.

We introduce the following two subgroups.
(1) The subgroup G_{o} of $G l\left(l_{o}\right) \times G l\left(k_{o}\right)$:

$$
\begin{equation*}
G_{o}=\left\{(A, B) \in G l\left(l_{o}\right) \times G l\left(k_{o}\right) \mid(\operatorname{det}(A))^{k_{o}} .(\operatorname{det}(B))^{l_{o}}=1\right\} . \tag{13}
\end{equation*}
$$

Let (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ be elements in G_{o}. Then from $(\operatorname{det}(A))^{k_{o}}(\operatorname{det}(B))^{l_{o}}=1$ and $\left(\operatorname{det}\left(A^{\prime}\right)\right)^{k_{o}}\left(\operatorname{det}\left(B^{\prime}\right)\right)^{l_{o}}=1$ it follows that $\left(\operatorname{det}\left(A A^{\prime}\right)\right)^{k_{o}}\left(\operatorname{det}\left(B B^{\prime}\right)\right)^{l_{o}}=1$. We also remark that G_{o} is isomorphic to the subgroup defined by $\beta_{01}=\beta_{10}=0$ in $G l\left(l_{o}+k_{o}\right) / \exp t . \mathrm{I}_{n_{o}}$. There indeed always exists an α such that

$$
(\operatorname{det} \alpha A)^{k_{o}} \cdot(\operatorname{det} \alpha B)^{l_{o}}=\alpha^{k+l}(\operatorname{det}(A))^{k_{o} o} \cdot(\operatorname{det}(B))^{l_{o}}=1
$$

(2) The subgroup \tilde{G}_{o} of $G l\left(m_{o}\right)$ defined by

$$
\begin{equation*}
\left\{A_{\beta}^{\alpha} \delta_{\alpha}^{(a-1) l_{o}+i} \delta_{(b-1) l_{o}+j}^{\beta}=A_{j}^{i} A_{b}^{a} \mid\left(A_{j}^{i}\right) \in G l\left(l_{o}\right),\left(A_{b}^{a}\right) \in G l\left(k_{o}\right)\right\} \tag{14}
\end{equation*}
$$

Multiplication in the group yields

$$
A_{\gamma}^{\alpha} A_{\beta}^{\gamma} \delta_{\alpha}^{(a-1) l_{o}+i} \delta_{(b-1) l_{o}+j}^{\beta}=A_{k}^{i} A_{j}^{k} A_{c}^{a} B_{b}^{c} .
$$

We will intoduce the following notations

$$
\begin{equation*}
A_{\beta}^{\alpha} x^{\beta}=\tilde{x}^{\alpha} \stackrel{\varsigma}{\leftrightarrow} A_{j}^{i} A_{b}^{a} x^{b j}=\tilde{x}^{a i} \stackrel{\kappa}{\leftrightarrow} A_{b}^{a} x_{j}^{b} A_{i}^{j}=\tilde{x}_{i}^{a}, \tag{15}
\end{equation*}
$$

which we will use throughout this paper. We also will use κ for $\kappa \circ \varsigma$.
Let $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ be in G_{o}. We then have

$$
\left(A_{1} \cdot A_{2}, B_{1} \cdot B_{2}\right) \mapsto\left({ }^{\tau}\left(A_{1} \cdot A_{2}\right)^{-1}, B_{1} \cdot B_{2}\right)=\left({ }^{\tau}\left(A_{1}\right)^{-1} \cdot{ }^{\tau}\left(A_{2}\right)^{-1}, B_{1} \cdot B_{2}\right),
$$

which proves the following proposition.
Proposition 2.2 The morphism

$$
\begin{align*}
\tau: G_{o} & \rightarrow \tilde{G}_{o} \\
(A, B) & \mapsto\left({ }^{\tau} A^{-1}, B\right) \tag{16}
\end{align*}
$$

is a group isomorphism sending left invariant vectorfields into left invariant vectorfields.

Proposition 2.3 The Lie algebra, $\tilde{\boldsymbol{g}}_{o}$ of \tilde{G}_{o} is given by the subalgebra of the $\left(m_{o} \times\right.$ m_{o}) matrices which are defined by

$$
\begin{equation*}
z_{\beta}^{\alpha} \stackrel{\kappa}{=} \tilde{u}_{i}^{j} \delta_{b}^{a}+\tilde{u}_{b}^{a} \delta_{i}^{j} \tag{17}
\end{equation*}
$$

with $\alpha=(a-1) l_{o}+i, \beta=(b-1) l_{o}+j,\left(\tilde{u}_{j}^{i}\right) \in g l\left(l_{o}\right),\left(\tilde{u}_{b}^{a}\right) \in g l\left(k_{o}\right)$.
It is a direct consequence of proposition [(2.2)] that this Lie algebra, $\tilde{\boldsymbol{g}}^{0}$, is isomorphic to \boldsymbol{g}^{0}. The isomorphism is induced from ${ }^{\tau} u=-\left(\tilde{u}_{j}^{i}\right), v=\left(\tilde{u}_{b}^{a}\right)$.

Let V be the real vectorspace isomorphic to $\mathbb{R}^{m_{o}}$. The algebra $\tilde{\boldsymbol{g}}^{0}$ is a subalgebra of $V \otimes V^{*}$. The first prologation $\tilde{\boldsymbol{g}}^{(1)}$ is defined as the vectorspace $V^{*} \otimes \tilde{\boldsymbol{g}}^{0} \cap S^{2}\left(V^{*}\right) \otimes V$ and the $k^{\text {th }}$ prolongation likewise as the vectorspace [1] [10]

$$
\tilde{\boldsymbol{g}}^{(k)}=\underbrace{V^{*} \otimes \cdots \otimes V^{*}}_{k \text { times }} \otimes \tilde{\boldsymbol{g}}^{0} \cap S^{k+1}\left(V^{*}\right) \otimes V .
$$

A subspace of $V^{*} \otimes V$ is called of finite type if $\tilde{\boldsymbol{g}}^{(k)}=0$ for some (and hence all larger) k and otherwise of infinite type. We refer to [10] [1] [8] for the details.

We then have the following theorem.
Theorem 2.1 The algebra $V \oplus \tilde{\boldsymbol{g}}^{0}$ is of infinite type if k_{o} or l_{o} equals 1. If k_{o} and l_{o} are both different from 1 the algebra is of finite type. Moreover in this case $\tilde{\boldsymbol{g}}^{(2)}=0$ and the algebra $V \oplus \tilde{\boldsymbol{g}}^{0} \oplus \tilde{\boldsymbol{g}}^{(1)}$ is isomorphic to the algebra $\boldsymbol{g}^{-1} \oplus \boldsymbol{g}^{0} \oplus \boldsymbol{g}^{1}$.

In order to prove the theorem we will make use of the representation of $\tilde{\boldsymbol{g}}^{0}$ into the linear polynomial vectorfields on V. Let $\left(x^{\alpha}\right)$ be the coordinates on V. Define the subalgebra \boldsymbol{g}^{0} as the set of vectorfields

$$
\begin{equation*}
\tilde{u}_{\beta}^{\alpha} x^{\beta} \frac{\partial}{\partial x^{\alpha}} \quad \text { with } \quad \tilde{u}_{\beta}^{\alpha} \stackrel{\kappa}{=} \tilde{u}_{i}^{j} \delta_{b}^{a}+\tilde{v}_{b}^{a} \delta_{i}^{j} \tag{18}
\end{equation*}
$$

If $k_{o}=1$ or $l_{o}=1$, the algebra $\boldsymbol{g}^{-1} \oplus \boldsymbol{g}^{0} \oplus \boldsymbol{g}^{1}$ is the algebra of projective transformations on $\mathbb{R}^{m_{o}}$ [11]. Hence $\boldsymbol{g}^{0}=\tilde{\boldsymbol{g}}^{0}=g l\left(m_{o}\right)$, from which it follows that the algebra $V \oplus \tilde{\boldsymbol{g}}^{0}$ is of infinite type.

We assume from now on k_{o} and l_{o} to be different from 1 . The second prolongation $\tilde{\boldsymbol{g}}^{(2)}$ is zero as a consequence of a classification theorem by Matsushima [7] [8] or by a direct calculation from $\tilde{\boldsymbol{g}}^{(1)}$ once this is derived.

Before proving the theorem we will prove the following lemmas.
Lemma 2.1 Any second order vectorfield $X \stackrel{\kappa}{=} T_{a d k}^{i l c} x_{i}^{a} x_{l}^{d} \frac{\partial}{\partial x_{k}^{c}}$, such that

$$
\llbracket u_{l}^{b} \frac{\partial}{\partial x_{l}^{b}}, X \rrbracket \in \tilde{\boldsymbol{g}}^{0}
$$

is of the form

$$
T_{a d k}^{i l c}=u_{a}^{i} \delta_{k}^{l} \delta_{d}^{c}+u_{d}^{l} \delta_{k}^{i} \delta_{a}^{c}
$$

Proof
For any $u_{j}^{b} \frac{\partial}{\partial x_{j}^{b}} \in V$ the bracket with any homogeneous second order vectorfield $T_{a b k}^{i j c} x_{i}^{a} x_{j}^{b} \frac{\partial}{\partial x_{k}^{c}}$ taking values in $\tilde{\boldsymbol{g}}^{0}$ satisfies the equation

$$
\llbracket u_{j}^{b} \frac{\partial}{\partial x_{j}^{b}}, T_{a b k}^{i j c} x_{i}^{a} x_{j}^{b} \frac{\partial}{\partial x_{k}^{c}} \rrbracket=\left[A_{k}^{l} \delta_{d}^{c}+B_{d}^{c} \delta_{k}^{l}\right] x_{l}^{d} \frac{\partial}{\partial x_{k}^{c}},
$$

for some constants A_{k}^{l} and B_{d}^{c}.
This equation becomes

$$
2 u_{i}^{a} T_{a d k}^{i l c}=A_{k}^{l} \delta_{d}^{c}+B_{d}^{c} \delta_{k}^{l} .
$$

Which together with the symmetry $T_{a d k}^{i l c}=T_{d a k}^{l i c}$ proves the lemma.

Call W be the vector space of the second order vectorfields of the form $X \xlongequal{\kappa}$ $T_{a d k}^{i l c} x_{i}^{a} x_{l}^{d} \frac{\partial}{\partial x_{k}^{c}}$. Let $X \in V, Y \in \tilde{\boldsymbol{g}}^{0}$ and $Z \in W$. Because the set of all formal vectorfields on V is a Lie algebra, we can consider the Jacobi identity

$$
\llbracket \llbracket X, Y \rrbracket, Z \rrbracket+\llbracket \llbracket Y, Z \rrbracket, X \rrbracket+\llbracket \llbracket Z, X \rrbracket, Y \rrbracket=0 .
$$

Lemma 2.2 Let $Y \in \tilde{\boldsymbol{g}}^{0}$ and $Z \in W$. Then:

$$
\llbracket Y, Z \rrbracket \in \tilde{\boldsymbol{g}}^{0} .
$$

Proof
Because $\llbracket X, Y \rrbracket \in V$ the first term takes values in $\tilde{\boldsymbol{g}}^{0}$. The thirth term also takes values in $\tilde{\boldsymbol{g}}^{0}$ by the construction of W. Hence the second term $\llbracket Y, Z \rrbracket, X \rrbracket$ takes values in $\tilde{\boldsymbol{g}}^{0}$. But this imples that $\llbracket Y, Z \rrbracket$ takes values in W by the former lemma.

As a consequence of both lemmas we are able to write the algebra $V \oplus \tilde{\boldsymbol{g}}^{0} \oplus \tilde{\boldsymbol{g}}^{(1)}$ as the vectorspace \mathcal{L} spanned by the vectorfields

$$
\begin{gather*}
\left(\tilde{u}_{i}^{a} \frac{\partial}{\partial x_{i}^{a}},\left(\tilde{u}_{i}^{j} \delta_{b}^{a}+\tilde{u}_{b}^{a} \delta_{i}^{j}\right) x_{j}^{b} \frac{\partial}{\partial x_{i}^{a}},\left(\tilde{u}_{b}^{k} \delta_{c}^{a} \delta_{i}^{j}+\tilde{u}_{c}^{j} \delta_{b}^{a} \delta_{i}^{k}\right) x_{j}^{b} x_{k}^{c} \frac{\partial}{\partial x_{i}^{a}}\right) \\
\quad=\left(\tilde{u}_{i}^{a} \frac{\partial}{\partial x_{i}^{a}} \tilde{u}_{i}^{j} x_{j}^{a} \frac{\partial}{\partial x_{i}^{a}}+\tilde{u}_{b}^{a} x_{j}^{b} \frac{\partial}{\partial x_{j}^{a}}, \tilde{u}_{c}^{k} x_{k}^{a} x_{i}^{c} \frac{\partial}{\partial x_{i}^{a}}\right) \tag{19}
\end{gather*}
$$

We find the following proposition.
Proposition 2.4 Both Lie algebras \mathcal{L} and \boldsymbol{g} are isomorphic. The isomorphism

$$
\tau: \boldsymbol{g}=\boldsymbol{g}^{-1} \oplus \boldsymbol{g}^{0} \oplus \boldsymbol{g}^{1} \rightarrow \mathcal{L}
$$

is induced from

$$
\begin{equation*}
\tau\left(u_{i}^{a}\right)=\tilde{u}_{i}^{a}, \tau\left(u_{j}^{i}\right)=-\tilde{u}_{j}^{i}, \tau\left(u_{b}^{a}\right)=\tilde{u}_{b}^{a}, \tau\left(u_{a}^{i}\right)=\tilde{u}_{a}^{i}, \tag{20}
\end{equation*}
$$

with $\left(u_{i}^{a}, u_{j}^{i}, u_{b}^{a}, u_{a}^{i}\right) \in \boldsymbol{g}$.
This proposition together with both lemmas proves the theorem.

3 The Cartan connections

A. The structure equations

Let P be a principal bundle, of dimension $n_{o}^{2}-1\left(n_{o}=k_{o}+l_{o}\right)$, over M with fibre group H, the isotropy group [(5)]. We then have $\operatorname{dim} P / H=k_{o} l_{o}$. The right action of H on P is denoted as R_{a}, for $a \in H$, while $a d$ stands for the adjoint representation of H on the Lie algebra $\boldsymbol{g}=\mathbf{p l}\left(\mathbf{n}_{\mathbf{o}}\right)$. Every $A \in \boldsymbol{h}$ induces in a natural manner a vectorfield A^{\star}, called fundamental vectorfield, on P as a consequence of the action of H on P. The vectorfield A^{\star} obviously is a vertical vectorfield on P.

A Cartan connection on P is a 1-form ω on P, with values in the Lie algebra \boldsymbol{g}, such that:

$$
\begin{align*}
& \omega\left(A^{\star}\right)=A, \forall A \in \mathbf{h} \tag{1}\\
& R_{a}^{\star} \omega=\operatorname{ad}\left(a^{-1}\right) \omega, a \in H \tag{2}\\
& \omega(X) \neq 0, \forall X \in \mathcal{X}(P) \text { with } X \neq 0 \tag{3}
\end{align*}
$$

The form ω defines for each $x \in P$ an isomorphism of $T_{x} P$ with g. Hence the space P is globally parallelisable.

In terms of the natural basis in matrix representation of $\mathbf{p l}\left(\mathbf{n}_{\mathbf{o}}\right)$ as given in [(10)] and $[(11)]$, we write the connection form ω as $\left(\omega_{i}^{a}, \omega_{j}^{i}, \omega_{b}^{a}, \omega_{*}, \omega_{a}^{i}\right)$, with $\omega_{i}^{i}=\omega_{a}^{a}=0$. As basis for the subalgebra $\mathbf{h}=\mathbf{s l}\left(\mathbf{l}_{\mathbf{o}}\right) \oplus \mathbf{s l}\left(\mathbf{k}_{\mathbf{o}}\right) \oplus \mathbb{R} \oplus L\left(\mathbb{R}^{k_{o}}, \mathbb{R}^{l_{o}}\right)$ we choose $\left(e_{j}^{i}, e_{b}^{a}, e_{*}, e_{i}^{a}\right)$.

The structure equations of Cartan on P are now defined as
(1) $d \omega_{j}^{a}=-\omega_{k}^{a} \wedge \omega_{j}^{k}-\omega_{b}^{a} \wedge \omega_{j}^{b}-\omega_{j}^{a} \wedge \omega_{*}+\Omega_{j}^{a}$
(2) $d \omega_{j}^{i}=-\omega_{k}^{i} \wedge \omega_{j}^{k}-\omega_{b}^{i} \wedge \omega_{j}^{b}+\frac{1}{l} \delta_{j}^{i} \omega_{c}^{k} \wedge \omega_{k}^{c}+\Omega_{j}^{i}$
(3) $d \omega_{b}^{a}=-\omega_{k}^{a} \wedge \omega_{b}^{k}-\omega_{c}^{a} \wedge \omega_{b}^{c}+\frac{1}{k} \delta_{b}^{a} \omega_{k}^{c} \wedge \omega_{c}^{k}+\Omega_{b}^{a}$
(4) $d \omega_{a}^{i}=-\omega_{k}^{i} \wedge \omega_{a}^{k}-\omega_{b}^{i} \wedge \omega_{a}^{b}+\omega_{a}^{i} \wedge \omega_{*}+\Omega_{a}^{i}$
(5) $d \omega_{*}=\frac{k_{o}+l_{o}}{k_{o} l_{o}} \omega_{i}^{a} \wedge \omega_{a}^{i}+\Omega_{*}$,
with $\omega_{i}^{i}=\omega_{a}^{a}=\Omega_{i}^{i}=\Omega_{a}^{a}=0$.
In analogy with the projective case described by Kobayashi and Nagano, the form Ω_{i}^{a} is called the torsion form while ($\Omega_{j}^{i}, \Omega_{b}^{a}, \Omega_{a}^{i}, \Omega_{*}$) are called the curvature forms of the connection. The connection form satisfies the following conditions : $\omega_{i}^{a}\left(A^{\star}\right)=0, \omega_{j}^{i}\left(A^{\star}\right)=A_{j}^{i}, \omega_{b}^{a}\left(A^{\star}\right)=A_{b}^{a}, \omega_{*}\left(A^{\star}\right)=A_{*}$ for $A=\left(A_{j}^{i}, A_{b}^{a}, A_{a}^{i}, A_{*}\right) \in$ h. Furthermore if $X \in \mathcal{X}$ such that $\omega_{i}^{a}(X)=0$, then X is vertical.

Proposition 3.1 The torsion and the curvature forms are basic forms on the bundle P. Hence we define :

$$
\begin{gather*}
\Omega_{i}^{a}=K_{i j k}^{a b c} \omega_{b}^{j} \wedge \omega_{c}^{k}, \Omega_{j}^{i}=K_{j l k}^{i b c} \omega_{b}^{l} \wedge \omega_{c}^{k}, \\
\Omega_{b}^{a}=K_{b j k}^{a d c} \omega_{d}^{j} \wedge \omega_{c}^{k}, \Omega_{a}^{i}=K_{a j k}^{i b c} \omega_{b}^{j} \wedge \omega_{c}^{k}, \Omega_{*}=K_{*, j k}^{b c} \omega_{b}^{j} \wedge \omega_{c}^{k} \tag{23}
\end{gather*}
$$

Proof
Let $F_{x}, x \in M$, be the fibre above x. The restriction of ω_{i}^{a} to F_{x} is identically zero and the forms $\omega_{j}^{i}, \omega_{b}^{a}, \omega_{a}^{i}, \omega_{*}$ are linearly independent on F_{x} as a consequence of $[(21(1)(3))]$. Because the form ω sends the fundamental vectorfields A^{*} which are tangent to F_{x} into the left invariant vectorfields A on the group H, the forms $\omega_{j}^{i}, \omega_{b}^{a}, \omega_{a}^{i}, \omega_{*}$ satisfy the equations of Maurer cartan on H. The combination of these equations and equations [(22)] implies the vanishing of the curvature forms when restricted to F_{x}.

From now on we assume the torsion Ω_{i}^{a} to be zero.
Proposition 3.2 Let P be a principal fibre bundle over M with structure group H and ($\omega_{b}^{i}, \omega_{j}^{i}, \omega_{b}^{a}, \omega_{j}^{a}$) a Cartan connection on P satisfying the structure equations [(22)]. The curvature forms possess the following properties :

$$
\begin{align*}
& \text { (1) } 0=\omega_{k}^{a} \wedge \Omega_{j}^{k}+\Omega_{b}^{a} \wedge \omega_{j}^{b}+\omega_{j}^{a} \wedge \Omega_{*} \\
& \text { (2) } 0=d \Omega_{*}-\omega_{i}^{a} \wedge \Omega_{a}^{i} \tag{24}
\end{align*}
$$

Proof

These equations are obtained by taking the exterior differential of equations [(22,(1) and (5))].

B. The normal Cartan connection

The first equation of the structure equations of Cartan with $\Omega_{i}^{a}=0$ is called the torsion zero equation and does not contain the form ω_{a}^{i}, while the other equations define the curvature forms. A natural question then arises, namely : let $\left(\omega_{i}^{a}, \omega_{j}^{i}, \omega_{b}^{a}, \omega_{*}\right)$ be given a priori on P which satisfy the torsion equation, does there then exists a ω_{a}^{i} such that ω is a Cartan connection on P and if so is there a canonical one.

Theorem 3.1 Let the bundle P be given as defined and $\left(\omega_{i}^{a}, \omega_{b}^{a}, \omega_{j}^{i}, \omega_{*}\right)$ be 1-forms satisfying :
(1) $\omega_{i}^{a}\left(A^{*}\right)=0, \omega_{b}^{a}\left(A^{*}\right)=A_{b}^{a}, \omega_{j}^{i}\left(A^{*}\right)=A_{j}^{i}, \omega_{*}\left(A^{*}\right)=A_{*}$

$$
\forall A=\left(A_{j}^{i}, A_{b}^{a}, A_{a}^{i}, A_{*}\right) \in \mathbf{h}
$$

(2) $\left(R_{a}\right)^{*}\left(\omega_{i}^{a}, \omega_{j}^{i}, \omega_{b}^{a}, \omega_{*}\right)=a d\left(a^{-1}\right)\left(\omega_{i}^{a}, \omega_{j}^{i}, \omega_{b}^{a}, \omega_{*}\right), \forall a \in H$
(3) If $X \in \mathcal{X}(P)$ such that $\omega_{i}^{a}(X)=0$, then X is vertical.
(4) $d \omega_{i}^{a}=-\omega_{b}^{a} \wedge \omega_{i}^{b}-\omega_{j}^{a} \wedge \omega_{i}^{j}-\omega_{i}^{a} \wedge \omega_{*}$.

If $l_{o} \neq 1$ and $k_{o} \neq 1$ then there exists an unique Cartan connection ω on P

$$
\omega=\left(\omega_{i}^{a}, \omega_{j}^{i}, \omega_{b}^{a}, \omega_{*}, \omega_{a}^{i}\right)
$$

such that:

$$
\begin{equation*}
\Omega_{*}=0 \quad \text { and } \quad K_{l a b}^{i l k}=K_{a d b}^{d k i} \tag{25}
\end{equation*}
$$

Proof
The existence of a Cartan connection satisfying the given conditions follows from a classical construction using the partition of unity. Because the manifold is supposed to be paracompact there exists a locally finite cover $\left\{\mathcal{U}_{\alpha}\right\}$ of M such that $P\left(\mathcal{U}_{\alpha}\right)$ is trivial, for each α. Let $\left\{\left(f_{\alpha}, \mathcal{U}_{\alpha}\right)\right\}$ then be a subordinate partition of unity. If for each α the form ω_{α} is a Cartan connection on $P\left(\mathcal{U}_{\alpha}\right)$ with prescribed $\left(\omega_{i}^{a}, \omega_{b}^{a}, \omega_{j}^{i}, \omega_{*}\right)$, then $\sum_{\alpha}\left(f_{\alpha} o \pi\right) \omega_{\alpha}$ is a Cartan connection in $P(\pi$ being the bundle projection $P \rightarrow M)$.

Hence the problem is reduced to a local problem for a trivial P. Let $\sigma: \mathcal{U} \subset$ $M \rightarrow P$ be a local section we define the 1-form ω_{a}^{i} over σ as $\omega_{a}^{i}(X)=0$ for all tangent vectors to σ and $\omega_{a}^{i}\left(A^{*}\right)=A_{a}^{i}$ for $A \in \mathbf{h}$. Now any vectorfield Y on P can be written uniquely as $Y=R_{a}(X)+V$, where X is tangent to σ and $a \in H$ and V is tangent to the fibre. Hence the condition

$$
\omega(Y)(p . a)=a d\left(a^{-1}\right)(\omega(X))(p)+A, \quad p=\sigma(x), x \in M
$$

with ${ }^{*} A$ the unique fundamental vectorfield corresponding to A, such that ${ }^{*} A(p . a)=$ $V(p . a)$, determines $\omega_{a}^{i}(Y)$.

We will prove the existence of a Cartan connection satisfying the required conditions [(25)] by means of a set of propositions.

Proposition 3.3 Let ω be a Cartan connection on P. Then there exists a Cartan connection satifying the condition $\Omega_{*}=0$. Two Cartan connections satisfying this same condition are related by $\bar{\omega}_{a}^{i}=\omega_{a}^{i}-A_{a b}^{i k} \omega_{k}^{b}$, with $A_{a b}^{i k}=A_{b a}^{k i}$.

Proof
Using conditions $[(21,(1)(3))]$ the unkown form can be written as

$$
\bar{\omega}_{a}^{i}=\omega_{a}^{i}-A_{a b}^{i k} \omega_{k}^{b}
$$

Equation $[(22,(5))]$ then yields

$$
0=\frac{k_{o}+l_{o}}{k_{o} l_{o}} \omega_{i}^{a} \wedge A_{a b}^{i k} \omega_{k}^{b}+\Omega_{*}-\bar{\Omega}_{*} .
$$

If $\Omega_{*} \neq 0$ choose $A_{a b}^{i k}$ such that

$$
0=\frac{k_{o}+l_{o}}{k_{o} l_{o}} \omega_{i}^{a} \wedge A_{a b}^{i k} \omega_{k}^{b}+\Omega_{*}
$$

or

$$
A_{a b}^{i k}-A_{b a}^{k i}=-\frac{2 k_{o} l_{o}}{k_{o}+l_{o}} K_{* a b}^{i k} .
$$

As follows directly from this equation two Cartan connections satisfying the curvature condition $\Omega_{*}=0$ are related by $\bar{\omega}_{a}^{i}=\omega_{a}^{i}-A_{a b}^{i k} \omega_{k}^{b}$, with $A_{a b}^{i k}-A_{b a}^{k i}=0$.

Proposition 3.4 Let ω be a Cartan connection on P satisfying condition $\Omega_{*}=0$. Then the Bianchi identities [(24)] become
(1) $K_{j c b}^{k l m} \delta_{d}^{a}+K_{d c b}^{a l m} \delta_{j}^{k}+K_{j d c}^{m k l} \delta_{b}^{a}+K_{b d c}^{a k l} \delta_{j}^{m}+K_{j b d}^{l m k} \delta_{c}^{a}+K_{a b d}^{a m k} \delta_{j}^{l}=0$
(2) $K_{a c b}^{i k l}+K_{b a c}^{l i k}+K_{c b a}^{k l i}=0$.

Consequences : From equation $[(26,(1))]$ we find by contraction of the indices k_{o} $\& j$ and $a \& d$

$$
\begin{equation*}
K_{k b c}^{m k l}+K_{b d c}^{d m l}-K_{k c b}^{l k m}-K_{c d b}^{d l m}=0 \tag{27}
\end{equation*}
$$

and by contraction of $k_{o} \& j$ and $a \& c$ the expression

$$
\begin{equation*}
k K_{j d c}^{m j l}-l K_{d a c}^{a m l}-K_{j d c}^{l j m}+K_{c a d}^{a m l}=0 \tag{28}
\end{equation*}
$$

Lemma 3.1 The expression

$$
K_{k b c}^{m k l}-K_{c d b}^{d l m}
$$

is symmetric in the pair $((m, b),(l, c))$.

Proposition 3.5 Let ω be a Cartan connection on P satisfying $\Omega_{*}=0$. Then there exists a unique Cartan connection satisfying the curvature conditions [(25)].

Proof
It is sufficient to consider the class of Cartan connections determined by the condition $\Omega_{*}=0$. Two such connections are related by

$$
\bar{\omega}_{a}^{i}=\omega_{a}^{i}-A_{a b}^{i k} \omega_{k}^{b},
$$

with $A_{a b}^{i k}=A_{b a}^{k i}[(3.3)]$.
Equation $[(22,(2))]$ then gives

$$
\Omega_{j}^{i}-\bar{\Omega}_{j}^{i}-A_{a b}^{i l} \omega_{l}^{b} \wedge \omega_{j}^{a}=0
$$

or

$$
\left[K_{j b a}^{i l k}-\bar{K}_{j b a}^{i l k}-A_{a b}^{i l} \delta_{j}^{k}\right] \omega_{l}^{b} \wedge \omega_{k}^{a}=0,
$$

which yields

$$
K_{j b a}^{i l k}-\bar{K}_{j b a}^{i l k}-\frac{1}{2}\left(\delta_{j}^{k} A_{a b}^{i l}-\delta_{j}^{l} A_{b a}^{i k}\right)=0 .
$$

Summation on the indices l and j gives :

$$
\begin{equation*}
K_{l b a}^{i l k}-\bar{K}_{l b a}^{i l k}-\frac{1}{2}\left(A_{a b}^{i k}-l A_{b a}^{i k}\right)=0 . \tag{29}
\end{equation*}
$$

From $[(22),(3)]$ we derive in a similar way the following equation :

$$
\frac{1}{2}\left(\delta_{a}^{d} A_{b c}^{l k}-\delta_{c}^{d} A_{b a}^{k l}\right)+K_{b c a}^{d k l}-\bar{K}_{b c a}^{d k l}=0
$$

Contraction on d and c yields

$$
\begin{equation*}
\frac{1}{2}\left(A_{a b}^{i k}-k A_{a b}^{k i}\right)+K_{a d b}^{d k i}-\bar{K}_{a d b}^{d k i}=0 . \tag{30}
\end{equation*}
$$

From the lemma [(3.1)] we know that the expression

$$
K_{l b a}^{i l k}-K_{a d b}^{d k i}
$$

is symmetric in the pair $((i, b),(k, a))$. If

$$
K_{l b a}^{i l k}-K_{a d b}^{d k i} \neq 0
$$

we define $A_{a b}^{i k}$ such that

$$
\begin{equation*}
K_{l b a}^{i l k}-K_{a d b}^{d k i}=A_{a b}^{i k}-\frac{1}{2}\left(l_{o}+k_{o}\right) A_{b a}^{i k} . \tag{31}
\end{equation*}
$$

Or

$$
\begin{equation*}
A_{a b}^{k i}=\frac{4}{4-\left(l_{o}+k_{o}\right)^{2}}\left[\Delta_{b a}^{k i}+\frac{1}{2}\left(l_{o}+k_{o}\right) \Delta_{b a}^{i k}\right], \tag{32}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta_{b a}^{i k}=K_{l b a}^{i l k}-K_{a d b}^{d k i} . \tag{33}
\end{equation*}
$$

Substitution of [(31)] in the sum of equations [(29)] and [(30)] gives

$$
\bar{K}_{l b a}^{i l k}-\bar{K}_{a d b}^{d k i}=0
$$

This proves the theorem for $l_{o} \neq 1$ and $k_{o} \neq 1$. If l_{o} or k_{o} equals one we refer to the projective case treated by Kobayashi S., Nagano T. [3]. The uniqueness follows from the same considerations.

Definition 3.1 The unique Cartan connection ω on P satisfying the curvature conditions [(25)], will be called the normal Grassmannian connection on P.

Proposition 3.6 Let ω be a normal Cartan connection on the bundle P. The following curvature equations are identities :

$$
\begin{align*}
k_{o} K_{j d c}^{m j l} & =l_{o} K_{d a c}^{a m l} \\
k_{o} K_{j d c}^{m j l} & =l_{o} K_{j c d}^{l j m} \\
k_{o} K_{c a d}^{a l m} & =l_{o} K_{d a c}^{a m l} \tag{34}
\end{align*}
$$

Proof
These relations follow from the conditions [(25)] and the identities [(28)].

Proposition 3.7 Let P and ω be as above. If $\Omega_{j}^{i}=0$ and $\Omega_{b}^{a}=0$, then it follows that $\Omega_{a}^{i}=0$.

Proof
If $k_{o} \neq 1$ and $l_{o} \neq 1$ then the manifold M has dimension larger than 3 . The proposition follows from differentiation of equations [(22, (2)(3))] :

$$
\begin{equation*}
d \Omega_{j}^{i}-\Omega_{k}^{i} \wedge \omega_{l}^{k}+\omega_{k}^{i} \wedge \Omega_{j}^{k}+\frac{1}{l_{o}} \delta_{j}^{i} \Omega_{c}^{k} \wedge \omega_{k}^{c}-\Omega_{b}^{i} \wedge \omega_{j}^{b}=0 \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
d \Omega_{b}^{a}-\Omega_{c}^{a} \wedge \omega_{b}^{c}+\omega_{c}^{a} \wedge \Omega_{b}^{c}-\frac{1}{k_{o}} \delta_{b}^{a} \omega_{k}^{c} \wedge \Omega_{c}^{k}+\omega_{k}^{a} \wedge \Omega_{b}^{k}=0 \tag{36}
\end{equation*}
$$

From equation [(35)] one finds

$$
\frac{1}{l_{o}} \Omega_{c}^{k} \wedge \omega_{k}^{c} \wedge \omega_{j}^{a}-\Omega_{b}^{i} \wedge \omega_{j}^{b} \wedge \omega_{i}^{a}=0
$$

While from equation [(36)] one has

$$
\frac{1}{k_{o}} \Omega_{c}^{k} \wedge \omega_{k}^{c} \wedge \omega_{j}^{a}-\Omega_{b}^{k} \wedge \omega_{k}^{a} \wedge \omega_{j}^{b}=0
$$

Combining the two equations gives

$$
\left(k_{o}+l_{o}\right) \Omega_{b}^{k} \wedge \omega_{k}^{a} \wedge \omega_{j}^{b}=0
$$

which substituted in equation [(35)] gives

$$
\Omega_{b}^{i} \wedge \omega_{j}^{b}=0
$$

and in equation [(36)]

$$
\omega_{k}^{a} \wedge \Omega_{b}^{k}=0
$$

Or in terms of the components we find the two equations:

$$
K_{b c d}^{i k l} \delta_{m}^{j}+K_{d b c}^{i j k} \delta_{m}^{l}+K_{c d b}^{i l j} \delta_{m}^{k}=0
$$

and

$$
K_{b c d}^{i k l} \delta_{e}^{a}+K_{b d e}^{k l i} \delta_{c}^{a}+K_{b e c}^{l i k} \delta_{d}^{a}=0
$$

In case $l_{o} \geq 3$, let l be different from k and j. We find by taking $m=l$ that $K_{d b c}^{i j k}=0$. In case $k_{o} \geq 3$, let c be different from e and d. One finds the same result by taking $a=c$.
The special case $k_{o}=2$ and $l_{o}=2$ is easily proven by consideration of the different cases $k=j=l, k=l \neq j, e=c=d$ and $e=c \neq d$.

Proposition 3.8 Let P with $k_{o} \geq 3, l_{o} \geq 3$ and ω be as above. Then

$$
\Omega_{j}^{i}=0 \quad \text { iff } \quad \Omega_{b}^{a}=0
$$

Proof
From the Bianchi identities $[(24,(1))]$ we find with $\Omega_{j}^{i}=0$

$$
\Omega_{b}^{a} \wedge \omega_{j}^{b}=0
$$

In terms of the components this equation is

$$
K_{d c b}^{a l m} \delta_{j}^{k}+K_{b d c}^{a k l} \delta_{j}^{m}+K_{c b d}^{a m k} \delta_{j}^{l}=0
$$

Let m be different from k and l. Taking j equal to m yields $K_{b d c}^{a k l}=0$.
Conversally, the condition $\Omega_{b}^{a}=0$ implies $\Omega_{j}^{i}=0$ by an analogous argument using the Bianchi equations $[(24,(1))]$.

This proves the following theorem.
Theorem 3.2 Let P with $k_{o} \geq 3, l_{o} \geq 3$ and ω as above. The bundle P is locally flat iff $\Omega_{j}^{i}=0$ or $\Omega_{b}^{a}=0$.
Local flatness of P means vanishing of the structure functions [2].

4 The Ehresmann connection

A. Second order frames

Let M be a manifold of dimension m_{o} and f a diffeomorphism of an neighborhood of 0 in $\mathbb{R}^{m_{o}}$ onto an open neighborhood of M. If f is a local diffeomorphism then the r-jet $j_{0}^{r}(f)$ is an r-frame at $x=f(0)$. The set of r-frames of M will be denoted by $F^{r}(M)$, while the set of r-frames at $f(0)$ forms a group $G^{r}\left(m_{o}\right)$ with multiplication defined by the composition of jets:

$$
j_{0}^{r}\left(g_{1}\right) \cdot j_{0}^{r}\left(g_{2}\right)=j_{0}^{r}\left(g_{1} \circ g_{2}\right)
$$

The group $G^{r}\left(m_{o}\right)$ acts on $F^{r}(M)$ on the right:

$$
\begin{equation*}
j_{0}^{r}(f) \cdot j_{0}^{r}(g)=j_{0}^{r}(f \circ g) \tag{37}
\end{equation*}
$$

The Lie algebra of $G^{r}\left(m_{o}\right)$ will be denoted by $g^{r}\left(m_{o}\right)$. We mainly will be interested in the bundle of 2 -frames on M. Let $\left(x^{\alpha}\right)$ be some local coordinates on M and \bar{x}^{α} the natural coordinates on $\mathbb{R}^{m_{o}}$. A 2-frame u then is given by $u=j_{0}^{2}(f)$.
From

$$
\begin{equation*}
f(\bar{x})=x^{\alpha} e_{\alpha}+u_{\beta}^{\alpha} \bar{x}^{\beta} e_{\alpha}+\frac{1}{2} u_{\beta \gamma}^{\alpha} \bar{x}^{\beta} \bar{x}^{\gamma} e_{\alpha}, \tag{38}
\end{equation*}
$$

we get a set of local coordinates $\left(x^{\alpha}, u_{\beta}^{\alpha}, u_{\beta \gamma}^{\alpha}\right)$ on $F^{2}(M)$.
In a similar way we may use $\left(s_{\beta}^{\alpha}, s_{\beta \gamma}^{\alpha}\right)$ as coordinates on $G^{2}\left(m_{o}\right)$. The multiplication in $G^{2}\left(m_{o}\right)$ is given by

$$
\begin{equation*}
\left(\bar{s}_{\beta}^{\alpha}, \bar{s}_{\beta \gamma}^{\alpha}\right) \cdot\left(s_{\beta}^{\alpha}, s_{\beta \gamma}^{\alpha}\right)=\left(\bar{s}_{\sigma}^{\alpha} s_{\beta}^{\sigma}, \bar{s}_{\sigma}^{\alpha} s_{\beta \gamma}^{\sigma}+\bar{s}_{\sigma \rho}^{\alpha} s_{\beta}^{\sigma} s_{\gamma}^{\rho}\right), \tag{39}
\end{equation*}
$$

while the action of $G^{2}\left(m_{o}\right)$ on $F^{2}(M)$ is given by

$$
\begin{equation*}
\left(x^{\alpha}, u_{\beta}^{\alpha}, u_{\beta \gamma}^{\alpha}\right) \cdot\left(s_{\beta}^{\alpha}, s_{\beta \gamma}^{\alpha}\right)=\left(x^{\alpha}, u_{\sigma}^{\alpha} s_{\beta}^{\sigma}, u_{\sigma}^{\alpha} s_{\beta \gamma}^{\sigma}+u_{\sigma \rho}^{\alpha} s_{\beta}^{\sigma} s_{\gamma}^{\rho}\right) . \tag{40}
\end{equation*}
$$

Let

$$
\left(e_{\alpha}=\frac{\partial}{\partial \bar{x}^{\alpha}}, e_{\beta}^{\alpha}=\frac{\partial}{\partial \bar{x}^{\alpha}} \otimes d \bar{x}^{\beta}\right)
$$

be a basis for the Lie algebra of affine transformations on $\mathbb{R}^{m_{o}}$. The canonical one form θ on $F^{2}(M)$, which we write as

$$
\theta=\theta^{\alpha} e_{\alpha}+\theta_{\beta}^{\alpha} e_{\alpha}^{\beta}
$$

is given in local coordinates by (with v_{β}^{α} is the inverse matrix of u_{β}^{α}) [4]:

$$
\begin{gather*}
\theta^{\alpha}=v_{\beta}^{\alpha} d x^{\beta}, \tag{41}\\
\theta_{\beta}^{\alpha}=v_{\gamma}^{\alpha} d u_{\beta}^{\gamma}-v_{\gamma}^{\alpha} u_{\rho \beta}^{\gamma} v_{\sigma}^{\rho} d x^{\sigma} . \tag{42}
\end{gather*}
$$

Because the group $G^{2}\left(m_{o}\right)$ acts on $F^{2}(M)$ on the right, with each $A \in g^{2}\left(m_{o}\right)$ corresponds a fundamental vectorfield $A^{\star} \in \mathcal{X}\left(F^{2}(M)\right.$. Let $\pi_{1}^{2}: g^{2}\left(m_{o}\right) \rightarrow g^{1}\left(m_{o}\right)$, we have the following proposition [3] :

Proposition 4.1

(1) $\theta\left(A^{\star}\right)=\pi_{1}^{2}(A)$ for $A \in g^{2}\left(m_{o}\right)$
(2) $R_{a}^{\star} \theta=a d\left(a^{-1}\right) \theta, a \in G^{2}\left(m_{o}\right)$.

The canonical form satisfies the structure equation [4] :

$$
\begin{equation*}
d \theta^{\alpha}=-\theta_{\beta}^{\alpha} \wedge \theta^{\beta} \tag{43}
\end{equation*}
$$

B. The Grassmannian bundle $G r\left(k_{o}, l_{o}\right)(M)$

We will now define a subbundle of $F^{2}(M)$ which is isomorphic with the bundle P. In this section we use the identification $\mathbb{R}^{k_{o} \times l_{o}} \stackrel{\varsigma}{\leftrightharpoons} \mathbb{R}^{m_{o}}$.

Proposition 4.2 The embedding $H \rightarrow G^{2}\left(m_{o}\right), m_{o}=k_{o} l_{o}$, defined by

$$
\left(\beta_{j}^{i}, \beta_{b}^{a}, \beta_{c}^{k}\right) \mapsto \begin{cases}s_{\beta}^{\alpha} & \stackrel{\varsigma}{=} \alpha_{j}^{i} \beta_{b}^{a} \tag{44}\\ s_{\beta \gamma}^{\alpha} & \stackrel{\varsigma}{=}-\left[\beta_{b}^{a} \alpha_{j}^{l} \gamma_{l c} \alpha_{k}^{i}+\beta_{c}^{a} \alpha_{k}^{l} \gamma_{l b} \alpha_{j}^{i}\right]\end{cases}
$$

with $\alpha=(a-1) l_{o}+j, \beta=(b-1) l_{o}+j, \gamma=(c-1) l_{o}+k$ and $\alpha_{j}^{i}={ }^{\tau} \beta^{-1 i}{ }_{j}, \gamma_{k c}=\beta_{c}^{k}$, is a group morphism. Let \tilde{H} designate image of the embedding in $G^{2}\left(m_{o}\right)$.

Proof
The multiplication in H yields

$$
\begin{equation*}
\left(\hat{\beta}_{j}^{i}, \hat{\beta}_{c}^{i}, \hat{\beta}_{b}^{a}\right) \cdot\left(\beta_{k}^{j}, \beta_{c}^{j}, \beta_{c}^{b}\right)=\left(\hat{\beta}_{j}^{i} \beta_{k}^{j}, \hat{\beta}_{j}^{i} \beta_{b}^{j}+\hat{\beta}_{c}^{i} \beta_{b}^{c}, \hat{\beta}_{b}^{a} \beta_{c}^{b}\right) . \tag{45}
\end{equation*}
$$

Let

$$
s_{\beta}^{\alpha}=\alpha_{j}^{i} \beta_{b}^{a}, \quad s_{\beta \gamma}^{\alpha}=-\left[\beta_{b}^{a} \alpha_{j}^{l} \gamma_{l c} \alpha_{k}^{i}+\beta_{c}^{a} \alpha_{k}^{l} \gamma_{l b} \alpha_{j}^{i}\right]
$$

and

$$
\hat{s}_{\beta}^{\alpha}=\hat{\alpha}_{j}^{i} \hat{\beta}_{b}^{a}, \quad \hat{s}_{\beta \gamma}^{\alpha}=-\left[\hat{\beta}_{b}^{a} \hat{\alpha}_{j}^{l} \hat{\gamma}_{l c} \hat{\alpha}_{k}^{i}+\hat{\beta}_{c}^{a} \alpha_{k}^{l} \hat{\gamma}_{l b} \hat{\alpha}_{j}^{i}\right] .
$$

We find for the multiplication

$$
\begin{gathered}
\left(\bar{s}_{\beta}^{\alpha}, \bar{s}_{\beta \gamma}^{\alpha}\right) \cdot\left(s_{\beta}^{\alpha}, s_{\beta \gamma}^{\alpha}\right)=\left(\hat{\alpha}_{j}^{i} \hat{\beta}_{b}^{a} \alpha_{k}^{j} \beta_{c}^{b}\right. \\
\left.-\hat{\alpha}_{j}^{i} \hat{\beta}_{b}^{a}\left[\beta_{d}^{b} \alpha_{m}^{l} \gamma_{l c} \alpha_{k}^{i}+\beta_{c}^{b} \alpha_{k}^{l} \gamma_{l d} \alpha_{m}^{j}\right]-\left[\hat{\beta}_{b}^{a} \hat{\alpha}_{j}^{l} \hat{\gamma}_{l e} \hat{\alpha}_{m}^{i}+\hat{\beta}_{e}^{a} \alpha_{m}^{l} \hat{\gamma}_{l b} \hat{\alpha}_{j}^{i}\right] \alpha_{m}^{j} \beta_{d}^{b} \alpha_{k}^{m} \beta_{c}^{e}\right),
\end{gathered}
$$

which proves the group morphism.

Definition 4.1 A Grassmannian structure, $\operatorname{Gr}\left(k_{o}, l_{o}\right)(M)$, on a manifold M is a subbundle of $F^{2}(M)$ with structure group \tilde{H}.

Proposition [(4.2)] together with some classical results in bundle theory [9] proves the following theorem.

Theorem 4.1 Let P be a H-bundle over M. Then there exists a $\operatorname{Gr}\left(k_{o}, l_{o}\right)(M)$, subbundle of $F^{2}(M)$, which is isomorphic to P.

Definition 4.2 $A\left(k_{o}, l_{o}\right)$-structure on a manifold, $B^{\left(k_{o}, l_{o}\right)}(M)$, is a subbundle of $F^{1}(M)$ with structure group G_{o}.

Theorem 4.2 Each Grassmannian structure, $\operatorname{Gr}\left(k_{o}, l_{o}\right)(M)$, on M is the prolongation of a $\left(k_{o}, l_{o}\right)$-structure. Moreover this structure has vanishing second prolongation.

Proof
Let $B^{\left(k_{o}, l_{o}\right)}(M)$ be any subbundle of $F^{1}(M)$ with structure group G_{o}. The first prolongation of $B^{\left(k_{o}, l_{o}\right)}(M)$ is a subbundle of $F^{2}(M)$ with structure group the semi direct product of G_{o} and the group of automorphisms of $V \simeq \mathbb{R}^{m_{o}}$ generated by the Lie algebra $\tilde{\boldsymbol{g}}^{(1)}$ [10]. Hence the first prolongation is a $\operatorname{Gr}\left(k_{o}, l_{o}\right)(M)$.

Let $\operatorname{Gr}\left(k_{o}, l_{o}\right)(M)$ be given and $\pi_{1}^{2}: F^{2}(M) \rightarrow F^{1}(M)$ the bundle projection. Then $\pi_{1}^{2}\left(G r\left(k_{o}, l_{o}\right)(M)\right.$ is a bundle $B^{\left(k_{o}, l_{o}\right)}(M)$ whose prolongation coïncides with $G r\left(k_{o}, l_{o}\right)(M)$ by the isomorphism of the structure groups. The second prolongation of a $B^{\left(k_{o}, l_{o}\right)}(M)$ vanishes identically [(2.1)].

We refer to S. Sternberg [10] for a detailled exposition of the relationship between connections on G structures and prolongations. In particular the set of adapted symmetric connections is parametrised by the first prolongation of the Lie algebra $\tilde{\boldsymbol{g}}^{(1)}$. To make this clear we first need the following lemma on symmetric affine connections.

Lemma 4.1 Let $\Gamma: M \rightarrow F^{2}(M) / G l\left(m_{o}\right)$ be an affine symmetric connection. Then there exists a canonical homomorphism $\tilde{\Gamma}: F^{1}(M) \rightarrow F^{2}(M)$ canonically associated with Γ.

Proof
For a proof we refer to [5]. In local coordinates the map Γ is given by

$$
\begin{equation*}
\tilde{\Gamma}: \bar{x}^{\alpha}=x^{\alpha} ; \quad \bar{u}_{\beta}^{\alpha}=u_{\beta}^{\alpha} ; \quad \bar{u}_{\beta \gamma}^{\alpha}=-u_{\beta}^{\sigma} \Gamma_{\sigma \rho}^{\alpha} u_{\gamma}^{\rho} . \tag{46}
\end{equation*}
$$

Remark that

$$
\begin{equation*}
\tilde{\Gamma}^{*} \theta_{\beta}^{\alpha}=v_{\gamma}^{\alpha}\left(d u_{\beta}^{\gamma}+\Gamma_{\rho \sigma}^{\gamma} u_{\beta}^{\sigma} d x^{\rho}\right) . \tag{47}
\end{equation*}
$$

Let $B^{\left(k_{o}, l_{o}\right)}(M)$ be a $\left(k_{o}, l_{o}\right)$ structure on M. An adapted affine symmetric connection on $B^{\left(k_{o}, l_{o}\right)}(M)$ is a map $\Gamma: M \rightarrow F^{2}(M) / G l\left(m_{o}\right)$ such that $\tilde{\Gamma}^{*} \theta_{\beta}^{\alpha}$ restricted to $B^{\left(k_{o}, l_{o}\right)}(M)$ is a connection form with values in \boldsymbol{g}^{0}. Let $\Phi\left(B^{\left(k_{o}, l_{o}\right)}\right)(M)$ be the set of adapted affine symmetric connection and denote the set of associated homomorphisms by $\tilde{\Phi}\left(B^{\left(k_{o}, l_{o}\right)}\right)(M)$.

In order to prove the next proposition we need some local expressions. Let $\left(\bar{x}^{a i} \stackrel{\varsigma}{=} \bar{x}^{\alpha}\right)$ be the coordinates on $\mathbb{R}^{m_{o}} \simeq \mathbb{R}^{k_{o} \times l_{o}}$. The Lie algebra of the second order formal vector fields \mathcal{L} on this space as given in [(19)] has the following basis

$$
\begin{equation*}
e_{a i}=\frac{\partial}{\partial \bar{x}^{a i}}, e_{j}^{i} \delta_{b}^{a}+e_{b}^{a} \delta_{j}^{i}=\delta_{b}^{a} \bar{x}^{c i} \frac{\partial}{\partial \bar{x}^{c j}}+\delta_{j}^{i} \bar{x}^{a k} \frac{\partial}{\partial \bar{x}^{b k}}, e^{a i}=\bar{x}^{a j} \bar{x}^{c i} \frac{\partial}{\partial \bar{x}^{c j}} . \tag{48}
\end{equation*}
$$

In terms of local coordinates on M and taking the identification ς directly into account, a 2-frame is given by

$$
\begin{equation*}
f(\bar{x})=\left[x^{\alpha}+u_{b j}^{\alpha} \bar{x}^{b j}+u_{b j c k}^{\alpha} \bar{x}^{b j} \bar{x}^{c k}\right] e_{\alpha} . \tag{49}
\end{equation*}
$$

Let σ be a local section of $F^{1}(M)$, then σ is given by the functions

$$
\begin{equation*}
\sigma:(x) \mapsto E_{b j}^{\alpha}(x)=\sigma^{*} u_{b j}^{\alpha} \tag{50}
\end{equation*}
$$

The fundamental form along σ becomes

$$
\begin{equation*}
\bar{\theta}^{a i}=\sigma^{*} \theta^{a i}=F_{\beta}^{a i}(x) d x^{\beta}, \tag{51}
\end{equation*}
$$

while the connection form with respect to a given $\tilde{\Gamma} \in \Phi\left(B^{\left(k_{o}, l_{o}\right)}(M)\right.$ is

$$
\begin{equation*}
\bar{\theta}_{b j}^{a i}=\sigma^{*} \theta_{b j}^{a i}=F_{\alpha}^{a i} d E_{b j}^{\alpha}+F_{\alpha}^{a i} \Gamma_{\rho \sigma}^{\alpha} E_{b j}^{\sigma} d x^{\rho} \tag{52}
\end{equation*}
$$

The form $\bar{\theta}_{b j}^{a i}$ satisfies the structure equation [(43)]

$$
d \bar{\theta}^{a i}=-\bar{\theta}_{b j}^{a i} \wedge \bar{\theta}^{b j}
$$

Let $\hat{\theta}_{b j}^{a i}$ be a second connection form with respect to a different morphism belonging to $\Phi\left(B^{\left(k_{o}, l_{o}\right)}(M)\right.$. This form satisfies the same equation [(43)]. Hence we find

$$
\begin{equation*}
0=\left(\bar{\theta}_{b j}^{a i}-\hat{\theta}_{b j}^{a i}\right) \wedge \hat{\theta}^{b j} \tag{53}
\end{equation*}
$$

The difference $\left(\bar{\theta}_{b j}^{a i}-\hat{\theta}_{b j}^{a i}\right)$ defines a morphism $V \rightarrow \boldsymbol{g}^{0} \subset V \otimes V^{*}$ at each $x \in M$, satisfying [(53)] and hence defines an element in $\boldsymbol{g}^{(1)}$. This implies that at $x \in M$:

$$
\begin{equation*}
\bar{\theta}_{b j}^{a i}-\hat{\theta}_{b j}^{a i}=u_{b k} \delta_{c}^{a} \delta_{j}^{i}+u_{c j} \delta_{b}^{a} \delta_{k}^{i} \tag{54}
\end{equation*}
$$

with $u_{a}^{i} \in M\left(l_{o}, k_{o}\right)$.
Proposition 4.3 Any two adapted affine symmetric connections on $B^{\left(k_{o}, l_{o}\right)}(M)$ are locally related by :

$$
\begin{equation*}
\Gamma_{\alpha \sigma}^{\prime \gamma}-\Gamma_{\alpha \sigma}^{\gamma}=2 u_{b k} E_{c j}^{\gamma} F_{(\alpha}^{c k} F_{\sigma)}^{b j} . \tag{55}
\end{equation*}
$$

with $u_{b k}$ an element of $M\left(l_{o}, k_{o}\right)$.

Proof
We know that any connection form on $B^{\left(k_{o}, l_{o}\right)}(M)$ takes values in \boldsymbol{g}^{0}. Hence

$$
\theta_{b j \alpha}^{a i}=\theta_{b \alpha}^{a} \delta_{j}^{i}+\theta_{j \alpha}^{i} \delta_{b}^{a} .
$$

We find along the section σ :

$$
\bar{\theta}_{b \alpha}^{a} E_{c k}^{\alpha} \delta_{j}^{i}+\bar{\theta}_{j \alpha}^{i} E_{c k}^{\alpha} \delta_{b}^{a}=F_{\gamma}^{a i}\left(\frac{\partial}{\partial x^{\alpha}} E_{b j}^{\gamma}\right) E_{c k}^{\alpha}+F_{\gamma}^{a i} \Gamma_{\alpha \sigma}^{\gamma} E_{c k}^{\alpha} E_{b j}^{\sigma} .
$$

From the theorem [(2.1)] and equation [(54)] it follows that for any two of such connection forms there exists an element $u_{b k}$ such that

$$
u_{b k} \delta_{c}^{a} \delta_{j}^{i}+u_{c j} \delta_{b}^{a} \delta_{k}^{i}=F_{\gamma}^{a i}\left(\Gamma_{\alpha \sigma}^{\prime \gamma}-\Gamma_{\alpha \sigma}^{\gamma}\right) E_{c k}^{\alpha} E_{b j}^{\sigma}
$$

Hence

$$
E_{a i}^{\gamma}\left[u_{b k} \delta_{c}^{a} \delta_{j}^{i}+u_{c j} \delta_{b}^{a} \delta_{k}^{i}\right] F_{\alpha}^{c k} F_{\sigma}^{b j}=\Gamma_{\alpha \sigma}^{\prime \gamma}-\Gamma_{\alpha \sigma}^{\gamma}
$$

Because the first prolongation $\tilde{\boldsymbol{g}}^{(1)}$ can be identified with $M\left(l_{o}, k_{o}\right)$ this describes the parametrisation of the set of adapted connections. This allows us to formulate the following theorem.

Theorem 4.3 Let $B^{\left(k_{o}, l_{o}\right)}(M)$ be a $\left(k_{o}, l_{o}\right)$-structure on M. The set

$$
\begin{equation*}
\left\{\tilde{\Gamma}\left(B^{(k, l)}(M)\right) \mid \tilde{\Gamma} \in \tilde{\Phi}\left(B^{(k, l)}\right)(M)\right\} \tag{56}
\end{equation*}
$$

forms a Grassmannian structure on M.

Consequences :

(1) Each $\operatorname{Gr}\left(k_{o}, l_{o}\right)(M)$ is locally determined by a section

$$
\tilde{\Gamma} o \sigma: M \rightarrow F^{2}(M)
$$

where $\tilde{\Gamma} \in \tilde{\Phi}\left(B^{\left(k_{o}, l_{o}\right)}\right)(M)$ and σ a section $M \rightarrow B^{\left(k_{o}, l_{o}\right)}(M)$.
(2) The set of $G r\left(k_{o}, l_{o}\right)(M)$ bundles is given by $F^{2}(M) / H$. Each local section $\tilde{\Gamma} o \sigma$ determines locally an element of $F^{2}(M) / H$.
(3) Each $\operatorname{Gr}\left(k_{o}, l_{o}\right)(M)$ is equivalent with a $B^{\left(k_{o}, l_{o}\right)}(M)$ together with its set of adapted connections.

As alternative formulation of former theorem we have :
Theorem 4.4 Each $\operatorname{Gr}\left(k_{o}, l_{o}\right)(M)$ is locally uniquely defined by a section $\sigma: M \rightarrow$ $F^{1}(M)$ and an identification $\mathbb{R}^{m_{o}} \stackrel{\varsigma}{\subseteq} \mathbb{R}^{k_{o} l_{o}}$.

C. The normal Grassmannian connection coefficients

We will now investigate the coefficients of a normal Grassmannian connection in terms of an adapted frame and give an expression of the normal Grassmannian curvature tensor. Let $\operatorname{Gr}\left(k_{o}, l_{o}\right)(M)$ be a Grassmannian structure defined as a subbundle of $F^{2}(M)$. Let $\theta^{\alpha}, \theta_{\beta}^{\alpha}$ be the fundamental and the connection form on $G r\left(k_{o}, l_{o}\right)(M)$. Because of the identification $\mathbb{R}^{m_{o}} \stackrel{\varsigma}{=} \mathbb{R}^{k_{o} \times l_{o}}$ we write these forms as $\left(\theta^{a i}, \theta_{j}^{i}, \theta_{b}^{a}\right)$ with $k_{o} \theta_{i}^{i}-l_{o} \theta_{a}^{a}=0$ in order to fix their uniqueness in the decomposition. We then define on $\operatorname{Gr}\left(k_{o}, l_{o}\right)(M)$

$$
\begin{equation*}
\omega_{i}^{a}=\theta^{a i} ; \omega_{j}^{i}=-{ }^{\tau} \theta_{j}^{i}+\frac{1}{l_{o}}{ }^{\tau} \theta_{k}^{k} \delta_{j}^{i} ; \omega_{b}^{a}=\theta_{b}^{a}-\frac{1}{k_{o}} \theta_{c}^{c} \delta_{b}^{a} ; \omega_{*}=-\frac{1}{l_{o}} \theta_{i}^{i}-\frac{1}{k_{o}} \theta_{a}^{a} . \tag{57}
\end{equation*}
$$

As a consequence of theorem [(3.1)] there exists a unique normal connection form $\omega=\left(\omega_{i}^{a}, \omega_{j}^{i}, \omega_{b}^{a}, \omega_{*}, \omega_{a}^{i}\right)$ on $\operatorname{Gr}\left(k_{o}, l_{o}\right)(M)$.

Theorem 4.5 Let M be a manifold equipped with a $\left(k_{o}, l_{o}\right)$ structure $B^{\left(k_{o}, l_{o}\right)}(M)$ and $\mathcal{U} \subset M$ an open subset carrying an adapted coframe $F_{i \alpha}^{a} d x^{\alpha}$. Let further $G r\left(k_{o}, l_{o}\right)(M)$ be the Grassmannian structure on M determined by $B^{\left(k_{o}, l_{o}\right)}(M)$ and

$$
\omega=\left(\omega_{i}^{a}, \omega_{j}^{i}, \omega_{b}^{a}, \omega_{*}, \omega_{a}^{i}\right)
$$

the normal Cartan connection.
Then there exists a unique local section $\nu: \mathcal{U} \rightarrow G r\left(k_{o}, l_{o}\right)(M)$ determined by the conditions

$$
\begin{equation*}
\nu^{*} \omega_{i \alpha}^{a} d x^{\alpha}=F_{i \alpha}^{a} d x^{\alpha}, \quad \nu^{*} \omega_{*}=0 \tag{58}
\end{equation*}
$$

Proof
Any section ν may be decomposed into a section σ of $B^{\left(k_{o}, l_{o}\right)}(M)$ and a section $\vartheta: B^{\left(k_{o}, l_{o}\right)}(M) \rightarrow G r\left(k_{o}, l_{o}\right)(M)$. The requirement $\nu^{*} \omega_{i \alpha}^{a} d x^{\alpha}=F_{i \alpha}^{a} d x^{\alpha}$ implies $\sigma^{*} \omega_{i \alpha}^{a} d x^{\alpha}=F_{i \alpha}^{a} d x^{\alpha}$, which determines the section σ. Let $\tilde{\Gamma}$ be a morphism $F^{1}(M) \rightarrow$ $F^{2}(M)$ defined by an adapted symmetric connection. Using proposition [(4.3)] and expression [(48)] the map ϑ can be written as

$$
u_{\beta \gamma}^{\alpha}=-u_{\beta}^{\sigma}\left[\Gamma_{\sigma \rho}^{\alpha}+2 u_{b k} u_{c j}^{\alpha} v_{(\sigma}^{c k} v_{\rho)}^{b j}\right] u_{\gamma}^{\rho},
$$

with $u_{b k}$ a function on \mathcal{U}. Or also

$$
u_{b j a i}^{\alpha}=-E_{b j}^{\sigma}\left[\Gamma_{\sigma \rho}^{\alpha}+2 u_{b k} E_{c j}^{\alpha} F_{(\sigma}^{c k} F_{\rho)}^{b j}\right] E_{a i}^{\rho},
$$

with $E_{a i}^{\alpha}$ the local frame dual to the coframe $F_{\alpha}^{a i}$.
We remark that $\theta_{\alpha}^{\alpha}=-\frac{1}{k_{o} l_{o}} \omega_{*}$. The calculation of $(\vartheta \circ \sigma)^{*} \theta_{\alpha}^{\alpha}=0$ yields, with the use of expression [(42)], the equation

$$
F_{\gamma}^{a i} d E_{a i}^{\gamma}+\Gamma_{\rho \gamma}^{\gamma} d x^{\rho}+2 u_{b k} E_{c j}^{\beta} F_{(\rho}^{c k} F_{\beta)}^{b j} d x^{\rho}=0
$$

or

$$
u_{c k} F_{\rho}^{c k} d x^{\rho}=-\frac{1}{2}\left[F_{\gamma}^{a i} d E_{a i}^{\gamma}+\Gamma_{\rho \gamma}^{\gamma} d x^{\rho}\right] .
$$

The unicity follows from the same calculations. Any two morphisms of $B^{\left(k_{o}, l_{o}\right)}(M)$ into $F^{2}(M)$ indeed are, as a consequence of proposition [(4.3)], defined by affine connections on $B^{\left(k_{o}, l_{o}\right)}(M)$ which are related by

$$
\Gamma_{\alpha \sigma}^{\prime \gamma}-\Gamma_{\alpha \sigma}^{\gamma}=2 u_{b k} E_{c j}^{\gamma} F_{(\alpha}^{c k} F_{\sigma)}^{b j} .
$$

A simple substitution then yields the unicity.

The theorem allows us to introduce the normal Grassmannian connection coefficients. We set

$$
\begin{equation*}
\sigma^{*} \omega_{j}^{i}=\Pi_{j \alpha}^{i} d x^{\alpha}, \quad \sigma^{*} \omega_{b}^{a}=\Pi_{b \alpha}^{a} d x^{\alpha}, \quad \sigma^{*} \omega_{a}^{i}=\Pi_{a \alpha}^{i} d x^{\alpha} . \tag{59}
\end{equation*}
$$

Dual to the coframe $F_{i \alpha}^{a} d x^{\alpha}$ we define the frame $E_{a}^{i \alpha} \frac{\partial}{\partial x^{\alpha}}$ by the conditions

$$
\begin{equation*}
F_{i \alpha}^{a} E_{b}^{j \alpha}=\delta_{b}^{a} \delta_{i}^{j} \tag{60}
\end{equation*}
$$

From equation $[(22)(5)]$ we find

$$
\sigma^{*} \omega_{i}^{a} \wedge \sigma^{*} \omega_{a}^{i}=0
$$

or

$$
F_{i \alpha}^{a} \Pi_{a \beta}^{i}-F_{i \beta}^{a} \Pi_{a \alpha}^{i}=0
$$

Define $\Pi_{a \beta}^{i} E_{c}^{k \beta}=\Pi_{a c}^{i k}$. The former equation becomes

$$
\begin{equation*}
\Pi_{c d}^{k l}-\Pi_{d c}^{l k}=0 \tag{61}
\end{equation*}
$$

Let

$$
\begin{equation*}
L_{j}^{i}=d \omega_{j}^{i}+\omega_{k}^{i} \wedge \omega_{j}^{k} \tag{62}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{b}^{a}=d \omega_{b}^{a}+\omega_{c}^{a} \wedge \omega_{b}^{c} \tag{63}
\end{equation*}
$$

The equations [(22)(2) and (3)] become

$$
\begin{align*}
K_{j \alpha \beta}^{i} & =L_{j \alpha \beta}^{i}+\frac{1}{2}\left(\Pi_{b \alpha}^{i} F_{j \beta}^{b}-\Pi_{b \beta}^{i} F_{j \alpha}^{b}\right) \\
K_{b \alpha \beta}^{a} & =L_{b \alpha \beta}^{a}+\frac{1}{2}\left(\Pi_{i \alpha}^{a} F_{b \beta}^{i}-\Pi_{i \beta}^{a} F_{b \alpha}^{i}\right) . \tag{64}
\end{align*}
$$

Using the notations

$$
\begin{equation*}
L_{l \alpha \beta}^{i} E_{c}^{k \alpha} E_{b}^{j \beta}=L_{l c b}^{i k j} \tag{65}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{d \alpha \beta}^{a} E_{c}^{k \alpha} E_{b}^{j \beta}=L_{d c b}^{a k j} \tag{66}
\end{equation*}
$$

we find

$$
\begin{align*}
K_{j c d}^{i k l} & =L_{j c d}^{i k l}+\frac{1}{2}\left(\Pi_{b c}^{i k} \delta_{d}^{b} \delta_{j}^{l}-\Pi_{b d}^{i l} \delta_{c}^{b} \delta_{j}^{k}\right) \\
K_{b c d}^{a k l} & =L_{b c d}^{a k l}+\frac{1}{2}\left(\Pi_{b d}^{m l} \delta_{c}^{a} \delta_{m}^{k}-\Pi_{b c}^{m k} \delta_{d}^{a} \delta_{m}^{l}\right) \tag{67}
\end{align*}
$$

From the condition

$$
K_{l b a}^{i l k}-K_{a d b}^{d k i}=0
$$

we obtain

$$
L_{l b a}^{i l k}-L_{a d b}^{d k i}-\frac{k_{o}+l_{o}}{2} \Pi_{a b}^{k i}+\Pi_{a b}^{i k}=0
$$

This gives

$$
\begin{equation*}
\Pi_{a b}^{k i}=\frac{2}{\left(k_{o}+l_{o}\right)^{2}-4}\left[\left(k_{o}+l_{o}\right)\left(L_{l b a}^{i l k}-L_{a d b}^{d k i}\right)+2\left(L_{l b a}^{k l i}-L_{a d b}^{d i k}\right)\right] . \tag{68}
\end{equation*}
$$

Let M be equipped with an adapted symmetric affine connection on $B^{\left(k_{o}, l_{o}\right)}(M)$. We define the coefficients $\left(\gamma_{l c}^{j k}, \gamma_{b c}^{d k}\right)$ by

$$
\nabla_{E_{a}^{i}} E_{b}^{j}=\gamma_{b a}^{d i} E_{d}^{j}+\gamma_{l a}^{j i} E_{b}^{l},
$$

together with $k_{o} \gamma_{i c}^{i k}-l_{o} \gamma_{d c}^{d k}=0$.
A Grassmannian related covariant derivation is defined as

$$
\begin{align*}
\tilde{\nabla}_{E_{a}^{i}} E_{b}^{j} & =\left[\left(\gamma_{b a}^{d i}+u_{b}^{i} \delta_{a}^{d}\right) \delta_{l}^{j}\right. \\
& \left.+\left(\gamma_{l a}^{j i}+u_{a}^{j} \delta_{l}^{i}\right) \delta_{b}^{d}\right] E_{d}^{l} \tag{69}
\end{align*}
$$

Or

$$
\begin{equation*}
\tilde{\nabla}_{E_{a}^{i}} E_{b}^{j}=\nabla_{E_{a}^{i}} E_{b}^{j}+u_{b}^{i} E_{a}^{j}+u_{a}^{j} E_{b}^{i} \tag{70}
\end{equation*}
$$

Using this expression we find
Proposition 4.4 Let $X, Y \in \mathcal{X}(M), \nabla$ and $\tilde{\nabla}$ be two adapted connections on the bundle $B^{\left(k_{o}, l_{o}\right)}(M)$. Let further $\sigma: \mathcal{U} \rightarrow B^{(k, l)}(M)$ be a local section and $\bar{\sigma}(x)$ the corresponding identification of the tangent space $T_{x}(M)$ at $x \in \mathcal{U}$ with $M\left(k_{o}, l_{o}\right)$. Then there exists a map $\mu: \mathcal{U} \rightarrow M\left(l_{o}, k_{o}\right)$ such that

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\bar{\sigma}^{-1}[(\mu \cdot \bar{\sigma}(X)) \cdot \bar{\sigma}(Y)+(\mu \cdot \bar{\sigma}(Y)) \cdot \bar{\sigma}(X)] \tag{71}
\end{equation*}
$$

Because $\mu \in M\left(l_{o}, k_{o}\right)$ and $\bar{\sigma} \in M\left(k_{o}, l_{o}\right)$ the composition $(\mu \cdot \bar{\sigma}(X)(x))$ is an element of $M\left(l_{o}, l_{o}\right)$ which acts on $\bar{\sigma}(Y)(x)$ by composition, giving thus an element of $M\left(k_{o}, l_{o}\right)$.

Remark We can define the (2, 1)-tensorfield

$$
\tilde{\mu}=\bar{\sigma}^{-1} \cdot \mu \cdot \bar{\sigma} .
$$

The Grassmannian relationship of two symmetric affine adapted connections is then given by

$$
\hat{\nabla}_{X} Y=\nabla_{X} Y+\tilde{\mu}(X)(Y)+\tilde{\mu}(Y)(X)
$$

We define the splitting of the coefficients γ into the trace free parts and the trace part as $\left(\bar{\gamma}_{b c}^{a k}, \bar{\gamma}_{j c}^{i k}, \bar{\gamma}_{* c}^{k}\right)$, with $\left(\bar{\gamma}_{a c}^{a k}=\bar{\gamma}_{i c}^{i k}=0\right)$. A Grassmannian related covariant derivation is then given by

$$
\begin{align*}
\tilde{\nabla}_{E_{a}^{i}} E_{b}^{j} & =\left[\left(\bar{\gamma}_{b a}^{d i}+u_{b}^{i} \delta_{a}^{d}-\frac{1}{k_{o}} u_{a}^{i} \delta_{b}^{d}\right) \delta_{l}^{j}\right. \\
& +\left(\bar{\gamma}_{l a}^{j i}+u_{a}^{j} \delta_{l}^{i}-\frac{1}{l_{o}} u_{a}^{i} \delta_{l}^{j}\right) \delta_{b}^{d} \\
& \left.+\left(\bar{\gamma}_{* a}^{i}+\frac{k_{o}+l_{o}}{k_{o} l_{o}} u_{a}^{i}\right) \delta_{b}^{d} \delta_{l}^{j}\right] E_{d}^{l} \tag{72}
\end{align*}
$$

with

$$
\begin{equation*}
\bar{\gamma}_{* a}^{i}=\frac{1}{k_{o} l_{o}}\left(k_{o} \gamma_{j a}^{j i}+l_{o} \gamma_{c a}^{c i}\right) \tag{73}
\end{equation*}
$$

The normal Cartan connection is defined by the requirement

$$
u_{a}^{i}=-\frac{1}{k_{o}+l_{o}}\left(k_{o} \gamma_{j a}^{j i}+l_{o} \gamma_{c a}^{c i}\right)
$$

and the coefficients of this connection are

$$
\begin{align*}
\Pi_{l a}^{j i} & =-\bar{\gamma}_{l a}^{j i}-u_{a}^{j} \delta_{i}^{j}+\frac{1}{l_{o}} u_{a}^{i} \delta_{l}^{j} \\
\Pi_{b a}^{d i} & =\bar{\gamma}_{b a}^{d i}+u_{b}^{i} \delta_{a}^{d}-\frac{1}{k_{o}} u_{a}^{i} \delta_{b}^{d} . \tag{74}
\end{align*}
$$

We now are able to investigate the Grassmannian curvature tensor. Because the bundle $G r\left(k_{o}, l_{o}\right)(M)$ is a subbundle of $F^{2}(M)$ the restriction of the homomorphism $\pi_{1}^{2}: F^{2}(M) \rightarrow F^{1}(M)$ to $G r\left(k_{o}, l_{o}\right)(M)$ is the homomorphism :

$$
\begin{equation*}
\eta: G r\left(k_{o}, l_{o}\right)(M) \rightarrow B^{\left(k_{o}, l_{o}\right)}(M) \tag{75}
\end{equation*}
$$

The fibres of η are isomorphic to the kernel \mathcal{M}^{*} of the homomorphism $H \rightarrow G_{o}$. The following theorem proves that the curvature forms Ω_{j}^{i} and Ω_{b}^{a} are defined on the bundle $B^{(k, l)}(M) \subset F^{1}(M)$.

Proposition 4.5 Let $\operatorname{Gr}\left(k_{o}, l_{o}\right)(M)$ be a Grassmannian structure equipped with a normal Grassmannian connection. Then the curvature forms Ω_{j}^{i} and Ω_{b}^{a} satisfy the following conditions. Let A^{*} be a fundamental vectorfield with $A \in \boldsymbol{g}^{1}$. Then
(1)

$$
\begin{equation*}
\mathcal{L}_{A^{*}}\left(\Omega_{j}^{i}\right)=\mathcal{L}_{A^{*}}\left(\Omega_{b}^{a}\right)=0 . \tag{76}
\end{equation*}
$$

(2) The tensor

$$
\begin{equation*}
K_{\beta \gamma \sigma}^{\alpha}=K_{j \gamma \sigma}^{i} F_{i \beta}^{a} E_{a}^{j \alpha}+K_{a \gamma \sigma}^{b} F_{i \beta}^{a} E_{b}^{i \alpha} \tag{77}
\end{equation*}
$$

is a (1,3)-tensorfield on M, which we call the Grassmannian curvature tensor.

Proof

The relations (1) are a direct consequence of the equations [(36)], while (2) is a consequence of the fact that $B^{\left(k_{o}, l_{o}\right)}(M)$ is a subbundle of $F^{1}(M)$ together with proposition [(3.1)]. Writing the curvature forms as $\Omega_{j}^{i}=K_{j \alpha \beta}^{i} d x^{\alpha} \otimes d x^{\beta}$ and $\Omega_{b \alpha \beta}^{a} d x^{\alpha} \otimes d x^{\beta}$, $E_{b}^{j \alpha}$, the Grassmannian curvature tensorfield is defined as

$$
K_{\beta \gamma \sigma}^{\alpha}=\left[K_{j \gamma \sigma}^{i} \delta_{a}^{b}+K_{a \gamma \sigma}^{b} \delta_{j}^{i}\right] F_{i \beta}^{a} E_{b}^{j \alpha}
$$

which is equivalent with [(77)].
We call a Grassmannian structure on M locally flat if the structure has vanishing structure constants, which means that the structure is locally isomorphic with a flat structure [2]. The flat structure here means the structure of a Grassmannian. As a consequence of proposition $[(3.7)]$ and because the dimension of the manifold admitting a Grassmannian structure is larger than 3, we have

Theorem 4.6 A Grassmannian structure on M is locally flat iff the Grassmannian curvature equals zero.

References

[1] Guillemin V.W., Sternberg S., 'An Algebraic Model of Transitive Differential Geometry', Bull. Am. Math. Soc., 70, 1964, 16-47
[2] Guillemin V.W.,' The integrability problem for G-structures', Trans. Am. Math. Soc., 116, 4, 1965, 544-560
[3] Kobayashi S., Nagano T., 'On Projective Connections', J. Math. and Mech., 13, 2, 1964, 215-235
[4] Kobayashi S., 'Canonical Forms on Framebundles of higher order contact', Proc. Symp. Pure Math., Vol. 3., Amer. Math. Soc., 1961, 186-193
[5] Kobayashi S., Nomizu K., 'Foundations of Differential Geometry, Vol I, Interscience Publ., 1963, J. Wiley \& Sons, New York - London
[6] Manin Y.I., 'Gauge Field Theory', Springer Verlag, Berlin New York, 1988
[7] Matsushima Y., 'Sur les algè bres de Lie lineaires semi-involutives', Colloque de topologie de Strassbourg (1954)
[8] Singer I.M., Sternberg S, 'On the infinite groups of Lie and Cartan', Journal d'Analyse Math., XV, 1965, 306-445
[9] Steenrod N., 'The Topology of Fibrebundles', Princeton Univ. Press, 1951, Princeton
[10] Sternberg S., 'Lectures on Differential Geometry', Prentice Hall, 1965, N.Y.
[11] Tanaka N., 'Projective connections and projective transfomations, Nagoya Math. J., 12, 1957, 1-24

P.F. Dhooghe
DEPARTMENT OF MATHEMATICS, KULeuven,
Celestijnenlaan, 200B,
B 3001 LEUVEN, BELGIUM
Email : paul dhooghe@mtk@wisk.kul.ac.be

[^0]: Received by the editors November 1993
 Communicated by A. Warrinnier
 AMS Mathematics Subject Classification : 53C15, 53B15, 53C10
 Keywords : Grassmannian structures, Non linear connections, Higher order structures, Second order connections.

