Grassmannian structures on manifolds

P.F. Dhooghe

Abstract

Grassmannian structures on manifolds are introduced as subbundles of the second order framebundle. The structure group is the isotropy group of a Grassmannian. It is shown that such a structure is the prolongation of a subbundle of the first order framebundle. A canonical normal connection is constructed from a Cartan connection on the bundle and a Grassmannian curvature tensor for the structure is derived.

1 Introduction

The theory of Cartan connections has lead S. Kobayashi and T. Nagano, in 1963, to present a rigourous construction of projective connections [3]. Their construction, relating the work of Eisenhart, Veblen, Thomas a.o. to the work of E. Cartan, has a universal character which we intend to use in the construction of Grassmannianlike structures on manifolds. The principal aim is to generalise Grassmannians in a similar way. By doing so we very closely follow their construction of a Cartan connection on a principal bundle subjected to curvature conditions and the derivation of a normal connection on the manifold.

The action of the projective group $Pl(n_o)$ on a Grassmannian $G(l_o, n_o)$ of l_o planes in \mathbb{R}^{n_o} is induced from the natural action of $Gl(n_o)$ on \mathbb{R}^{n_o} . Let H be the isotropy group of this action at a fixed point e of $G(l_o, n_o)$. The generalisation will consist in the construction of a bundle P with structure group H and base manifold

Bull. Belg. Math. Soc. 1 (1994), 597-622

Received by the editors November 1993

Communicated by A. Warrinnier

AMS Mathematics Subject Classification : 53C15, 53B15, 53C10

Keywords : Grassmannian structures, Non linear connections, Higher order structures, Second order connections.

M of dimension $m_o = l_o k_o$ with $k_o = n_o - l_o$. The bundle P will be equipped with a Cartan connection with values in the Lie algebra of the projective group, which makes the bundle P completely parallelisable. We will show that such a connection exists and is unique if certain curvature conditions are imposed. The Cartan connection identifies the tangent space $T_x(M)$ for each $x \in M$ with the vectorspace $L(\mathbb{R}^{l_o}, \mathbb{R}^{k_o})$. Identifying $L(\mathbb{R}^{l_o}, \mathbb{R}^{k_o})$ with $V = \mathbb{R}^{m_o}$, the group Hacts on V to the first order as $G_o = Gl(l_o) \times {}^{\tau}Gl(k_o)^{-1}/\exp tI_{n_o}$ properly embedded in $Gl(m_o)$. Let $\tilde{\mathbf{g}}^0$ denote the Lie algebra of this group, which is seen as a subspace of $V \otimes V^*$. We prove that if $k_o \geq 2$ and $l_o \geq 2$, the Lie algebra \mathbf{h} of H, as subspace of $V \otimes V^*$, is the first prolongation of the Lie algebra $\tilde{\mathbf{g}}^0$. Moreover the second prolongation equals zero.

The action of H on V allows to define a homomorphism of P into the second order framebundle $F^2(M)$. The image, $Gr(k_o, l_o)(M)$, is called a Grassmannian structure on M. From the previous algebraic considerations it follows that a Grassmannian structure on a manifold is equivalent with a reduction of the framebundle $F^1(M)$ to a subbundle $B^{(k_o, l_o)}(M)$ with the structure group G_o . A Grassmannian connection from this point of view, is an equivalence class of symmetric affine connections, all of which are adapted to a subbundle of $F^1(M)$ with structure group G_o . The action of G_o in each fibre is defined by a local section $\sigma : x \in M \to F^1(M)(x)$ together with an identification of $T_x(M)$ with $M(k_o, l_o)$. This result explains in terms of G-structures the well known fact that the structure group of the tangent bundle on a Grassmannian, $G(l_o, n_o)$, reduces to $Gl(k_o) \times Gl(l_o)$ [6]. The consequences for the geometry and tensoralgebra are partly examined in the last paragraph, but will be studied in a future publication.

We remark that as a consequence of the algebraic structure the above defined structure is called Grassmannian if $k_o \ge 2$ and $l_o \ge 2$. Otherwise the structure is a projective structure. Hence the manifolds have dimension $m_o = k_o l_o$, with $k_o, l_o \ge 2$.

Let (\bar{x}^{α}) , $\alpha = 1, \dots, m_o$ be coordinates on \mathbb{R}^{m_o} , and (e_a^i) , $a = 1, \dots, k_o$; $i = 1, \dots, l_o$, the natural basis on $M(k_o, l_o)$. (x_i^a) are the corresponding coordinates on $M(k_o, l_o)$. We will identify both spaces by $\alpha = (a-1)l_o+i$. Let $\sigma : \mathcal{U} \subset M \to F^1(M)$ be a local section and $\bar{\sigma}$ be the associated map identifying the tangent space $T_x(M)$ $(x \in \mathcal{U})$ with $M(k_o, l_o)$. An adapted local frame with respect to some coordinates $(\mathcal{U}, (x^{\alpha}))$ is given as $\bar{\sigma}^{-1}(x)(e_a^i) = E_a^{i\alpha} \frac{\partial}{\partial x^{\alpha}}(x)$. If ∇ and $\tilde{\nabla}$ are two adapted symmetric linear connections on $B^{(k_o, l_o)}(M)$, then there exists a map $\mu : \mathcal{U} \to M(l_o, k_o)$ such that for $X, Y \in \mathcal{X}(M)$:

$$\tilde{\nabla}_X Y = \nabla_X Y + \bar{\sigma}^{-1}[(\mu \, \cdot \, \bar{\sigma}(X)) \, \cdot \, \bar{\sigma}(Y) + (\mu \, \cdot \, \bar{\sigma}(Y)) \, \cdot \, \bar{\sigma}(X)].$$

Because $\mu \in M(l_o, k_o)$ and $\bar{\sigma}(X)(x) \in M(k_o, l_o)$, for $X \in \mathcal{X}(\mathcal{U})$, the term $(\mu, \bar{\sigma}(X)(x))$, as composition of matices, is an element of $M(l_o, l_o)$ which acts on $\bar{\sigma}(Y)(x)$ giving thus an element of $M(k_o, l_o)$.

Analogous to the projective case we will construct a canonical normal Grassmannian connection and calculate the expression of the coefficients with respect to an adapted frame. The curvature of the Grassmannian structure is given by the forms Ω_j^i , Ω_b^a , Ω_a^i , with respect to a Lie algebra decomposition of **h**. We prove that if $l_o \geq 3$ or $k_o \geq 3$ the vanishing of Ω_i^i or Ω_b^a is necessary and sufficient for the local flatness of the bundle P. The two curvature forms Ω_j^i and Ω_b^a are basic forms on the quotient $\pi_1^2 : Gr(k_o, l_o)(M) \subset F^2(M) \to F^1(M)$ and hence determine the Grassmannian curvature tensor, whose local components are given by

$$K^{\alpha}_{\beta\gamma\sigma} = K^{i}_{j\gamma\sigma}F^{a}_{i\beta}E^{j\alpha}_{a} + K^{b}_{a\gamma\sigma}F^{a}_{i\beta}E^{i\alpha}_{b}$$

with $\Omega_j^i = K_{j\alpha\beta}^i dx^{\alpha} \otimes dx^{\beta}$ and $\Omega_{b\alpha\beta}^a dx^{\alpha} \otimes dx^{\beta}$. $E_b^{j\alpha}$ is an adapted frame and $F_{i\beta}^a$ the corresponding coframe. It follows that the vanishing of the Grassmannian curvature tensor is a necessary and sufficient condition for the local flatness of the Grassmannian structure for any $l_o \geq 2$ and $k_o \geq 2$.

We assume all manifolds to be connected, paracompact and of class C^{∞} . All maps are of class C^{∞} as well. $Gl(n_o)$ denotes the general linear group on \mathbb{R}^{n_o} and $gl(n_o)$ its Lie algebra. We will use the summation convention over repeated indices. The indices take values as follows : $\alpha, \beta, \dots = 1, \dots, m_o = k_o l_o$; $a, b, c \dots = 1, \dots, k_o$; $i, j, k, \dots = 1, \dots, l_o$. Cross references are indicated by [(.)] while references to the bibliography by [.].

2 Grassmannians

A. Projective Group Actions

Let $G(l_o, n_o)$ be the Grassmannian of the l_o -dimensional subspaces in \mathbb{R}^{n_o} . Dim $G(l_o, n_o) = l_o k_o$, $n_o = l_o + k_o$. Let S be a k_o -dimensional subspace of \mathbb{R}^{n_o} . An associated big cell $\mathcal{U}(S)$ to S in $G(l_o, n_o)$ is determined by all transversal subspaces to S of dimension l_o in \mathbb{R}^{n_o} . One observes that

$$G(l_o, n_o) = \bigcup_I \mathcal{U}(S_I)$$

where I is any subset of length k_o of $\{1, 2, \dots, n_o\}$ and S_I the subspace of dimension k_o spanned by the coordinates (x^I) in \mathbb{R}^{n_o} .

Let $(x^1 \cdots, x^{l_o}, x^{l_o+1}, \cdots, x^{n_o})$ be the natural coordinates on \mathbb{R}^{n_o} . For simplicity we will choose a rearrangement of the coordinates such that S is given by the condition $x^1 = x^2 = \cdots = x^{l_o} = 0$.

Let $M(n_o, l_o)$ be the space of $(n_o \times l_o)$ matrices $(n_o \text{ rows and } l_o \text{ columns})$. Any element may be considered as l_o linearly independent vectors in \mathbb{R}^{n_o} . Hence each $y \in M(n_o, l_o)$ determines an l_o -plane in \mathbb{R}^{n_o} . We get a natural projection

$$\pi : M(n_o, l_o) \to \mathcal{U}(S), \tag{1}$$

which is a principal fibration over $\mathcal{U}(S)$ with structure group $Gl(l_o)$. Representing the coordinate system on $M(n_o, l_o)$ by a matrix Z, the big cell $\mathcal{U}(S)$ is coordinatised as follows. If $Z \in M(n_o, l_o)$, we will write

$$Z = \left(\begin{array}{c} Z_0 \\ Z_1 \end{array}\right),$$

with Z_0 an $l_o \times l_o$ matrix and Z_1 an $k_o \times l_o$ matrix, $n_o = k_o + l_o$.

The coordinates are obtained by

$$\tilde{Z} = Z_1 \cdot Z_0^{-1},$$

where we assumed Z_0 to be of maximal rank. In terms of its elements we get

$$Z = \left(\begin{array}{c} z_j^i \\ z_j^a \end{array}\right),$$

 $i, j = 1, \dots, l_o$ and $a = 1, \dots, k_o$, to which we refer as the homogeneous coordinates. Denoting by w_i^i the inverse of z_i^i , we obtain

$$\tilde{Z} = (x_i^a) = (z_j^a w_i^j).$$

which are the local coordinates on the cell. In the sequel we will identify the cel with $M(k_o, l_o)$.

The action of the group $Gl(n_o)$ on \mathbb{R}^{n_o} induces a transitive action of $Pl(n_o)$ on $G(l_o, n_o)$. On a big cell the action of $Pl(n_o)$ is induced from the action of $Gl(n_o)$ on Z on the left. Let β be in $Gl(n_o)$. In matrix representation we write β as :

$$\beta = \begin{pmatrix} \beta_{00} & \beta_{01} \\ \beta_{10} & \beta_{11} \end{pmatrix}, \tag{2}$$

with $\beta_{00} \in M(l_o, l_o), \beta_{11} \in M(k_o, k_o), \beta_{10} \in M(k_o, l_o), \beta_{01} \in M(l_o, k_o).$

The local action of an open neighbourhood of the identity in the subset of $Gl(n_o)$ defined by det $\beta_{00} \neq 0$ on $M(k_o, l_o)$ is given in fractional form by

$$\phi_{\beta} : x \mapsto (\beta_{10} + \beta_{11} x)(\beta_{00} + \beta_{01} x)^{-1}$$
(3)

for $\beta \in Gl(n_o)$ as in [(2)] and $x \in M(k_o, l_o)$.

Because the elements of the center of $Gl(n_o)$ are in the kernel of ϕ_β this action induces an action of an open neighbourhood of the identity in $Pl(n_o)$. In terms of the coordinates and using the notation

$$\beta_{00} = (\beta_j^i), \ \beta_{01} = (\beta_a^i), \ \beta_{10} = (\beta_i^a), \ \beta_{11} = (\beta_b^a) \text{ and } \beta_{00}^{-1} = (\gamma_j^i),$$

we find the Taylor expression

$$\bar{x}_{l}^{a} = \beta_{k}^{a} \gamma_{l}^{k} + (\beta_{b}^{a} - \beta_{k}^{a} \gamma_{j}^{k} \beta_{b}^{j}) x_{m}^{b} \gamma_{l}^{m} -\beta_{c}^{a} x_{k}^{c} \gamma_{m}^{k} \beta_{b}^{m} x_{n}^{b} \gamma_{l}^{n} + \beta_{k}^{a} \gamma_{m}^{k} \beta_{c}^{m} x_{j}^{c} \gamma_{n}^{j} \beta_{e}^{n} x_{r}^{e} \gamma_{l}^{r} + \cdots$$

$$(4)$$

Consequences :

(a) The orbit of the origin of the coordinates in $M(k_o, l_o)$, is locally given by $(0) \mapsto \beta_{10}\beta_{00}^{-1}$.

(b) The isotropy group H at $0 \in M(l_o, k_o)$ is the group

$$H: \{\beta = \begin{pmatrix} \beta_{00} & \beta_{01} \\ 0 & \beta_{11} \end{pmatrix} / \exp t.\mathbf{I}_{n_o}\},\tag{5}$$

with $\beta_{00} \in Gl(l_o)$ and $\beta_{11} \in Gl(k_o)$. The subgroup H in Taylor form is given by

$$\bar{x}_j^a = \beta_b^a \gamma_j^m x_m^b - \frac{1}{2} [\beta_b^a \gamma_k^i \beta_c^k \gamma_j^l + \beta_c^a \gamma_k^l \beta_b^k \gamma_j^i] x_i^b x_l^c + \cdots.$$
(6)

B. The Maurer Cartan Equations

Let $(u_a^i, u_j^i, u_b^a, u_i^a)$, with $i, j = 1, \dots, l_o$, $a, b = 1, \dots, k_o$, be local coordinates at the identity on $Gl(n_o)$ according to the decomposition [(2)] and $(\bar{\omega}_a^i, \bar{\omega}_j^i, \bar{\omega}_b^a, \bar{\omega}_i^a)$ the left invariant forms coı̈nciding with $(du_a^i, du_j^i, du_b^a, du_i^a)$ at the identity. The Maurer Cartan equations are

 $\begin{array}{rcl} (1) & d\bar{\omega}_{j}^{a} & = & -\bar{\omega}_{k}^{a} \wedge \bar{\omega}_{j}^{k} - \bar{\omega}_{b}^{a} \wedge \bar{\omega}_{j}^{b} \\ (2) & d\bar{\omega}_{j}^{i} & = & -\bar{\omega}_{k}^{i} \wedge \bar{\omega}_{j}^{k} - \bar{\omega}_{b}^{i} \wedge \bar{\omega}_{j}^{b} \\ (3) & d\bar{\omega}_{b}^{a} & = & -\bar{\omega}_{k}^{a} \wedge \bar{\omega}_{b}^{k} - \bar{\omega}_{c}^{a} \wedge \bar{\omega}_{b}^{c} \\ (4) & d\bar{\omega}_{a}^{i} & = & -\bar{\omega}_{k}^{i} \wedge \bar{\omega}_{a}^{k} - \bar{\omega}_{b}^{i} \wedge \bar{\omega}_{a}^{b}. \end{array}$

Let $\bar{\omega}_1 = \bar{\omega}_i^i$ and $\bar{\omega}_2 = \bar{\omega}_a^a$. We define

$$\omega_{j}^{i} = \bar{\omega}_{j}^{i} - \frac{1}{l_{o}}\delta_{j}^{i}\bar{\omega}_{1}, \ \omega_{b}^{a} = \bar{\omega}_{b}^{a} - \frac{1}{k_{o}}\delta_{b}^{a}\bar{\omega}_{2}, \ \omega_{*} = \frac{1}{l_{o}}\bar{\omega}_{1} - \frac{1}{k_{o}}\bar{\omega}_{2}.$$
(7)

Passing to the quotient $Gl(n_o)/\exp t.I_{n_o}$ we find the Maurer Cartan equations on $Pl(n_o)$.

Proposition 2.1 The Maurer Cartan equations on $Pl(n_o)$ are

(1)
$$d\omega_{j}^{a} = -\omega_{k}^{a} \wedge \omega_{j}^{k} - \omega_{b}^{a} \wedge \omega_{j}^{b} - \omega_{i}^{a} \wedge \omega_{*}$$

(2) $d\omega_{j}^{i} = -\omega_{k}^{i} \wedge \omega_{j}^{k} - \omega_{b}^{i} \wedge \omega_{j}^{b} + \frac{1}{l} \delta_{j}^{i} \omega_{c}^{k} \wedge \omega_{k}^{c}$
(3) $d\omega_{b}^{a} = -\omega_{k}^{a} \wedge \omega_{b}^{k} - \omega_{c}^{a} \wedge \omega_{b}^{c} + \frac{1}{k} \delta_{b}^{a} \omega_{c}^{c} \wedge \omega_{c}^{k}$
(4) $d\omega_{a}^{i} = -\omega_{k}^{i} \wedge \omega_{a}^{k} - \omega_{b}^{i} \wedge \omega_{a}^{b} + \omega_{a}^{i} \wedge \omega_{*}$
(5) $d\omega_{*} = \frac{k_{o} + l_{o}}{k_{o} l_{o}} \omega_{i}^{a} \wedge \omega_{a}^{i}.$

Remark that $\omega_i^i = \omega_a^a = 0.$

The Lie algebra of $Pl(n_o)$, g, in this representation is found by taking the tangent space at the identity, W, to the submanifold in $Gl(n_o)$ defined by $(\det \beta_{00})^k (\det \beta_{11})^l$ = 1. The quotient of the algebra of left invariant vectorfields, originated from W, by the vectorfield exp $t.I_{n_o}$ determines the Lie algebra structure. The vectorspace for this Lie algebra is formed by the direct sum

$$\boldsymbol{g} = \boldsymbol{g}^{-1} \oplus \boldsymbol{g}^0 \oplus \boldsymbol{g}^1, \tag{9}$$

where

$$\begin{aligned}
\boldsymbol{g}^{-1} &= L(\mathbb{R}^{l_o}, \mathbb{R}^{k_o}) \\
\boldsymbol{g}^0 &= \{(u, v) \in gl(l_o) \oplus gl(k_o); k.\mathbf{T}r(u) + l.\mathbf{T}r(v) = 0\} \\
\boldsymbol{g}^1 &= L(\mathbb{R}^{k_o}, \mathbb{R}^{l_o}).
\end{aligned} \tag{10}$$

Let $x \in g^{-1}$, $y \in g^1$ and $(u, v) \in g^0$, the induced brackets on this vector space are :

$$[u, x] = x.u; [v, x] = v.x; [u, *y] = u. *y;$$

$$[v, *y] = *y.v; [x_1, x_2] = 0; [*y_1, *y_2] = 0;$$

$$[u_1 + v_1, u_2 + v_2] = [u_1, u_2] + [v_1, v_2];$$

$$[x, *y] = x^*y - *y.x - (l_o - k_o) \frac{\operatorname{Tr}(x.*y)}{2k_o l_o}. \operatorname{Id}_{n_o}.$$
(11)

 Id_{n_o} denotes the identity on $\mathbb{R}^{l_o} \oplus \mathbb{R}^{k_o}$.

C. Representations and prolongation

We will use the following identifications :

$$\frac{M(k_o, l_o)}{x_i^a} \stackrel{\kappa}{=} \mathbb{R}^{k_o \times l_o} \stackrel{\varsigma}{=} \mathbb{R}^{m_o} \\
\frac{\kappa}{x_i^a} \stackrel{\kappa}{=} x^{ai} \stackrel{\varsigma}{=} x^{\alpha}$$
(12)

where $\mathbb{IR}^{k_o \times l_o}$ stands for $\underbrace{\mathbb{IR}^{l_o} \times \cdots \times \mathbb{IR}^{l_o}}_{k_o \ times}$; $\alpha = (a-1)l_o+i$, $m_o = k_o l_o$; $\alpha = 1, \cdots, m_o$; $a = 1, \cdots, k_o$ and $i = 1, \cdots, l_o$.

We introduce the following two subgroups.

(1) The subgroup G_o of $Gl(l_o) \times Gl(k_o)$:

$$G_o = \{ (A, B) \in Gl(l_o) \times Gl(k_o) \mid (\det(A))^{k_o} . (\det(B))^{l_o} = 1 \}.$$
(13)

Let (A, B) and (A', B') be elements in G_o . Then from $(\det(A))^{k_o}(\det(B))^{l_o} = 1$ and $(\det(A'))^{k_o}(\det(B'))^{l_o} = 1$ it follows that $(\det(AA'))^{k_o}(\det(BB'))^{l_o} = 1$. We also remark that G_o is isomorphic to the subgroup defined by $\beta_{01} = \beta_{10} = 0$ in $Gl(l_o + k_o)/\exp t.I_{n_o}$. There indeed always exists an α such that

$$(\det \alpha A)^{k_o} \cdot (\det \alpha B)^{l_o} = \alpha^{k+l} (\det(A))^{k_o} \cdot (\det(B))^{l_o} = 1.$$

(2) The subgroup \tilde{G}_o of $Gl(m_o)$ defined by

$$\{A^{\alpha}_{\beta}\delta^{(a-1)l_o+i}_{\alpha}\delta^{\beta}_{(b-1)l_o+j} = A^i_jA^a_b \mid (A^i_j) \in Gl(l_o), \ (A^a_b) \in Gl(k_o)\}.$$
 (14)

Multiplication in the group yields

$$A^{\alpha}_{\gamma}A^{\gamma}_{\beta}\,\delta^{(a-1)l_o+i}_{\alpha}\,\delta^{\beta}_{(b-1)l_o+j} = A^i_kA^k_jA^a_cB^c_b.$$

We will intoduce the following notations

$$A^{\alpha}_{\beta}x^{\beta} = \tilde{x}^{\alpha} \stackrel{\varsigma}{\leftrightarrow} A^{i}_{j}A^{a}_{b}x^{bj} = \tilde{x}^{ai} \stackrel{\kappa}{\leftrightarrow} A^{a}_{b}x^{b}_{j} \stackrel{\tau}{\to} A^{j}_{i} = \tilde{x}^{a}_{i}, \tag{15}$$

which we will use throughout this paper. We also will use κ for $\kappa o \varsigma$.

Let (A_1, B_1) and (A_2, B_2) be in G_o . We then have

$$(A_1.A_2, B_1.B_2) \mapsto (\ {}^{\tau}(A_1.A_2)^{-1}, B_1.B_2) = (\ {}^{\tau}(A_1)^{-1}.\ {}^{\tau}(A_2)^{-1}, B_1.B_2),$$

which proves the following proposition.

Proposition 2.2 The morphism

$$\tau: G_o \to \tilde{G}_o$$

$$(A, B) \mapsto (\mathcal{A}^{-1}, B)$$
(16)

is a group isomorphism sending left invariant vectorfields into left invariant vectorfields.

Proposition 2.3 The Lie algebra, \tilde{g}_o of \tilde{G}_o is given by the subalgebra of the $(m_o \times m_o)$ matrices which are defined by

$$z_{\beta}^{\alpha} \stackrel{\kappa}{=} \tilde{u}_{i}^{j} \delta_{b}^{a} + \tilde{u}_{b}^{a} \delta_{i}^{j} \tag{17}$$

with $\alpha = (a-1)l_o + i$, $\beta = (b-1)l_o + j$, $(\tilde{u}_j^i) \in gl(l_o)$, $(\tilde{u}_b^a) \in gl(k_o)$.

It is a direct consequence of proposition [(2.2)] that this Lie algebra, \tilde{g}^0 , is isomorphic to g^0 . The isomorphism is induced from $\tau u = -(\tilde{u}_i^i), v = (\tilde{u}_b^a)$.

Let V be the real vectorspace isomorphic to \mathbb{R}^{m_o} . The algebra \tilde{g}^0 is a subalgebra of $V \otimes V^*$. The first prologation $\tilde{g}^{(1)}$ is defined as the vectorspace $V^* \otimes \tilde{g}^0 \cap S^2(V^*) \otimes V$ and the k^{th} prolongation likewise as the vectorspace [1] [10]

$$\tilde{\boldsymbol{g}}^{(k)} = \underbrace{V^* \otimes \cdots \otimes V^*}_{k \ times} \otimes \tilde{\boldsymbol{g}}^0 \cap S^{k+1}(V^*) \otimes V.$$

A subspace of $V^* \otimes V$ is called of finite type if $\tilde{\boldsymbol{g}}^{(k)} = 0$ for some (and hence all larger) k and otherwise of infinite type. We refer to [10] [1] [8] for the details.

We then have the following theorem.

Theorem 2.1 The algebra $V \oplus \tilde{\mathbf{g}}^0$ is of infinite type if k_o or l_o equals 1. If k_o and l_o are both different from 1 the algebra is of finite type. Moreover in this case $\tilde{\mathbf{g}}^{(2)} = 0$ and the algebra $V \oplus \tilde{\mathbf{g}}^0 \oplus \tilde{\mathbf{g}}^{(1)}$ is isomorphic to the algebra $\mathbf{g}^{-1} \oplus \mathbf{g}^0 \oplus \mathbf{g}^1$.

In order to prove the theorem we will make use of the representation of \tilde{g}^0 into the linear polynomial vectorfields on V. Let (x^{α}) be the coordinates on V. Define the subalgebra g^0 as the set of vectorfields

$$\tilde{u}^{\alpha}_{\beta}x^{\beta}\frac{\partial}{\partial x^{\alpha}} \quad \text{with} \quad \tilde{u}^{\alpha}_{\beta} \stackrel{\kappa}{=} \tilde{u}^{j}_{i}\delta^{a}_{b} + \tilde{v}^{a}_{b}\delta^{j}_{i}.$$
(18)

If $k_o = 1$ or $l_o = 1$, the algebra $\boldsymbol{g}^{-1} \oplus \boldsymbol{g}^0 \oplus \boldsymbol{g}^1$ is the algebra of projective transformations on \mathbb{R}^{m_o} [11]. Hence $\boldsymbol{g}^0 = \tilde{\boldsymbol{g}}^0 = gl(m_o)$, from which it follows that the algebra $V \oplus \tilde{\boldsymbol{g}}^0$ is of infinite type.

We assume from now on k_o and l_o to be different from 1. The second prolongation $\tilde{g}^{(2)}$ is zero as a consequence of a classification theorem by Matsushima [7] [8] or by a direct calculation from $\tilde{g}^{(1)}$ once this is derived.

Before proving the theorem we will prove the following lemmas.

Lemma 2.1 Any second order vectorfield $X \stackrel{\kappa}{=} T^{ilc}_{adk} x^a_i x^d_l \frac{\partial}{\partial x^c_k}$, such that

$$\llbracket u_l^b \frac{\partial}{\partial x_l^b}, X \rrbracket \in \tilde{g}^0$$

is of the form

$$T_{adk}^{ilc} = u_a^i \delta_k^l \delta_d^c + u_d^l \delta_k^i \delta_a^c$$

Proof

For any $u_j^b \frac{\partial}{\partial x_j^b} \in V$ the bracket with any homogeneous second order vector field $T_{abk}^{ijc} x_i^a x_j^b \frac{\partial}{\partial x_i^c}$ taking values in $\tilde{\boldsymbol{g}}^0$ satisfies the equation

$$\llbracket u_j^b \frac{\partial}{\partial x_j^b}, T_{abk}^{ijc} x_i^a x_j^b \frac{\partial}{\partial x_k^c} \rrbracket = [A_k^l \delta_d^c + B_d^c \delta_k^l] x_l^d \frac{\partial}{\partial x_k^c},$$

for some constants A_k^l and B_d^c .

This equation becomes

$$2u_i^a T_{adk}^{ilc} = A_k^l \delta_d^c + B_d^c \delta_k^l.$$

Which together with the symmetry $T_{adk}^{ilc} = T_{dak}^{lic}$ proves the lemma.

Call W be the vector space of the second order vectorfields of the form $X \stackrel{\kappa}{=} T^{ilc}_{adk} x^a_i x^d_l \frac{\partial}{\partial x^c_k}$. Let $X \in V, Y \in \tilde{g}^0$ and $Z \in W$. Because the set of all formal vectorfields on V is a Lie algebra, we can consider the Jacobi identity

$$[[[X, Y]], Z] + [[Y, Z], X] + [[Z, X], Y] = 0.$$

Lemma 2.2 Let $Y \in \tilde{g}^0$ and $Z \in W$. Then :

$$\llbracket Y, Z \rrbracket \in \tilde{\boldsymbol{g}}^0.$$

Proof

Because $\llbracket X, Y \rrbracket \in V$ the first term takes values in \tilde{g}^0 . The thirth term also takes values in \tilde{g}^0 by the construction of W. Hence the second term $\llbracket \llbracket Y, Z \rrbracket, X \rrbracket$ takes values in \tilde{g}^0 . But this imples that $\llbracket Y, Z \rrbracket$ takes values in W by the former lemma.

As a consequence of both lemmas we are able to write the algebra $V \oplus \tilde{g}^0 \oplus \tilde{g}^{(1)}$ as the vectorspace \mathcal{L} spanned by the vectorfields

$$(\tilde{u}_{i}^{a}\frac{\partial}{\partial x_{i}^{a}}, (\tilde{u}_{i}^{j}\delta_{b}^{a} + \tilde{u}_{b}^{a}\delta_{i}^{j})x_{j}^{b}\frac{\partial}{\partial x_{i}^{a}}, (\tilde{u}_{b}^{k}\delta_{c}^{a}\delta_{i}^{j} + \tilde{u}_{c}^{j}\delta_{b}^{a}\delta_{i}^{k})x_{j}^{b}x_{k}^{c}\frac{\partial}{\partial x_{i}^{a}})$$

$$= (\tilde{u}_{i}^{a}\frac{\partial}{\partial x_{i}^{a}}, \tilde{u}_{i}^{j}x_{j}^{a}\frac{\partial}{\partial x_{i}^{a}} + \tilde{u}_{b}^{a}x_{j}^{b}\frac{\partial}{\partial x_{i}^{a}}, \tilde{u}_{c}^{k}x_{k}^{a}x_{i}^{c}\frac{\partial}{\partial x_{i}^{a}}).$$

$$(19)$$

We find the following proposition.

Proposition 2.4 Both Lie algebras \mathcal{L} and g are isomorphic. The isomorphism

$$au: \boldsymbol{g} = \boldsymbol{g}^{-1} \oplus \boldsymbol{g}^0 \oplus \boldsymbol{g}^1 \to \mathcal{L}$$

is induced from

$$\tau(u_i^a) = \tilde{u}_i^a, \ \tau(u_j^i) = -\tilde{u}_j^i, \ \tau(u_b^a) = \tilde{u}_b^a, \ \tau(u_a^i) = \tilde{u}_a^i,$$
(20)

with $(u_i^a, u_j^i, u_b^a, u_a^i) \in \boldsymbol{g}$.

This proposition together with both lemmas proves the theorem.

3 The Cartan connections

A. The structure equations

Let P be a principal bundle, of dimension $n_o^2 - 1$ $(n_o = k_o + l_o)$, over M with fibre group H, the isotropy group [(5)]. We then have dim $P/H = k_o l_o$. The right action of H on P is denoted as R_a , for $a \in H$, while ad stands for the adjoint representation of H on the Lie algebra $\mathbf{g} = \mathbf{pl}(\mathbf{n_o})$. Every $A \in \mathbf{h}$ induces in a natural manner a vectorfield A^* , called fundamental vectorfield, on P as a consequence of the action of H on P. The vectorfield A^* obviously is a vertical vectorfield on P.

A Cartan connection on P is a 1-form ω on P, with values in the Lie algebra \boldsymbol{g} , such that :

(1)
$$\omega(A^*) = A, \forall A \in \mathbf{h}$$

(2) $R_a^* \omega = ad(a^{-1})\omega, a \in H$
(3) $\omega(X) \neq 0, \forall X \in \mathcal{X}(P) \text{ with } X \neq 0.$ (21)

The form ω defines for each $x \in P$ an isomorphism of $T_x P$ with g. Hence the space P is globally parallelisable.

In terms of the natural basis in matrix representation of $\mathbf{pl}(\mathbf{n_o})$ as given in [(10)] and [(11)], we write the connection form ω as $(\omega_i^a, \omega_j^i, \omega_b^a, \omega_*, \omega_a^i)$, with $\omega_i^i = \omega_a^a = 0$. As basis for the subalgebra $\mathbf{h} = \mathbf{sl}(\mathbf{l_o}) \oplus \mathbf{sl}(\mathbf{k_o}) \oplus \mathbb{R} \oplus L(\mathbb{R}^{k_o}, \mathbb{R}^{l_o})$ we choose $(e_j^i, e_b^a, e_*, e_i^a)$.

The structure equations of Cartan on P are now defined as

$$(1) \quad d\omega_{j}^{a} = -\omega_{k}^{a} \wedge \omega_{j}^{k} - \omega_{b}^{a} \wedge \omega_{j}^{b} - \omega_{j}^{a} \wedge \omega_{*} + \Omega_{j}^{a}$$

$$(2) \quad d\omega_{j}^{i} = -\omega_{k}^{i} \wedge \omega_{j}^{k} - \omega_{b}^{i} \wedge \omega_{j}^{b} + \frac{1}{l} \delta_{j}^{i} \omega_{c}^{k} \wedge \omega_{k}^{c} + \Omega_{j}^{i}$$

$$(3) \quad d\omega_{b}^{a} = -\omega_{k}^{a} \wedge \omega_{b}^{k} - \omega_{c}^{a} \wedge \omega_{b}^{c} + \frac{1}{k} \delta_{b}^{a} \omega_{k}^{c} \wedge \omega_{c}^{k} + \Omega_{b}^{a}$$

$$(4) \quad d\omega_{a}^{i} = -\omega_{k}^{i} \wedge \omega_{a}^{k} - \omega_{b}^{i} \wedge \omega_{a}^{b} + \omega_{a}^{i} \wedge \omega_{*} + \Omega_{a}^{i}$$

$$(5) \quad d\omega_{*} = \frac{k_{o} + l_{o}}{k_{o} l_{o}} \omega_{i}^{a} \wedge \omega_{a}^{i} + \Omega_{*},$$

with $\omega_i^i = \omega_a^a = \Omega_i^i = \Omega_a^a = 0.$

In analogy with the projective case described by Kobayashi and Nagano, the form Ω_i^a is called the torsion form while (Ω_j^i , Ω_b^a , Ω_a^i , Ω_*) are called the curvature forms of the connection. The connection form satisfies the following conditions : $\omega_i^a(A^*) = 0$, $\omega_j^i(A^*) = A_j^i$, $\omega_b^a(A^*) = A_b^a$, $\omega_*(A^*) = A_*$ for $A = (A_j^i, A_b^a, A_a^i, A_*) \in$ **h**. Furthermore if $X \in \mathcal{X}$ such that $\omega_i^a(X) = 0$, then X is vertical.

Proposition 3.1 The torsion and the curvature forms are basic forms on the bundle *P*. Hence we define :

$$\Omega_i^a = K_{ijk}^{a\,bc}\,\omega_b^j \wedge \omega_c^k, \ \Omega_j^i = K_{jlk}^{i\,bc}\,\omega_b^l \wedge \omega_c^k,$$
$$\Omega_b^a = K_{bjk}^{a\,dc}\,\omega_d^j \wedge \omega_c^k, \ \Omega_a^i = K_{ajk}^{i\,bc}\,\omega_b^j \wedge \omega_c^k, \ \Omega_* = K_{*,jk}^{bc}\,\omega_b^j \wedge \omega_c^k$$
(23)

Proof

Let $F_x, x \in M$, be the fibre above x. The restriction of ω_i^a to F_x is identically zero and the forms $\omega_j^i, \omega_b^a, \omega_a^i, \omega_*$ are linearly independent on F_x as a consequence of [(21 (1)(3))]. Because the form ω sends the fundamental vectorfields A^* which are tangent to F_x into the left invariant vectorfields A on the group H, the forms $\omega_j^i, \omega_b^a, \omega_a^i, \omega_*$ satisfy the equations of Maurer cartan on H. The combination of these equations and equations [(22)] implies the vanishing of the curvature forms when restricted to F_x .

From now on we assume the torsion Ω_i^a to be zero.

Proposition 3.2 Let P be a principal fibre bundle over M with structure group H and $(\omega_b^i, \omega_j^i, \omega_b^a, \omega_j^a)$ a Cartan connection on P satisfying the structure equations [(22)]. The curvature forms possess the following properties :

(1)
$$0 = \omega_k^a \wedge \Omega_j^k + \Omega_b^a \wedge \omega_j^b + \omega_j^a \wedge \Omega_*$$

(2)
$$0 = d\Omega_* - \omega_i^a \wedge \Omega_a^i$$
 (24)

Proof

These equations are obtained by taking the exterior differential of equations [(22,(1) and (5))].

B. The normal Cartan connection

The first equation of the structure equations of Cartan with $\Omega_i^a = 0$ is called the torsion zero equation and does not contain the form ω_a^i , while the other equations define the curvature forms. A natural question then arises, namely : let $(\omega_i^a, \omega_j^i, \omega_b^a, \omega_*)$ be given a priori on P which satisfy the torsion equation, does there then exists a ω_a^i such that ω is a Cartan connection on P and if so is there a canonical one.

Theorem 3.1 Let the bundle P be given as defined and $(\omega_i^a, \omega_b^a, \omega_j^i, \omega_*)$ be 1-forms satisfying :

(1)
$$\omega_i^a(A^*) = 0, \ \omega_b^a(A^*) = A_b^a, \ \omega_j^i(A^*) = A_j^i, \ \omega_*(A^*) = A_*$$

 $\forall A = (A_j^i, A_b^a, A_a^i, A_*) \in \mathbf{h}$
(2) $(R_a)^*(\omega_i^a, \omega_j^i, \omega_b^a, \omega_*) = ad(a^{-1})(\omega_i^a, \omega_j^i, \omega_b^a, \omega_*), \ \forall a \in H$
(3) If $X \in \mathcal{X}(P)$ such that $\omega_i^a(X) = 0$, then X is vertical.
(4) $d\omega_i^a = -\omega_b^a \wedge \omega_i^b - \omega_j^a \wedge \omega_i^j - \omega_i^a \wedge \omega_*.$

If $l_o \neq 1$ and $k_o \neq 1$ then there exists an unique Cartan connection ω on P

 $\omega = (\omega_i^a, \, \omega_j^i, \, \omega_b^a, \omega_*, \, \omega_a^i),$

such that :

$$\Omega_* = 0 \quad and \quad K_{lab}^{ilk} = K_{adb}^{dki}.$$
(25)

Proof

The existence of a Cartan connection satisfying the given conditions follows from a classical construction using the partition of unity. Because the manifold is supposed to be paracompact there exists a locally finite cover $\{\mathcal{U}_{\alpha}\}$ of M such that $P(\mathcal{U}_{\alpha})$ is trivial, for each α . Let $\{(f_{\alpha}, \mathcal{U}_{\alpha})\}$ then be a subordinate partition of unity. If for each α the form ω_{α} is a Cartan connection on $P(\mathcal{U}_{\alpha})$ with prescribed $(\omega_i^a, \omega_b^a, \omega_j^i, \omega_*)$, then $\sum_{\alpha} (f_{\alpha} \circ \pi) \omega_{\alpha}$ is a Cartan connection in $P(\pi)$ being the bundle projection $P \to M$.

Hence the problem is reduced to a local problem for a trivial P. Let $\sigma : \mathcal{U} \subset M \to P$ be a local section we define the 1-form ω_a^i over σ as $\omega_a^i(X) = 0$ for all tangent vectors to σ and $\omega_a^i(A^*) = A_a^i$ for $A \in \mathbf{h}$. Now any vectorfield Y on P can be written uniquely as $Y = R_a(X) + V$, where X is tangent to σ and $a \in H$ and V is tangent to the fibre. Hence the condition

$$\omega(Y)(p.a) = ad(a^{-1})(\omega(X))(p) + A, \quad p = \sigma(x), \ x \in M$$

with *A the unique fundamental vector field corresponding to A, such that *A(p.a) = V(p.a), determines $\omega_a^i(Y)$. We will prove the existence of a Cartan connection satisfying the required conditions [(25)] by means of a set of propositions.

Proposition 3.3 Let ω be a Cartan connection on P. Then there exists a Cartan connection satisfying the condition $\Omega_* = 0$. Two Cartan connections satisfying this same condition are related by $\bar{\omega}_a^i = \omega_a^i - A_{ab}^{ik} \omega_k^b$, with $A_{ab}^{ik} = A_{ba}^{ki}$.

Proof

Using conditions [(21,(1) (3))] the unkown form can be written as

$$\bar{\omega}_a^i = \omega_a^i - A_{ab}^{ik} \omega_k^b.$$

Equation [(22, (5))] then yields

$$0 = \frac{k_o + l_o}{k_o l_o} \omega_i^a \wedge A_{ab}^{ik} \omega_k^b + \Omega_* - \bar{\Omega}_*$$

If $\Omega_* \neq 0$ choose A_{ab}^{ik} such that

$$0 = \frac{k_o + l_o}{k_o l_o} \omega_i^a \wedge A_{ab}^{ik} \omega_k^b + \Omega_*$$

or

$$A_{ab}^{ik} - A_{ba}^{ki} = -\frac{2k_o l_o}{k_o + l_o} K_{*ab}^{ik}.$$

As follows directly from this equation two Cartan connections satisfying the curvature condition $\Omega_* = 0$ are related by $\bar{\omega}_a^i = \omega_a^i - A_{ab}^{ik} \omega_k^b$, with $A_{ab}^{ik} - A_{ba}^{ki} = 0$.

Proposition 3.4 Let ω be a Cartan connection on P satisfying condition $\Omega_* = 0$. Then the Bianchi identities [(24)] become

(1)
$$K_{jcb}^{klm} \delta_d^a + K_{dcb}^{alm} \delta_j^k + K_{jdc}^{mkl} \delta_b^a + K_{bdc}^{akl} \delta_j^m + K_{jbd}^{lmk} \delta_c^a + K_{abd}^{amk} \delta_j^l = 0$$

(2) $K_{acb}^{ikl} + K_{bac}^{lik} + K_{cba}^{kli} = 0.$ (26)

Consequences : From equation [(26,(1))] we find by contraction of the indices k_o & j and a & d

$$K_{kbc}^{mkl} + K_{bdc}^{dml} - K_{kcb}^{lkm} - K_{cdb}^{dlm} = 0$$
(27)

and by contraction of $k_o \& j$ and a & c the expression

$$kK_{jdc}^{mjl} - lK_{dac}^{aml} - K_{jdc}^{ljm} + K_{cad}^{aml} = 0.$$
 (28)

Lemma 3.1 The expression

$$K_{kbc}^{mkl} - K_{cdb}^{dlm}$$

is symmetric in the pair ((m, b), (l, c)).

Proposition 3.5 Let ω be a Cartan connection on P satisfying $\Omega_* = 0$. Then there exists a unique Cartan connection satisfying the curvature conditions [(25)].

Proof

It is sufficient to consider the class of Cartan connections determined by the condition $\Omega_* = 0$. Two such connections are related by

$$\bar{\omega}_a^i = \omega_a^i - A_{ab}^{ik} \omega_k^b,$$

with $A_{ab}^{ik} = A_{ba}^{ki}$ [(3.3)]. Equation [(22, (2))] then gives

$$\Omega_j^i - \bar{\Omega}_j^i - A_{ab}^{il}\,\omega_l^b \wedge \omega_j^a = 0$$

or

$$\left[K_{jba}^{ilk} - \bar{K}_{jba}^{ilk} - A_{ab}^{il}\,\delta_j^k\right]\omega_l^b \wedge \omega_k^a = 0,$$

which yields

$$K_{jba}^{ilk} - \bar{K}_{jba}^{ilk} - \frac{1}{2} \left(\delta_j^k A_{ab}^{il} - \delta_j^l A_{ba}^{ik} \right) = 0$$

Summation on the indices l and j gives :

$$K_{lba}^{ilk} - \bar{K}_{lba}^{ilk} - \frac{1}{2} \left(A_{ab}^{ik} - lA_{ba}^{ik} \right) = 0.$$
⁽²⁹⁾

From [(22),(3)] we derive in a similar way the following equation :

$$\frac{1}{2} \left(\delta_a^d A_{bc}^{lk} - \delta_c^d A_{ba}^{kl} \right) + K_{bca}^{dkl} - \bar{K}_{bca}^{dkl} = 0.$$

Contraction on d and c yields

$$\frac{1}{2} \left(A_{ab}^{ik} - k A_{ab}^{ki} \right) + K_{adb}^{dki} - \bar{K}_{adb}^{dki} = 0.$$
(30)

From the lemma [(3.1)] we know that the expression

$$K_{lba}^{ilk} - K_{adb}^{dki}$$

is symmetric in the pair ((i, b), (k, a)). If

$$K_{lba}^{ilk} - K_{adb}^{dki} \neq 0$$

we define A_{ab}^{ik} such that

$$K_{lba}^{ilk} - K_{adb}^{dki} = A_{ab}^{ik} - \frac{1}{2}(l_o + k_o)A_{ba}^{ik}.$$
(31)

610

$$A_{ab}^{ki} = \frac{4}{4 - (l_o + k_o)^2} \left[\Delta_{ba}^{ki} + \frac{1}{2} (l_o + k_o) \Delta_{ba}^{ik} \right],$$
(32)

with

$$\Delta_{ba}^{ik} = K_{lba}^{ilk} - K_{adb}^{dki}.$$
(33)

Substitution of [(31)] in the sum of equations [(29)] and [(30)] gives

$$\bar{K}_{lba}^{ilk} - \bar{K}_{adb}^{dki} = 0.$$

This proves the theorem for $l_o \neq 1$ and $k_o \neq 1$. If l_o or k_o equals one we refer to the projective case treated by Kobayashi S., Nagano T. [3]. The uniqueness follows from the same considerations.

Definition 3.1 The unique Cartan connection ω on P satisfying the curvature conditions [(25)], will be called the normal Grassmannian connection on P.

Proposition 3.6 Let ω be a normal Cartan connection on the bundle *P*. The following curvature equations are identities :

$$k_{o}K_{jdc}^{mjl} = l_{o}K_{dac}^{aml}$$

$$k_{o}K_{jdc}^{mjl} = l_{o}K_{jcd}^{ljm}$$

$$k_{o}K_{cad}^{alm} = l_{o}K_{dac}^{aml}$$
(34)

Proof

These relations follow from the conditions [(25)] and the identities [(28)].

Proposition 3.7 Let P and ω be as above. If $\Omega_j^i = 0$ and $\Omega_b^a = 0$, then it follows that $\Omega_a^i = 0$.

Proof

If $k_o \neq 1$ and $l_o \neq 1$ then the manifold M has dimension larger than 3. The proposition follows from differentiation of equations [(22, (2)(3))]:

$$d\Omega_j^i - \Omega_k^i \wedge \omega_l^k + \omega_k^i \wedge \Omega_j^k + \frac{1}{l_o} \delta_j^i \,\Omega_c^k \wedge \omega_k^c - \Omega_b^i \wedge \omega_j^b = 0 \tag{35}$$

and

$$d\Omega_b^a - \Omega_c^a \wedge \omega_b^c + \omega_c^a \wedge \Omega_b^c - \frac{1}{k_o} \delta_b^a \omega_k^c \wedge \Omega_c^k + \omega_k^a \wedge \Omega_b^k = 0.$$
(36)

From equation [(35)] one finds

$$\frac{1}{l_o}\Omega_c^k \wedge \omega_k^c \wedge \omega_j^a - \Omega_b^i \wedge \omega_j^b \wedge \omega_i^a = 0.$$

While from equation [(36)] one has

$$\frac{1}{k_o}\Omega_c^k \wedge \omega_k^c \wedge \omega_j^a - \Omega_b^k \wedge \omega_k^a \wedge \omega_j^b = 0.$$

Combining the two equations gives

$$(k_o + l_o)\Omega_b^k \wedge \omega_k^a \wedge \omega_j^b = 0,$$

which substituted in equation [(35)] gives

$$\Omega_b^i \wedge \omega_i^b = 0$$

and in equation [(36)]

$$\omega_k^a \wedge \Omega_b^k = 0.$$

Or in terms of the components we find the two equations :

$$K_{bcd}^{ikl}\delta_m^j + K_{dbc}^{ijk}\delta_m^l + K_{cdb}^{ilj}\delta_m^k = 0.$$

and

$$K_{bcd}^{ikl}\delta_e^a + K_{bde}^{kli}\delta_c^a + K_{bec}^{lik}\delta_d^a = 0.$$

In case $l_o \geq 3$, let l be different from k and j. We find by taking m = l that $K_{dbc}^{ijk} = 0$. . In case $k_o \geq 3$, let c be different from e and d. One finds the same result by taking a = c.

The special case $k_o = 2$ and $l_o = 2$ is easily proven by consideration of the different cases k = j = l, $k = l \neq j$, e = c = d and $e = c \neq d$.

Proposition 3.8 Let P with $k_o \ge 3$, $l_o \ge 3$ and ω be as above. Then

$$\Omega_i^i = 0 \quad iff \quad \Omega_b^a = 0.$$

Proof

From the Bianchi identities [(24,(1))] we find with $\Omega^i_j=0$

$$\Omega_b^a \wedge \omega_i^b = 0.$$

In terms of the components this equation is

$$K_{dcb}^{alm}\delta_j^k + K_{bdc}^{akl}\delta_j^m + K_{cbd}^{amk}\delta_j^l = 0.$$

Let *m* be different from *k* and *l*. Taking *j* equal to *m* yields $K_{bdc}^{akl} = 0$. Conversally, the condition $\Omega_b^a = 0$ implies $\Omega_j^i = 0$ by an analogous argument using the Bianchi equations [(24,(1))].

This proves the following theorem.

Theorem 3.2 Let P with $k_o \ge 3$, $l_o \ge 3$ and ω as above. The bundle P is locally flat iff $\Omega_i^i = 0$ or $\Omega_b^a = 0$.

Local flatness of P means vanishing of the structure functions [2].

4 The Ehresmann connection

A. Second order frames

Let M be a manifold of dimension m_o and f a diffeomorphism of an neighborhood of 0 in \mathbb{R}^{m_o} onto an open neighborhood of M. If f is a local diffeomorphism then the r-jet $j_0^r(f)$ is an r-frame at x = f(0). The set of r-frames of M will be denoted by $F^r(M)$, while the set of r-frames at f(0) forms a group $G^r(m_o)$ with multiplication defined by the composition of jets :

$$j_0^r(g_1) \cdot j_0^r(g_2) = j_0^r(g_1 \circ g_2).$$

The group $G^r(m_o)$ acts on $F^r(M)$ on the right :

$$j_0^r(f) \cdot j_0^r(g) = j_0^r(f \circ g).$$
(37)

The Lie algebra of $G^r(m_o)$ will be denoted by $g^r(m_o)$. We mainly will be interested in the bundle of 2-frames on M. Let (x^{α}) be some local coordinates on M and \bar{x}^{α} the natural coordinates on \mathbb{R}^{m_o} . A 2-frame u then is given by $u = j_0^2(f)$. From

$$f(\bar{x}) = x^{\alpha}e_{\alpha} + u^{\alpha}_{\beta}\bar{x}^{\beta}e_{\alpha} + \frac{1}{2}u^{\alpha}_{\beta\gamma}\bar{x}^{\beta}\bar{x}^{\gamma}e_{\alpha}, \qquad (38)$$

we get a set of local coordinates $(x^{\alpha}, u^{\alpha}_{\beta}, u^{\alpha}_{\beta\gamma})$ on $F^{2}(M)$.

In a similar way we may use $(s^{\alpha}_{\beta}, s^{\alpha}_{\beta\gamma})$ as coordinates on $G^2(m_o)$. The multiplication in $G^2(m_o)$ is given by

$$(\bar{s}^{\alpha}_{\beta}, \ \bar{s}^{\alpha}_{\beta\gamma}).(s^{\alpha}_{\beta}, \ s^{\alpha}_{\beta\gamma}) = (\bar{s}^{\alpha}_{\sigma}s^{\sigma}_{\beta}, \ \bar{s}^{\alpha}_{\sigma}s^{\sigma}_{\beta\gamma} + \bar{s}^{\alpha}_{\sigma\rho}s^{\sigma}_{\beta}s^{\rho}_{\gamma}), \tag{39}$$

while the action of $G^2(m_o)$ on $F^2(M)$ is given by

$$(x^{\alpha}, u^{\alpha}_{\beta}, u^{\alpha}_{\beta\gamma}).(s^{\alpha}_{\beta}, s^{\alpha}_{\beta\gamma}) = (x^{\alpha}, u^{\alpha}_{\sigma}s^{\sigma}_{\beta}, u^{\alpha}_{\sigma}s^{\sigma}_{\beta\gamma} + u^{\alpha}_{\sigma\rho}s^{\sigma}_{\beta}s^{\rho}_{\gamma}).$$
(40)

Let

$$(e_{\alpha} = \frac{\partial}{\partial \bar{x}^{\alpha}}, \ e_{\beta}^{\alpha} = \frac{\partial}{\partial \bar{x}^{\alpha}} \otimes d\bar{x}^{\beta})$$

be a basis for the Lie algebra of affine transformations on \mathbb{R}^{m_o} . The canonical one form θ on $F^2(M)$, which we write as

$$\theta = \theta^{\alpha} e_{\alpha} + \theta^{\alpha}_{\beta} e^{\beta}_{\alpha},$$

is given in local coordinates by (with v^{α}_{β} is the inverse matrix of u^{α}_{β}) [4]:

$$\theta^{\alpha} = v^{\alpha}_{\beta} dx^{\beta}, \tag{41}$$

$$\theta^{\alpha}_{\beta} = v^{\alpha}_{\gamma} du^{\gamma}_{\beta} - v^{\alpha}_{\gamma} u^{\gamma}_{\rho\beta} v^{\rho}_{\sigma} dx^{\sigma}.$$
(42)

Because the group $G^2(m_o)$ acts on $F^2(M)$ on the right, with each $A \in g^2(m_o)$ corresponds a fundamental vectorfield $A^* \in \mathcal{X}(F^2(M))$. Let $\pi_1^2 : g^2(m_o) \to g^1(m_o)$, we have the following proposition [3]:

Proposition 4.1 (1) $\theta(A^{\star}) = \pi_1^2(A)$ for $A \in g^2(m_o)$ (2) $R_a^{\star}\theta = ad(a^{-1})\theta, \ a \in G^2(m_o).$

The canonical form satisfies the structure equation [4]:

$$d\theta^{\alpha} = -\theta^{\alpha}_{\beta} \wedge \theta^{\beta}. \tag{43}$$

B. The Grassmannian bundle $Gr(k_o, l_o)(M)$

We will now define a subbundle of $F^2(M)$ which is isomorphic with the bundle P. In this section we use the identification $\mathbf{R}^{k_o \times l_o} \stackrel{\leq}{=} \mathbf{R}^{m_o}$.

Proposition 4.2 The embedding $H \to G^2(m_o)$, $m_o = k_o l_o$, defined by

$$\left(\beta_{j}^{i},\beta_{b}^{a},\beta_{c}^{k}\right)\mapsto \begin{cases} s_{\beta}^{\alpha} & \stackrel{\leq}{=} & \alpha_{j}^{i}\beta_{b}^{a}\\ s_{\beta\gamma}^{\alpha} & \stackrel{\leq}{=} & -\left[\beta_{b}^{a}\alpha_{j}^{l}\gamma_{lc}\alpha_{k}^{i}+\beta_{c}^{a}\alpha_{k}^{l}\gamma_{lb}\alpha_{j}^{i}\right], \end{cases}$$
(44)

with $\alpha = (a-1)l_o + j$, $\beta = (b-1)l_o + j$, $\gamma = (c-1)l_o + k$ and $\alpha_j^i = {}^{\tau}\beta^{-1}{}^i_j$, $\gamma_{kc} = \beta_c^k$, is a group morphism. Let \tilde{H} designate image of the embedding in $G^2(m_o)$.

Proof

The multiplication in H yields

$$(\hat{\beta}_j^i, \hat{\beta}_c^i, \hat{\beta}_b^a).(\beta_k^j, \beta_c^j, \beta_c^b) = (\hat{\beta}_j^i \beta_k^j, \hat{\beta}_j^i \beta_b^j + \hat{\beta}_c^i \beta_b^c, \hat{\beta}_b^a \beta_c^b).$$
(45)

Let

$$s^{\alpha}_{\beta} = \alpha^{i}_{j}\beta^{a}_{b}, \quad s^{\alpha}_{\beta\gamma} = -\left[\beta^{a}_{b}\alpha^{l}_{j}\gamma_{lc}\alpha^{i}_{k} + \beta^{a}_{c}\alpha^{l}_{k}\gamma_{lb}\alpha^{i}_{j}\right]$$

and

$$\hat{s}^{\alpha}_{\beta} = \hat{\alpha}^{i}_{j}\hat{\beta}^{a}_{b}, \quad \hat{s}^{\alpha}_{\beta\gamma} = -\left[\hat{\beta}^{a}_{b}\hat{\alpha}^{l}_{j}\hat{\gamma}_{lc}\hat{\alpha}^{i}_{k} + \hat{\beta}^{a}_{c}\alpha^{l}_{k}\hat{\gamma}_{lb}\hat{\alpha}^{i}_{j}\right].$$

We find for the multiplication

$$(\bar{s}^{\alpha}_{\beta}, \ \bar{s}^{\alpha}_{\beta\gamma}).(s^{\alpha}_{\beta}, \ s^{\alpha}_{\beta\gamma}) = (\hat{\alpha}^{i}_{j}\hat{\beta}^{a}_{b}\alpha^{j}_{k}\beta^{b}_{c},$$

$$-\hat{\alpha}_{j}^{i}\hat{\beta}_{b}^{a}\left[\beta_{d}^{b}\alpha_{m}^{l}\gamma_{lc}\alpha_{k}^{i}+\beta_{c}^{b}\alpha_{k}^{l}\gamma_{ld}\alpha_{m}^{j}\right]-\left[\hat{\beta}_{b}^{a}\hat{\alpha}_{j}^{l}\hat{\gamma}_{le}\hat{\alpha}_{m}^{i}+\hat{\beta}_{e}^{a}\alpha_{m}^{l}\hat{\gamma}_{lb}\hat{\alpha}_{j}^{i}\right]\alpha_{m}^{j}\beta_{d}^{b}\alpha_{k}^{m}\beta_{c}^{e}),$$

ch proves the group morphism.

whi

Definition 4.1 A Grassmannian structure, $Gr(k_o, l_o)(M)$, on a manifold M is a subbundle of $F^2(M)$ with structure group \tilde{H} .

Proposition [(4.2)] together with some classical results in bundle theory [9] proves the following theorem.

Theorem 4.1 Let P be a H-bundle over M. Then there exists a $Gr(k_o, l_o)(M)$, subbundle of $F^2(M)$, which is isomorphic to P.

Definition 4.2 A (k_o, l_o) -structure on a manifold, $B^{(k_o, l_o)}(M)$, is a subbundle of $F^1(M)$ with structure group G_o .

Theorem 4.2 Each Grassmannian structure, $Gr(k_o, l_o)(M)$, on M is the prolongation of a (k_o, l_o) -structure. Moreover this structure has vanishing second prolongation.

Proof

Let $B^{(k_o,l_o)}(M)$ be any subbundle of $F^1(M)$ with structure group G_o . The first prolongation of $B^{(k_o,l_o)}(M)$ is a subbundle of $F^2(M)$ with structure group the semi direct product of G_o and the group of automorphisms of $V \simeq \mathbb{R}^{m_o}$ generated by the Lie algebra $\tilde{g}^{(1)}$ [10]. Hence the first prolongation is a $Gr(k_o, l_o)(M)$.

Let $Gr(k_o, l_o)(M)$ be given and $\pi_1^2 : F^2(M) \to F^1(M)$ the bundle projection. Then $\pi_1^2(Gr(k_o, l_o)(M))$ is a bundle $B^{(k_o, l_o)}(M)$ whose prolongation coïncides with $Gr(k_o, l_o)(M)$ by the isomorphism of the structure groups. The second prolongation of a $B^{(k_o, l_o)}(M)$ vanishes identically [(2.1)].

We refer to S. Sternberg [10] for a detailled exposition of the relationship between connections on G structures and prolongations. In particular the set of adapted symmetric connections is parametrised by the first prolongation of the Lie algebra $\tilde{g}^{(1)}$. To make this clear we first need the following lemma on symmetric affine connections.

Lemma 4.1 Let $\Gamma : M \to F^2(M)/Gl(m_o)$ be an affine symmetric connection. Then there exists a canonical homomorphism $\tilde{\Gamma} : F^1(M) \to F^2(M)$ canonically associated with Γ .

Proof

For a proof we refer to [5]. In local coordinates the map Γ is given by

$$\tilde{\Gamma}: \bar{x}^{\alpha} = x^{\alpha}; \quad \bar{u}^{\alpha}_{\beta} = u^{\alpha}_{\beta}; \quad \bar{u}^{\alpha}_{\beta\gamma} = -u^{\sigma}_{\beta}\Gamma^{\alpha}_{\sigma\rho}u^{\rho}_{\gamma}.$$
(46)

Remark that

$$\hat{\Gamma}^* \theta^{\alpha}_{\beta} = v^{\alpha}_{\gamma} (du^{\gamma}_{\beta} + \Gamma^{\gamma}_{\rho\sigma} u^{\sigma}_{\beta} dx^{\rho}).$$
(47)

Let $B^{(k_o,l_o)}(M)$ be a (k_o, l_o) structure on M. An adapted affine symmetric connection tion on $B^{(k_o,l_o)}(M)$ is a map $\Gamma: M \to F^2(M)/Gl(m_o)$ such that $\tilde{\Gamma}^*\theta^{\alpha}_{\beta}$ restricted to $B^{(k_o,l_o)}(M)$ is a connection form with values in g^0 . Let $\Phi(B^{(k_o,l_o)})(M)$ be the set of adapted affine symmetric connection and denote the set of associated homomorphisms by $\tilde{\Phi}(B^{(k_o,l_o)})(M)$.

In order to prove the next proposition we need some local expressions. Let $(\bar{x}^{ai} \stackrel{\varsigma}{=} \bar{x}^{\alpha})$ be the coordinates on $\mathbb{R}^{m_o} \simeq \mathbb{R}^{k_o \times l_o}$. The Lie algebra of the second order formal vector fields \mathcal{L} on this space as given in [(19)] has the following basis

$$e_{ai} = \frac{\partial}{\partial \bar{x}^{ai}}, \ e_j^i \delta_b^a + e_b^a \delta_j^i = \delta_b^a \bar{x}^{ci} \frac{\partial}{\partial \bar{x}^{cj}} + \delta_j^i \bar{x}^{ak} \frac{\partial}{\partial \bar{x}^{bk}}, \ e^{ai} = \bar{x}^{aj} \bar{x}^{ci} \frac{\partial}{\partial \bar{x}^{cj}}.$$
 (48)

In terms of local coordinates on M and taking the identification ς directly into account, a 2-frame is given by

$$f(\bar{x}) = \left[x^{\alpha} + u^{\alpha}_{bj}\bar{x}^{bj} + u^{\alpha}_{bjck}\bar{x}^{bj}\bar{x}^{ck}\right]e_{\alpha}.$$
(49)

Let σ be a local section of $F^1(M)$, then σ is given by the functions

$$\sigma: (x) \mapsto E^{\alpha}_{bj}(x) = \sigma^* u^{\alpha}_{bj}.$$
(50)

The fundamental form along σ becomes

$$\bar{\theta}^{ai} = \sigma^* \theta^{ai} = F^{ai}_\beta(x) dx^\beta, \tag{51}$$

while the connection form with respect to a given $\tilde{\Gamma} \in \Phi(B^{(k_o, l_o)}(M))$ is

$$\bar{\theta}_{bj}^{ai} = \sigma^* \theta_{bj}^{ai} = F_{\alpha}^{ai} dE_{bj}^{\alpha} + F_{\alpha}^{ai} \Gamma_{\rho\sigma}^{\alpha} E_{bj}^{\sigma} dx^{\rho}.$$
(52)

The form $\bar{\theta}_{bi}^{ai}$ satisfies the structure equation [(43)]

$$d\bar{\theta}^{ai} = -\bar{\theta}^{ai}_{bj} \wedge \bar{\theta}^{bj}.$$

Let $\hat{\theta}_{bj}^{ai}$ be a second connection form with respect to a different morphism belonging to $\Phi(B^{(k_o,l_o)}(M))$. This form satisfies the same equation [(43)]. Hence we find

$$0 = (\bar{\theta}^{ai}_{bj} - \hat{\theta}^{ai}_{bj}) \wedge \hat{\theta}^{bj}.$$
(53)

The difference $(\bar{\theta}_{bj}^{ai} - \hat{\theta}_{bj}^{ai})$ defines a morphism $V \to g^0 \subset V \otimes V^*$ at each $x \in M$, satisfying [(53)] and hence defines an element in $g^{(1)}$. This implies that at $x \in M$:

$$\bar{\theta}^{ai}_{bj} - \hat{\theta}^{ai}_{bj} = u_{bk} \delta^a_c \delta^i_j + u_{cj} \delta^a_b \delta^i_k, \tag{54}$$

with $u_a^i \in M(l_o, k_o)$.

Proposition 4.3 Any two adapted affine symmetric connections on $B^{(k_o,l_o)}(M)$ are locally related by :

$$\Gamma_{\alpha\sigma}^{\prime\gamma} - \Gamma_{\alpha\sigma}^{\gamma} = 2u_{bk} E_{cj}^{\gamma} F_{(\alpha}^{ck} F_{\sigma)}^{bj}.$$
(55)

with u_{bk} an element of $M(l_o, k_o)$.

Proof

We know that any connection form on $B^{(k_o,l_o)}(M)$ takes values in g^0 . Hence

$$\theta^{ai}_{bj\alpha} = \theta^a_{b\alpha} \delta^i_j + \theta^i_{j\alpha} \delta^a_b.$$

We find along the section σ :

$$\bar{\theta}^{a}_{b\alpha}E^{\alpha}_{ck}\delta^{i}_{j} + \bar{\theta}^{i}_{j\alpha}E^{\alpha}_{ck}\delta^{a}_{b} = F^{ai}_{\gamma}(\frac{\partial}{\partial x^{\alpha}}E^{\gamma}_{bj})E^{\alpha}_{ck} + F^{ai}_{\gamma}\Gamma^{\gamma}_{\alpha\sigma}E^{\alpha}_{ck}E^{\sigma}_{bj}.$$

From the theorem [(2.1)] and equation [(54)] it follows that for any two of such connection forms there exists an element u_{bk} such that

$$u_{bk}\delta^a_c\delta^i_j + u_{cj}\delta^a_b\delta^i_k = F^{ai}_\gamma(\Gamma'^\gamma_{\alpha\sigma} - \Gamma^\gamma_{\alpha\sigma})E^\alpha_{ck}E^\sigma_{bj}$$

Hence

$$E_{ai}^{\gamma} \left[u_{bk} \delta_c^a \delta_j^i + u_{cj} \delta_b^a \delta_k^i \right] F_{\alpha}^{ck} F_{\sigma}^{bj} = \Gamma_{\alpha\sigma}^{\prime\gamma} - \Gamma_{\alpha\sigma}^{\gamma}.$$

Because the first prolongation $\tilde{g}^{(1)}$ can be identified with $M(l_o, k_o)$ this describes the parametrisation of the set of adapted connections. This allows us to formulate the following theorem.

Theorem 4.3 Let $B^{(k_o,l_o)}(M)$ be a (k_o,l_o) -structure on M. The set

$$\{\tilde{\Gamma}(B^{(k,l)}(M)) \mid \tilde{\Gamma} \in \tilde{\Phi}(B^{(k,l)})(M)\}$$
(56)

forms a Grassmannian structure on M.

Consequences :

(1) Each $Gr(k_o, l_o)(M)$ is locally determined by a section

$$\tilde{\Gamma} \, o \, \sigma : M \to F^2(M)$$

where $\tilde{\Gamma} \in \tilde{\Phi}(B^{(k_o, l_o)})(M)$ and σ a section $M \to B^{(k_o, l_o)}(M)$. (2) The set of $Gr(k_o, l_o)(M)$ bundles is given by $F^2(M)/H$. Each local section $\tilde{\Gamma} o \sigma$ determines locally an element of $F^2(M)/H$.

(3) Each $Gr(k_o, l_o)(M)$ is equivalent with a $B^{(k_o, l_o)}(M)$ together with its set of adapted connections.

As alternative formulation of former theorem we have :

Theorem 4.4 Each $Gr(k_o, l_o)(M)$ is locally uniquely defined by a section $\sigma : M \to F^1(M)$ and an identification $\mathbb{R}^{m_o} \leq \mathbb{R}^{k_o l_o}$.

C. The normal Grassmannian connection coefficients

We will now investigate the coefficients of a normal Grassmannian connection in terms of an adapted frame and give an expression of the normal Grassmannian curvature tensor. Let $Gr(k_o, l_o)(M)$ be a Grassmannian structure defined as a subbundle of $F^2(M)$. Let θ^{α} , θ^{α}_{β} be the fundamental and the connection form on $Gr(k_o, l_o)(M)$. Because of the identification $\mathbb{R}^{m_o} \leq \mathbb{R}^{k_o \times l_o}$ we write these forms as $(\theta^{ai}, \theta^i_j, \theta^a_b)$ with $k_o \theta^i_i - l_o \theta^a_a = 0$ in order to fix their uniqueness in the decomposition. We then define on $Gr(k_o, l_o)(M)$

$$\omega_{i}^{a} = \theta^{ai}; \ \omega_{j}^{i} = -\ {}^{\tau}\!\theta_{j}^{i} + \frac{1}{l_{o}}\ {}^{\tau}\!\theta_{k}^{k}\delta_{j}^{i}; \ \omega_{b}^{a} = \theta_{b}^{a} - \frac{1}{k_{o}}\theta_{c}^{c}\delta_{b}^{a}; \ \omega_{*} = -\frac{1}{l_{o}}\theta_{i}^{i} - \frac{1}{k_{o}}\theta_{a}^{a}.$$
(57)

As a consequence of theorem [(3.1)] there exists a unique normal connection form $\omega = (\omega_i^a, \omega_j^i, \omega_b^a, \omega_*, \omega_a^i)$ on $Gr(k_o, l_o)(M)$.

Theorem 4.5 Let M be a manifold equipped with a (k_o, l_o) structure $B^{(k_o, l_o)}(M)$ and $\mathcal{U} \subset M$ an open subset carrying an adapted coframe $F^a_{i\alpha} dx^{\alpha}$. Let further $Gr(k_o, l_o)(M)$ be the Grassmannian structure on M determined by $B^{(k_o, l_o)}(M)$ and

$$\omega = (\omega_i^a, \, \omega_j^i, \, \omega_b^a, \, \omega_*, \, \omega_a^i)$$

the normal Cartan connection.

Then there exists a unique local section $\nu : \mathcal{U} \to Gr(k_o, l_o)(M)$ determined by the conditions

$$\nu^* \omega^a_{i\alpha} dx^\alpha = F^a_{i\alpha} dx^\alpha, \quad \nu^* \omega_* = 0.$$
(58)

Proof

Any section ν may be decomposed into a section σ of $B^{(k_o,l_o)}(M)$ and a section ϑ : $B^{(k_o,l_o)}(M) \to Gr(k_o,l_o)(M)$. The requirement $\nu^* \omega^a_{i\alpha} dx^\alpha = F^a_{i\alpha} dx^\alpha$ implies $\sigma^* \omega^a_{i\alpha} dx^\alpha = F^a_{i\alpha} dx^\alpha$, which determines the section σ . Let $\tilde{\Gamma}$ be a morphism $F^1(M) \to F^2(M)$ defined by an adapted symmetric connection. Using proposition [(4.3)] and expression [(48)] the map ϑ can be written as

$$u^{\alpha}_{\beta\gamma} = -u^{\sigma}_{\beta} [\Gamma^{\alpha}_{\sigma\rho} + 2u_{bk} u^{\alpha}_{cj} v^{ck}_{(\sigma} v^{bj}_{\rho)}] u^{\rho}_{\gamma},$$

with u_{bk} a function on \mathcal{U} . Or also

$$u_{bj\,ai}^{\alpha} = -E_{bj}^{\sigma} [\Gamma_{\sigma\rho}^{\alpha} + 2u_{bk} E_{cj}^{\alpha} F_{(\sigma}^{ck} F_{\rho)}^{bj}] E_{ai}^{\rho},$$

with E_{ai}^{α} the local frame dual to the coframe F_{α}^{ai} .

We remark that $\theta^{\alpha}_{\alpha} = -\frac{1}{k_o l_o} \omega_*$. The calculation of $(\vartheta \circ \sigma)^* \theta^{\alpha}_{\alpha} = 0$ yields, with the use of expression [(42)], the equation

$$F^{ai}_{\gamma}dE^{\gamma}_{ai} + \Gamma^{\gamma}_{\rho\gamma}dx^{\rho} + 2u_{bk}E^{\beta}_{cj}F^{ck}_{(\rho}F^{bj}_{\beta)}dx^{\rho} = 0$$

or

$$u_{ck}F_{\rho}^{ck}dx^{\rho} = -\frac{1}{2}[F_{\gamma}^{ai}dE_{ai}^{\gamma} + \Gamma_{\rho\gamma}^{\gamma}dx^{\rho}].$$

The unicity follows from the same calculations. Any two morphisms of $B^{(k_o,l_o)}(M)$ into $F^2(M)$ indeed are, as a consequence of proposition [(4.3)], defined by affine connections on $B^{(k_o,l_o)}(M)$ which are related by

$$\Gamma_{\alpha\sigma}^{\prime\gamma} - \Gamma_{\alpha\sigma}^{\gamma} = 2u_{bk}E_{cj}^{\gamma}F_{(\alpha}^{ck}F_{\sigma)}^{bj}$$

A simple substitution then yields the unicity.

The theorem allows us to introduce the normal Grassmannian connection coefficients. We set

$$\sigma^*\omega^i_j = \Pi^i_{j\alpha}dx^\alpha, \quad \sigma^*\omega^a_b = \Pi^a_{b\alpha}dx^\alpha, \quad \sigma^*\omega^i_a = \Pi^i_{a\alpha}dx^\alpha.$$
(59)

Dual to the coframe $F^a_{i\alpha}dx^{\alpha}$ we define the frame $E^{i\alpha}_a\frac{\partial}{\partial x^{\alpha}}$ by the conditions

$$F^a_{i\alpha}E^{j\alpha}_b = \delta^a_b \delta^j_i. \tag{60}$$

From equation [(22)(5)] we find

$$\sigma^*\omega_i^a \wedge \sigma^*\omega_a^i = 0$$

or

$$F^a_{i\alpha}\Pi^i_{a\beta} - F^a_{i\beta}\Pi^i_{a\alpha} = 0$$

Define $\Pi^i_{a\beta}E^{k\beta}_c=\Pi^{ik}_{ac}$. The former equation becomes

$$\Pi_{cd}^{kl} - \Pi_{dc}^{lk} = 0.$$
 (61)

Let

$$L_j^i = d\omega_j^i + \omega_k^i \wedge \omega_j^k \tag{62}$$

and

$$L_b^a = d\omega_b^a + \omega_c^a \wedge \omega_b^c. \tag{63}$$

The equations [(22)(2) and (3)] become

$$K_{j\alpha\beta}^{i} = L_{j\alpha\beta}^{i} + \frac{1}{2} (\Pi_{b\alpha}^{i} F_{j\beta}^{b} - \Pi_{b\beta}^{i} F_{j\alpha}^{b})$$

$$K_{b\alpha\beta}^{a} = L_{b\alpha\beta}^{a} + \frac{1}{2} (\Pi_{i\alpha}^{a} F_{b\beta}^{i} - \Pi_{i\beta}^{a} F_{b\alpha}^{i}).$$
(64)

Using the notations

$$L^{i}_{l\alpha\beta}E^{k\alpha}_{c}E^{j\beta}_{b} = L^{ikj}_{lcb} \tag{65}$$

and

$$L^a_{d\alpha\beta}E^{k\alpha}_c E^{j\beta}_b = L^{akj}_{dcb}, \tag{66}$$

we find

$$K_{jcd}^{ikl} = L_{jcd}^{ikl} + \frac{1}{2} (\Pi_{bc}^{ik} \delta_d^b \delta_j^l - \Pi_{bd}^{il} \delta_c^b \delta_j^k)$$

$$K_{bcd}^{akl} = L_{bcd}^{akl} + \frac{1}{2} (\Pi_{bd}^{ml} \delta_c^a \delta_m^k - \Pi_{bc}^{mk} \delta_d^a \delta_m^l).$$
(67)

From the condition

$$K_{lba}^{ilk} - K_{adb}^{dki} = 0$$

we obtain

$$L_{lba}^{ilk} - L_{adb}^{dki} - \frac{k_o + l_o}{2} \Pi_{ab}^{ki} + \Pi_{ab}^{ik} = 0.$$

This gives

$$\Pi_{ab}^{ki} = \frac{2}{(k_o + l_o)^2 - 4} \left[(k_o + l_o)(L_{lba}^{ilk} - L_{adb}^{dki}) + 2(L_{lba}^{kli} - L_{adb}^{dik}) \right].$$
(68)

Let M be equipped with an adapted symmetric affine connection on $B^{(k_o,l_o)}(M)$. We define the coefficients $(\gamma_{lc}^{jk}, \gamma_{bc}^{dk})$ by

$$\nabla_{E_a^i} E_b^j = \gamma_{ba}^{di} E_d^j + \gamma_{la}^{ji} E_b^l,$$

together with $k_o \gamma_{ic}^{ik} - l_o \gamma_{dc}^{dk} = 0.$

A Grassmannian related covariant derivation is defined as

$$\tilde{\nabla}_{E_a^i} E_b^j = \left[\left(\gamma_{ba}^{di} + u_b^i \delta_a^d \right) \delta_l^j + \left(\gamma_{la}^{ji} + u_a^j \delta_l^i \right) \delta_b^d \right] E_d^l.$$
(69)

Or

$$\tilde{\nabla}_{E_a^i} E_b^j = \nabla_{E_a^i} E_b^j + u_b^i E_a^j + u_a^j E_b^i.$$

$$\tag{70}$$

Using this expression we find

Proposition 4.4 Let $X, Y \in \mathcal{X}(M)$, ∇ and $\tilde{\nabla}$ be two adapted connections on the bundle $B^{(k_o, l_o)}(M)$. Let further $\sigma : \mathcal{U} \to B^{(k, l)}(M)$ be a local section and $\bar{\sigma}(x)$ the corresponding identification of the tangent space $T_x(M)$ at $x \in \mathcal{U}$ with $M(k_o, l_o)$. Then there exists a map $\mu : \mathcal{U} \to M(l_o, k_o)$ such that

$$\tilde{\nabla}_X Y = \nabla_X Y + \bar{\sigma}^{-1}[(\mu \cdot \bar{\sigma}(X)) \cdot \bar{\sigma}(Y) + (\mu \cdot \bar{\sigma}(Y)) \cdot \bar{\sigma}(X)].$$
(71)

Because $\mu \in M(l_o, k_o)$ and $\bar{\sigma} \in M(k_o, l_o)$ the composition $(\mu \cdot \bar{\sigma}(X)(x))$ is an element of $M(l_o, l_o)$ which acts on $\bar{\sigma}(Y)(x)$ by composition, giving thus an element of $M(k_o, l_o)$.

Remark We can define the (2, 1)-tensorfield

$$\tilde{\mu} = \bar{\sigma}^{-1} . \mu . \bar{\sigma} .$$

The Grassmannian relationship of two symmetric affine adapted connections is then given by

$$\hat{\nabla}_X Y = \nabla_X Y + \tilde{\mu}(X)(Y) + \tilde{\mu}(Y)(X).$$

We define the splitting of the coefficients γ into the trace free parts and the trace part as $(\bar{\gamma}_{bc}^{ak}, \bar{\gamma}_{jc}^{ik}, \bar{\gamma}_{*c}^{k})$, with $(\bar{\gamma}_{ac}^{ak} = \bar{\gamma}_{ic}^{ik} = 0)$. A Grassmannian related covariant derivation is then given by

$$\tilde{\nabla}_{E_{a}^{i}}E_{b}^{j} = \left[\left(\bar{\gamma}_{ba}^{di} + u_{b}^{i}\delta_{a}^{d} - \frac{1}{k_{o}}u_{a}^{i}\delta_{b}^{d}\right)\delta_{l}^{j} + \left(\bar{\gamma}_{la}^{ji} + u_{a}^{j}\delta_{l}^{i} - \frac{1}{l_{o}}u_{a}^{i}\delta_{l}^{j}\right)\delta_{b}^{d} + \left(\bar{\gamma}_{*a}^{i} + \frac{k_{o} + l_{o}}{k_{o}l_{o}}u_{a}^{i}\right)\delta_{b}^{d}\delta_{l}^{j}\right]E_{d}^{d}$$
(72)

with

$$\bar{\gamma}^{i}_{*\,a} = \frac{1}{k_o l_o} (k_o \gamma^{ji}_{ja} + l_o \gamma^{ci}_{ca}).$$
(73)

The normal Cartan connection is defined by the requirement

$$u_a^i = -\frac{1}{k_o + l_o} (k_o \gamma_{ja}^{ji} + l_o \gamma_{ca}^{ci})$$

and the coefficients of this connection are

$$\Pi_{la}^{ji} = -\bar{\gamma}_{la}^{ji} - u_a^j \delta_i^j + \frac{1}{l_o} u_a^i \delta_l^j$$

$$\Pi_{ba}^{di} = \bar{\gamma}_{ba}^{di} + u_b^i \delta_a^d - \frac{1}{k_o} u_a^i \delta_b^d.$$
 (74)

We now are able to investigate the Grassmannian curvature tensor. Because the bundle $Gr(k_o, l_o)(M)$ is a subbundle of $F^2(M)$ the restriction of the homomorphism $\pi_1^2: F^2(M) \to F^1(M)$ to $Gr(k_o, l_o)(M)$ is the homomorphism :

$$\eta: Gr(k_o, l_o)(M) \to B^{(k_o, l_o)}(M).$$
(75)

The fibres of η are isomorphic to the kernel \mathcal{M}^* of the homomorphism $H \to G_o$. The following theorem proves that the curvature forms Ω_j^i and Ω_b^a are defined on the bundle $B^{(k,l)}(M) \subset F^1(M)$.

Proposition 4.5 Let $Gr(k_o, l_o)(M)$ be a Grassmannian structure equipped with a normal Grassmannian connection. Then the curvature forms Ω_j^i and Ω_b^a satisfy the following conditions. Let A^* be a fundamental vectorfield with $A \in g^1$. Then

(1)

$$\mathcal{L}_{A^*}(\Omega^i_j) = \mathcal{L}_{A^*}(\Omega^a_b) = 0.$$
(76)

(2) The tensor

$$K^{\alpha}_{\beta\gamma\sigma} = K^{i}_{j\gamma\sigma} F^{a}_{i\beta} E^{j\alpha}_{a} + K^{b}_{a\gamma\sigma} F^{a}_{i\beta} E^{i\alpha}_{b}$$
(77)

is a (1,3)-tensorfield on M, which we call the Grassmannian curvature tensor.

Proof

The relations (1) are a direct consequence of the equations [(36)], while (2) is a consequence of the fact that $B^{(k_o,l_o)}(M)$ is a subbundle of $F^1(M)$ together with proposition [(3.1)]. Writing the curvature forms as $\Omega^i_j = K^i_{j\alpha\beta} dx^{\alpha} \otimes dx^{\beta}$ and $\Omega^a_{b\alpha\beta} dx^{\alpha} \otimes dx^{\beta}$, $E^{j\alpha}_b$, the Grassmannian curvature tensorfield is defined as

$$K^{\alpha}_{\beta\gamma\sigma} = \left[K^{i}_{j\gamma\sigma} \delta^{b}_{a} + K^{b}_{a\gamma\sigma} \delta^{i}_{j} \right] F^{a}_{i\beta} E^{jc}_{b}$$

which is equivalent with [(77)].

We call a Grassmannian structure on M locally flat if the structure has vanishing structure constants, which means that the structure is locally isomorphic with a flat structure [2]. The flat structure here means the structure of a Grassmannian. As a consequence of proposition [(3.7)] and because the dimension of the manifold admitting a Grassmannian structure is larger than 3, we have

Theorem 4.6 A Grassmannian structure on M is locally flat iff the Grassmannian curvature equals zero.

References

- Guillemin V.W., Sternberg S., 'An Algebraic Model of Transitive Differential Geometry', Bull. Am. Math. Soc., 70, 1964, 16-47
- Guillemin V.W., ' The integrability problem for G-structures', Trans. Am. Math. Soc., 116, 4, 1965, 544-560
- [3] Kobayashi S., Nagano T., 'On Projective Connections', J. Math. and Mech., 13, 2, 1964, 215-235
- [4] Kobayashi S., 'Canonical Forms on Framebundles of higher order contact', Proc. Symp. Pure Math., Vol. 3., Amer. Math. Soc., 1961, 186-193
- [5] Kobayashi S., Nomizu K., 'Foundations of Differential Geometry, Vol I, Interscience Publ., 1963, J. Wiley & Sons, New York - London
- [6] Manin Y.I., 'Gauge Field Theory', Springer Verlag, Berlin New York, 1988
- [7] Matsushima Y., 'Sur les algè bres de Lie lineaires semi-involutives', Colloque de topologie de Strassbourg (1954)
- [8] Singer I.M., Sternberg S, 'On the infinite groups of Lie and Cartan', Journal d'Analyse Math., XV, 1965, 306-445
- [9] Steenrod N., 'The Topology of Fibrebundles', Princeton Univ. Press, 1951, Princeton

- [10] Sternberg S., 'Lectures on Differential Geometry', Prentice Hall, 1965, N.Y.
- [11] Tanaka N., 'Projective connections and projective transfomations, Nagoya Math. J., 12, 1957, 1-24

P.F. DhoogheDEPARTMENT OF MATHEMATICS, KULeuven,Celestijnenlaan, 200B,B 3001 LEUVEN, BELGIUMEmail : paul dhooghe@mtk@wisk.kul.ac.be