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Abstract

Three types of finite-state graph automata are compared over directed
acyclic graphs (where vertices and edges are labelled). The automata are
distinguished by the way how states are attached to an input graph (“vertex-
marking”, “edge-marking”, and “1-sphere-marking”). We note the equiva-
lence of these models, relate them to logical definability notions, and show
that deterministic versions are strictly weaker (thus correcting an error of
[9]).

1 Introduction

The question of an adequate notion of recognizability of graph properties has recently
attracted much attention, and many competing approaches have been developed.
The starting point in this research is the notion of (nondeterministic or deterministic)
finite automaton over words. In a first step towards more general inputs than words,
finite tree automata were introduced by Doner [5] and Thatcher and Wright [13].
It was shown that many characterizations of recognizable word languages, namely
in terms of regular expressions, recognizability in finite algebras, and definability in
monadic second-order logic, are all naturally preserved when passing from words to
trees. An important point in this theory is the reduction of nondeterministic tree
automata (in the “bottom-up” or “frontier to root” version) to deterministic ones.
Some time later, a model of finite automaton over planar directed acyclic graphs was
introduced by Kamimura and Slutzki [9]. Whereas tree automata attach states to
the vertices of a given input, the automata of [9] generate state labels on the edges of
a graph. Continuing this research, Bossut, Dauchet, and Warin [2, 3] characterized
nondeterministic automata on planar directed acyclic graphs by a calculus of regular
expressions. More recently, Thomas [11, 12] introduced a third and more expressive
notion of finite-state acceptor (over arbitrary finite graphs of bounded degree) whose
recognition power matches existential monadic second-order logic. In this paper we

∗The present work was supported by EBRA Working Group 6317 “Algebraic and Syntactic
Methods in Computer Science (ASMICS 2)”.

Received by the editors November 1993, revised February 1994.
Communicated by M. Boffa.
AMS Classification numbers : 68Q10, 68Q68, 68R10, 03D05.
Key words : labelled finite graphs, recognizability of graph languages, automata on
acyclic graphs, non deterministic graph automata, deterministic graph automata.

Bull. Belg. Math. Soc. 1 (1994), 285–298



286 A. Potthoff - S. Seibert - W. Thomas

first present a framework (given by a suitable class of graphs) in which the first
two approaches and a natural weakening of the third one turn out to be equivalent.
Secondly, the effect of restricting to deterministic acceptors will be analyzed.

Let us mention further approaches to graph recognition which are not pursued
here. An important class of acyclic graphs arises in the theory of partially commu-
tative monoids and Mazurkiewicz traces; in fact, a trace can be identified with a
directed acyclic graph of a special kind. Since traces are introduced as a model of
concurrent behaviour, also concurrent modes of recognition are of special interest (in
the form of “asynchronous automata”, see e.g. [14] and [1]). A more general type
of asynchronous recognition (in a similar spirit as [11]) was introduced by Litovsky,
Métivier, and Zielonka in [10]. Finally, over the domain of arbitrary finite graphs,
a powerful algebraic theory of recognizability (in terms of locally finite graph al-
gebras) was developed by Courcelle [4]; it encompasses more properties than those
expressible even in full monadic second-order logic.

For the comparison of different kinds of graph automata, we use a common class
of labelled graphs as input domain. It will consist of connected directed acyclic
graphs with vertex labels from a given finite alphabet Σ and an additional labelling
of the edges which in particular induces an ordering on the set of incoming, resp.
outgoing edges for each vertex. More precisely, we restrict to graphs where on the
incoming, resp. the outgoing edges of a vertex each edge label appears at most once.
Thus we deal with “ordered” acyclic graphs; however, we do not insist on planarity
(as done in some of the above mentioned papers).

In Section 1, we introduce the three types of graph automata and show their
equivalence in expressive power (in the nondeterministic version). Let us briefly
describe them informally.

The first automaton model, called vertex-marking automaton, is the direct gen-
eralization of tree automata to the domain of acyclic ordered graphs : The run of
such an automaton attaches a state to each vertex of the underlying graph, and a
transition allows to proceed from a tuple of states, associated with the sources of
the incoming edges of a vertex v, and the alphabet label (from Σ) of v to the state
to be associated with v.

In the second type of graph automaton, originating in [9] and [2], called edge-
marking below, a run attaches a state to each edge, and a transition specifies how
to proceed from a tuple of states associated with the incoming edges of a vertex v
and the alphabet label of v to the tuple of states for the outgoing edges.

Finally, we consider graph automata that are derived as a special case of the
acceptors in the sense of [11, 12] and called 1-sphere-marking here. The idea is to
use transitions which check “local neighbourhoods” of (or “spheres around”) vertices
v, in the general case consisting of vertices within a given distance n to v. Here
we deal with “1-spheres” which just consist of a vertex v (the “center”) together
with the vertices incident to the incoming and outgoing edges of v. A run of the
automaton associates a state to each vertex, such that each 1-sphere of the graph
expanded by this state assignment matches a transition. Apart from the fact that
all three types of graph automata are equivalent in recognition power we shall see
that they are strictly weaker than existential monadic second-order logic (not even
all first-order properties are covered). Thus the more general acceptors of [11, 12],
which capture exactly existential monadic second-order logic, cannot be reduced to
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the present version without loss of expressive power.
In Section 3 we discuss the issue of determinism. We start from the intuition

that over acyclic graphs, a run of a deterministic automaton should be determined
uniquely when traversing the graph in accordance with the partial order induced
by the edges. We shall restrict to the vertex-marking and to the edge-marking au-
tomata, since (as we shall explain) the uniqueness of a run is not necessarily deter-
mined locally when 1-sphere-marking automata are considered. A drastic deficiency
in the expressive power of deterministic automata is well-known from the theory of
tree automata (when used in root-to-frontier tree traversal)[7]. Over acyclic graphs,
this effect can to some extent be avoided when only graphs with a “co-root” are ad-
mitted (i.e. with a “final” vertex which is reachable from each vertex by a path and
where the results of a deterministic computation can be collected). But also within
this domain of acyclic graphs with co-root we shall present example sets that are
recognized nondeterministically but not in deterministic mode (by vertex-marking
and by edge-marking automata). These examples reveal an error in [9] where a
subset construction for edge-marking automata is presented, claimed to establish a
reduction from nondeterministic to deterministic edge-marking automata. The class
of underlying graphs is somewhat specialized in [9] (referring to graphs that origi-
nate in derivations of phrase structure grammars), but our counterexamples apply
to these special graphs as well.

The final section gives further comments concerning “globally deterministic”, i.e.
nonambiguous graph automata.

2 Three types of nondeterministic graph auto-

mata

2.1 Labelled graphs

A vertex labelled graph over the label alphabet Σ is of the form G = (V,E, µ), where
V is the set of vertices, E ⊆ (V × V \ idV ) is the set of edges, and µ : V → Σ is the
labelling function. For a vertex v, an edge (u, v) (resp. (v, u)) is called incoming
(resp. outgoing) edge. The number of incoming, resp. outgoing edges of a vertex is
its in-degree, resp. out-degree. A vertex with in-degree i and out-degree j is said to
be of rank (i, j).

In order to control the flow of information in automata, we shall require a “col-
oring” γ : E → C of the edges by colors from a set C = {c1, . . . , cm}, and restrict to
those graphs where for each vertex there are no two occurrences of the same color on
the incoming edges, and where the same holds for the outgoing edges. This allows to
order the incoming, resp. outgoing edges by the sequence of indices of the occurring
colors, and thus to speak of the “tuple of incoming edges”, resp. “tuple of outgoing
edges”. We shall make use of the colors when associating extra labels (usually states)
with edges, resp. their sources or targets. To describe such a labelling, say in the
set Q, we specify for each color ci a corresponding label from Q if an edge with this
color is present, and else a dummy label ∗. Thus, over a color set C = {c1, . . . , cm},
the labels on a set of (either incoming or outgoing) edges are represented by a tuple
(q1, . . . , qm) where qi ∈ Q ∪ {∗}, with qi ∈ Q iff an edge colored ci is present, else
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qi = ∗. If qi1, . . . , qir are the labels for the existing edges with colors ci1, . . . , cir , re-
spectively, we call the extension to an m-tuple (q1, . . . , qm) ∈ (Q∪{∗})m by insertion
of ∗ for j ∈ {1, . . . , m} \ {i1, . . . , ir} the m-tuple associated with (qi1, . . . , qir).

In the definition of “run” we shall refer to the colors of edges incident to a given
vertex. Call a vertex v of type (σ, τ ) if σ (resp. τ ) is the set of colors of incoming
(resp. outgoing) edges incident to v. We say that a set Q of states is typed if Q is a
(not necessarily disjoint) union of sets Q(σ,τ ) where Q(σ,τ ) contains those states that
are admissible on vertices of type (σ, τ ).

The colors of edges serve here as an alternative to the approach taken in [9] and
[2], where incoming and outgoing edges are ordered according to ranks of vertex
symbols. Connections from vertex to vertex are then identifiable by these orderings
together with the restiction that only planar graphs are considered. In the present
paper we employ edge colors to establish a unique identification of an outgoing edge
of one vertex with an incoming edge of another vertex by only local information.
This will allow to include for example nonplanar graphs. Moreover, graphs with
edge colors represent a natural generalization of trees with ordered successors (and
bounded finite branching), as considered in the theory of tree automata.

Let us also note that for a color set C = {c1, . . . , cm} only graphs of both in-
degree and out-degree bounded by 2m are admitted. By a Σ-C-graph we mean a
connected acyclic vertex-labelled graph over the label alphabet Σ and color set C ,
respecting the mentioned condition on at most one occurrence of each color on a set
of incoming, resp. outgoing edges. Recall that a graph G = (V,E) is called acyclic
if the reflexive-transitive closure of E is a partial order on V ; and it is connected
if for each pair (u, v) of vertices there is a sequence v0, v1, . . . , vn such that v0 = u,
vn = v, and (vi, vi+1) ∈ E or (vi+1, vi) ∈ E for 0 ≤ i < n.

2.2 Graph automata

For the following definitions we fix the color set C = {c1, . . . , cm}.

Definition 2.1 A vertex-marking graph automaton over Σ-C-graphs is a structure
A = (Q,Σ,∆), where Q = (Q(σ,τ ))(σ,τ ) is a typed finite set of states and ∆ is a finite
set of transitions. Here a transition is of the form

[(q1, . . . , qm, a)→ q]

where q1, . . . , qm ∈ Q ∪ {∗}, q ∈ Q, and a ∈ Σ. Moreover, if σ = {ci | qi 6= ∗} then
q ∈ Q(σ,τ ) for some τ .

A run of A on a Σ-C-graph G = (V,E, µ) is a map ρ : V → Q which is
compatible with the types (in the sense that for a vertex v of type (σ, τ ) we have
ρ(v) ∈ Q(σ,τ )) and is compatible with the transitions from ∆, as follows : If ver-
tex v ∈ V with µ(v) = a has the incoming edges (vi1, v), . . . , (vir , v) with colors
ci1 , . . . , cir , respectively, and (q1, . . . , qm) is the m-tuple (over (Q∪{∗})m) associated
with (ρ(vi1), . . . , ρ(vir)), then

[(q1, . . . , qm, a)→ ρ(v)] ∈ ∆.
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We say that A accepts G if there is a run of A on G. (Note that “initial states”
are implicitly given as those in the sets Q(∅,τ ), and “final states” as those in the sets
Q(σ,∅).) Let us call a set L of Σ-C- graphs recognizable by vertex-markings if for some
vertex-marking graph automaton, the set of accepted Σ-C-graphs coincides with L.

Definition 2.2 An edge-marking graph automaton over Σ-C-graphs is of the form
A = (Q,Σ,∆), where Q is a finite set of states, Σ is as above, and ∆ consists of
transitions of the form

[(p1, . . . , pm, a)→ (q1, . . . , qm)]

where p1, . . . , pm, q1, . . . , qm ∈ Q ∪ {∗} and a ∈ Σ.

A run of A on a Σ-C-graph G = (V,E, µ) is now a map ρ : E → Q such
that for each vertex v ∈ V say with label a ∈ Σ, incoming edges (vi1, v), . . . , (vir , v)
colored by ci1, . . . , cir and outgoing edges (v, wj1), . . . , (v, wjs) colored by dj1 , . . . , djs ,
respectively, we have

[(p1, . . . , pm, a)→ (q1, . . . , qm)] ∈ ∆

for (p1, . . . , pm) and (q1, . . . , qm) associated with ρ((vi1, v)), . . . , ρ((vir , v)) and with
ρ((v, wj1)), . . . , ρ((v, wjs)). “Initial” and “final” transitions are respectively of the
form [(∗, . . . , ∗, a)→ (q1, . . . , qm)] and [(p1, . . . , pm, a)→ (∗, . . . , ∗)]. The automaton
A accepts G if there is a run of A on G; and a set L of Σ-C-graphs is recognizable
by edge-markings if some edge-marking graph automaton accepts (within the Σ-C-
graphs) exactly the graphs in L.

Our third type of graph automaton originates in [11] and rests on the notion of
“1-sphere”. The 1-sphere around a vertex v of a graph G = (V,E) is the subgraph
of G whose vertex set is {v} ∪ {u ∈ V | (u, v) ∈ E or (v, u) ∈ E} and whose edges
are those incident with v.

Definition 2.3 A 1-sphere-marking graph automaton over Σ-C-graphs is of the
form A = (Q,Σ,∆), where Q is a finite set of states and Σ an alphabet, and ∆
consists of transitions of the form

[(p1, . . . , pm, (a, q), q1, . . . , qm)]

where p1, . . . , pm, q1, . . . , qm ∈ Q ∪ {∗}, a ∈ Σ.

A run of A on G is a map ρ : V → Q such that the following compatibility with
∆ is satisfied : Assume vertex v has incoming edges colored ci1, . . . , cir with sources
vi1, . . . , vir and outgoing edges colored dj1 , . . . , djs with targets wi1, . . . , wir , and that
(p1, . . . , pm) and (q1, . . . , qm) are the m-tuples associated with (ρ(vi1), . . . , ρ(vir)) and
(ρ(wj1), . . . , ρ(wjs)), respectively. Then [(p1, . . . , pm, (µ(v), ρ(v)), q1, . . . , qm)] should
belong to ∆. Again, we say that A accepts G if there is a run of A on G. A set L
of Σ-C-graphs is recognizable by 1-sphere-markings if some 1-sphere-marking graph
automaton accepts (within the Σ-C-graphs) exactly the graphs in L.

Proposition 2.4 The following conditions are equivalent for a set L of Σ-C-graphs :
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1. L is recognizable by vertex-markings.

2. L is recognizable by edge-markings.

3. L is recognizable by 1-sphere-markings.

Proof. We verify the implication chain (a)⇒(c)⇒(b)⇒(a).
(a)⇒(c) : Suppose A = (Q,Σ,∆) is a vertex-marking automaton. The transitions
of a corresponding 1-sphere-marking automaton can be obtained as extensions of
transitions of ∆. Define the 1-sphere-marking automaton A′ = (Q,Σ,∆′) by taking
∆′ as the set of all transitions [(q1, . . . , qm, (a, q), p1, . . . , pm)] where [(q1, . . . , qm, a)→
q] ∈ ∆ and q is of an admissible type (i.e. for σ = {ci | qi 6= ∗} and τ = {ci | pi 6= ∗}
we have q ∈ Q(σ,τ )).
(c)⇒(b) : This implication is also easy, by the similarity of edge-marking transi-
tions and 1-spheres. Both include all edges connected to a certain vertex. The effect
of the different positions of states in the two models can be handled by assigning
to each edge the pair of states at its source and target. From a 1-sphere-marking
automaton A = (Q,Σ,∆) we thus obtain an equivalent edge-marking automaton
A′ = (Q2,Σ,∆′) by taking ∆′ as the set of all transitions [((q1, q), . . . , (qm, q), a)→
((q, p1), . . . , (q, pm))] where [(q1, . . . , qm, (a, q), p1, . . . , pm)] ∈ ∆.
(b)⇒(a) : This is the main direction where we make use of the particular edge col-
orings in Σ-C-graphs. In simulating a given edge-marking automaton by a vertex-
marking automaton, the idea is to store at each vertex a tuple of states, each com-
ponent corresponding to an outgoing edge identified by its color. Thus we can
propagate the appropriate state along each edge when executing the next transi-
tion at a successor vertex. (Without uniqueness of colors on the edges it would not
be possible, when processing a successor vertex, to distinguish the position of the
edge among the outgoing edges of the predecessor vertex. Thus we would loose the
possibility of propagating different information along different outgoing edges as in
edge-marking automata.)
Formally, let A = (Q,Σ,∆) be an edge-marking automaton over Σ-C-graphs, where
C = {c1, . . . , cm}.
We define an equivalent vertex-marking automaton A′ = (Q′,Σ,∆′) by

• Q′ := (Q ∪ {∗})m,

• ∆′ contains, for any type (σ, τ ), exactly the transitions [(p1, . . . , pm, a) → q]
satisfying the following conditions : {ci | p̄i 6= ∗} = σ, q̄ = (q1, . . . , qm)
with {ci | qi 6= ∗} = τ , and each pi 6= ∗ is of the form (pi1, . . . , pim) where
pii 6= ∗ (clearly the source of an edge must have a state to be propagated
along that edge, identified by its color). Moreover, there must be a transition

[(r1, . . . , rm, a)→ (q1, . . . , qm)] ∈ ∆, where ri =

{
pii, if qi 6= ∗,
∗ otherwise.

In the sequel let us call a set of graphs recognizable (by graph automata) if L is
recognizable by a graph automaton of one of the three types above.
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2.3 Examples

We now discuss examples which give an impression of the expressive power (resp.
weakness) of graph automata.

Example 2.5 Let COLk (k ≥ 2) be the set of {a}-C-graphs that are k-colorable
(i.e., admitting an assignment of vertices by colors from a set of k colors such that
adjacent vertices are assigned different colors). COLk is recognizable.

An appropriate vertex-marking automaton has k states, each state corresponding
to one (vertex-) color. Only transitions [(p1, . . . , pm, a) → q] are allowed where q
is different from all pi. Then, in a run, the automaton “guesses” a color for each
vertex, and checks for correctness of this coloring by its transitions.

Admissible vertex colorings are defined by a universal local condition (on all pairs
of adjacent vertices). The next example is concerned with an existential condition
(of single vertices) for all paths.

Example 2.6 Let Σ = {a, b} and C be an arbitrary alphabet of colors. The set L0

consists of the Σ-C-graphs that contain, on each path from a vertex of in-degree 0
(“source vertex”) to a vertex of out-degree 0 (“target vertex”) at least one vertex
labelled b. L0 is recognizable.

This claim is verified by means of a vertex-marking graph automaton with two
states qa, qb, where on a given graph, state qa indicates at vertex v that on some
path from a source vertex to v only labels a are present, and qb stands for the
complementary condition. This is ensured if transitions [(q1, . . . , qm, a) → qb] are
used exactly when no qa occurs among the qi, otherwise [(q1, . . . , qm, a) → qa] is
included, and transitions [(q1, . . . , qm, b)→ qb] are admitted for all choices of the qi,
and qb is a “ final state ”, i.e. for any set σ of edge colors, we have Q(σ,∅) = {qb}.

In the next example we see that graph automata are too weak to check for the
mere existence of vertices (i.e., no more referring to existence within paths).

Example 2.7 Let Lb be the set of Σ-C-graphs that contain at least one vertex la-
belled b. Lb is not recognizable.

Suppose Lb is recognizable by the vertex-marking automaton A with say n states.
Consider the graphs Gk = (Vk, Ek, µ) where Vk = {0, . . . , 2k − 1}, and Ek consists
of the edges {(2i, 2i + 1) | i < k} colored c2 and {(2i, 2i− 1(mod(2k))) | 0 < i < k}
colored c1.
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Furthermore, let µ(0) = b, otherwise µ(v) = a. For k > n, a run of A on Gk

will have a state repetition on the vertex set {2, . . . , 2k − 2}, say at vertices i and
i + p. Identifying these two vertices and restricting the vertex set to {i, . . . , i + p}
we obtain a graph labelled only with a which is also accepted by A, a contradiction.

To overcome the deficiency in expressive power of graph automata there are two
possibilities. The first has been pursued by [2] in the domain of planar graphs, where
a global ordering on the sets of source vertices (of in-degree 0), resp. target vertices
(of out-degree 0) can be derived from the orderings of incoming and outcoming edges
of single vertices. On the orderings of source or target vertices one can introduce
extra finite-state tests (e.g. by usual finite automata) in order to control or check
the global computation. For tree automata, where an ordering of the tree frontier
is considered, this has been investigated further in [8]. Another approach, to be
discussed in the present paper, is to restrict the class of graphs under consideration
to those with co-root, i.e., with a vertex that is reachable from any vertex by a
path. We thus study recognizability relative to the class of Σ-C-graphs with co-root.
Under this relativization, the graph set Lb of the previous example clearly becomes
recognizable. The advantage of a co-root is also well-known from the theory of tree
automata in frontier-to-root mode. However, even relative to the class of graphs
with co-root there are rather simple properties that cannot be recognized. We use
an example from [11].

Example 2.8 Let LD be the set of so-called “ladder-graphs” Hk over Σ = {a} and
C = {c1, c2}. The ladder graph Hk consists of the vertex set {1, 2} × {1, . . . , k} and
has edges ((i, j), (i, j+ 1)) colored c1 for i = 1, 2, 1 ≤ j < k, and edges ((1, j), (2, j))
colored c2 for 1 ≤ j < k.

(1, 1)

(2, 1)

(1, 2)

(2, 2)

(1, k)

(2, k)

-

-

-

-

-

-

c1

c1

c1

c1

c1

c1

c2 c2 c2
? ? ?

. . .

. . .

LD is not recognizable even relative to the class of Σ-C-graphs that have a co-root.
Before verifying this claim, we note that ladder graphs share the following commu-
tation property : If we reach from vertex u the vertex v by passing first a c1-colored
edge and then a c2-colored edge, the same vertex v will be reached by first passing
a c2 colored edge and then a c1-colored one. Assuming now that LD is recogniz-
able by a vertex marking graph automaton A, we obtain a contradiction as follows.
For sufficiently large k, a run of A will contain a repetition of a triple of states at
certain vertices (2, i − 1), (1, i), (2, i) and (2, j − 1), (1, j), (2, j) where i < j. After
replacement of the two vertical edges ((1, i), (2, i)), ((1, j), (2, j)) by ((1, i), (2, j)),
((1, j), (2, i)), respectively, a new acyclic (!) graph is obtained which violates the
above commutation property and hence is not a ladder graph. By choice of i, j,
however, the new graph is accepted by A.
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The commutation property is easily formalized by a (universal) first-order sen-
tence (in the signature appropriate for {a}-{c1, c2}-graphs, cf. [11]). Since any graph
automaton recognizing this property has in particular to accept all ladder graphs,
we see from the above argument that certain first-order properties are not definable
by graph automata. In view of this weakness, one way out is to restrict to a still
more special class of graphs (than those with co-root) and to study recognizability
relative to this class. A natural choice is the class of “grid graphs” or “pictures”
as investigated in [6]. They are generalizations of ladder graphs to vertex sets of
the form {1, . . . , n1} × {1, . . . , n2}. From the results of [6] it follows immediately
that relative to this class, the graph automata of the present paper have the same
expressive power as existential monadic second-order logic.

3 Determinism

Intuitively, an automaton over directed acyclic graphs should be called deterministic
if placement of transitions is fixed in a unique way when traversing the graph along
the edges, following the partial order given by the edge relation. As in [9], we shall
make the assignment of a state to a vertex also dependent on its rank, which means
that also the number of outgoing edges is taken into account. In our framework this
corresponds to the dependence of the transitions on the type of the vertices.

For vertex-marking and edge-marking automata, an assignment of a state to
a vertex, resp. edge, is given by a unique transition within a run, assuming an
assignment of states to the preceding vertices and edges in the partial ordering of
the graph. However, for 1-sphere-marking automata, the assignment of a state to a
vertex v may be fixed by several transitions. For example, if there is an edge (u, v)
and a path (u, u1), (u1, u2), . . . , (un, v), then the state assignment to v involves the
merge of two sequences of state assignments starting from u and thus is not defined
in terms of local information. For this reason, we consider here deterministic graph
automata only in the vertex-marking and in the edge-marking version.

Definition 3.1 A vertex-marking graph automaton A as presented in Definition 2.1
is called deterministic if for all q1, . . . , qm with say σ = {ci | qi 6= ∗}, for all a ∈ Σ,
and for all τ there is at most one transition [(q1, . . . , qm, a)→ q] with q ∈ Q(σ,τ ).
An edge-marking graph automaton A as presented in Definition 2.2 is called de-
terministic if for all p1, . . . , pm with say σ = {ci | pi 6= ∗}, for all a ∈ Σ, and
for all τ there is at most one transition [(p1, . . . , pm, a) → (q1, . . . , qm)] such that
τ = {ci | qi 6= ∗}.

Proposition 3.2 A set of Σ-C-graphs is recognizable by a deterministic edge-
marking automaton iff it is recognized by a deterministic vertex-marking graph
automaton.

Proof. The proof is immediate by the construction of Proposition 2.4. Determin-
ism is preserved in this construction, even when proceeding via 1-sphere-marking
automata for the direction from vertex- to edge-marking automata.
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If L is recognized by a deterministic graph automaton, either vertex-marking or
edge marking, we say that L is recognizable deterministically.

Example 3.3 Let COLk (k ≥ 2) be the set of k-colorable graphs as in Example 2.5.
COLk is not recognizable deterministically.

Suppose COL2 is recognizable by a deterministic vertex-marking automaton. Con-
sider a run on the first graph shown below, which is 2-colorable. By determinism
the run will be a state assignment as indicated (where some of the qi may coincide).
Thus also the second displayed graph will be accepted by the indicated run. How-
ever, this graph is not 2-colorable.

q0
a

q1
a

q2
a

-

J
J
J
J
JĴ
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Note that by the same argument even singleton sets may not be recognizable de-
terministically : Any deterministic automaton accepting the first graph also accepts
the second.

In the remainder of the paper, we restrict to grid graphs as studied in [6]. A grid
graph is a Σ-{c1, c2}-graph with a vertex set of the form {1, . . . , n1} × {1, . . . , n2}
and with edges ((i, j), (i, j + 1)) colored c1 for 1 ≤ i ≤ n1, 1 ≤ j < n2 and edges
((i, j), (i + 1, j)) colored c2 for 1 ≤ i < n1, 1 ≤ j ≤ n2. A first example for
deterministic recognition is the set of (say trivially labelled) square grids (where
n1 = n2). A deterministic vertex-marking automaton recognizing this set may for
instance assign a special state p along the diagonal vertices (i, i) and another special
state q at the “subdiagonal” vertices (i + 1, i), starting from the top left corner
vertex (1, 1). A test for the square grid property results if the only state with type
({c1, c2}, ∅) is p. Other deterministically recognizable sets of grid graphs arise by
Turing machine computations, coded as two-dimensional arrays of symbols (each
horizontal row coding one configuration). In fact, for any Turing machineM there
is a vertex-marking graph automaton AM which recognizes (relative to the class of
grid graphs) the set of halting computations of M. We omit the details.

Let us present a set of grid graphs that is recognizable (relative to the class of
grid graphs) but not deterministically recognizable. As a preparation, consider the
set G0 of square grid graphs over Σ = {a, b} with exactly one occurrence of b on
the lowest row of vertices and exactly one occurrence of b on the rightmost column
of vertices. G0 is easily seen to be recognizable by a deterministic vertex-marking
automaton.

Example 3.4 Let H= be the set of grid graphs in G0 where the two symbols b occur
on the same counterdiagonal, i.e., over (n×n)-grids at positions (n, i) and (i, n) for
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some i. H= is recognizable relative to the class of grid graphs, but not recognizable
deterministically.

Recognizablity of H= is easily verified using a nondeterministic automaton which
associates special states to the positions that are marked in the following figure.
The position marked by a big dot is guessed nondeterministically.

b

b

t

From the guessed position on the diagonal, special states are propagated to the
right towards the rightmost column and down to the last row. There checks on the
occurrence of letter b are carried out, the results being sent to the bottom right
corner. Adding a second component to the states for the test whether the graph is
in G0 finishes the construction.

Let us verify that H= is not recognizable by a deterministic vertex-marking
automaton. Over a n×n-grid in G0 the state at position (n−1, n) (resp. at position
(n, n− 1)) depends only on the position of symbol b in the rightmost column (resp.
in the lowest row). Thus a deterministic automaton with m < n states reaches the
same state at position (n− 1, n) for different locations of symbol b on the rightmost
column. Therefore the automaton can not check correctly that the symbols b occur
on the same counterdiagonal.

The example H= shows that a central claim of [9] is not correct, in particular
Theorem 3.6 of that paper where a subset construction over acyclic planar graphs is
presented in order to reduce nondeterministic graph automata to deterministic ones.
The automata of [9] are edge-marking automata, where ranks are associated with
vertex labels instead of states. This can be seen as a special case of the present edge-
marking automata, since ranks of vertex labels can be controlled by an appropriate
restriction in the transitions (using the edge-colors). The underlying graphs of [9]
are planar directed acyclic graphs that arise as derivation graphs of phrase structure
grammars (“d-dags”). Our example above does not fall precisely in this class of d-
dags. However, one obtains a d-dag if each edge of a graph in our set G0 of grid
graphs is split into two consecutive edges (adding an extra intermediate vertex). By
a copy of the argument given above, applied to these amplifications of grid graphs,
we obtain a set that is recognizable but not deterministically recognizable (in our
sense and hence also by the edge-marking automata in the sense of [9]).
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The point where the argument of [9] fails is the following : In a “window” of the
form

w

v

v1 v2

��	 @@R

@@R ��	

it must be clear at vertex w which pair of states q1, q2 was chosen when passing
from v to v1, v2. In [9] this information is made available by a “generalized subset
construction”. However, it does not suffice to ensure this for each individual window,
since the information about chosen pairs must be available at all points where paths
from v1, v2 meet for the first time (say at w′ in the figure below). This turns out to
involve unbounded information within a deterministic state labelling.

w′

...
. . .

...
. . .

w

v

v1 v2

��	 @@R

@@R ��	

@@R ��	

Example 3.4 is concerned with “top-down” automata on grids (in the sense of
traversals from the top left to the bottom right corner). For top-down automata
over trees the well-known divergence between determinism and nondeterminism is
overcome by inverting the traversal to bottom-up mode. In the present case of
grids it is easy to adjust Example 3.4 to show that determinism is weaker than
nondeterminism for both modes of traversal. For this, it suffices to supply the grids
of H= with appropriate occurrences of b on the top and left border, again on the
same counterdiagonal.

4 Concluding remarks

We have studied natural but rather weak models of finite-state recognizers over
directed acyclic graphs. The expressive weakness is apparent especially from the fact
that simple first-order properties are not recognizable. Useful applications become
possible when the class of graphs is restricted, for example when considering only
grid graphs. In all cases, however, we showed that determinism leads to a loss in
recognition power.

In the present paper we leave open some questions on other restrictions of rec-
ognizability, for example concerning unambiguous recognizability. A recognizable
graph set L is unambiguous if (say) a vertex-marking automaton recognizes it such
that each graph in L admits at most one run of the automaton. The set H= of
the last example is unambiguous, as is its complement relative to the class of grid
graphs. So there are unambiguous (and at the same time co-unambiguous) graph
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sets that are not recognizable deterministically. What is the relation of unambi-
guity to recognizability (say over grid graphs)? A more refined question considers
sets of grid graphs which are recognizable and co-recognizable (i.e., such that their
complement in the class of grid graphs is recognizable). Is there a recognizable and
co-recognizable set which is not unambiguous?
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